Cardiovascular Magnetic Resonance (CMR) Page 1 of 11

Total Page:16

File Type:pdf, Size:1020Kb

Cardiovascular Magnetic Resonance (CMR) Page 1 of 11 Cardiovascular Magnetic Resonance (CMR) Page 1 of 11 No review or update is scheduled on this Medical Policy as it is unlikely that further published literature would change the policy position. If there are questions about coverage of this service, please contact Blue Cross and Blue Shield of Kansas customer service, your professional or institutional relations representative, or submit a predetermination request. Medical Policy An independent licensee of the Blue Cross Blue Shield Association Title: Cardiovascular Magnetic Resonance (CMR) Professional Institutional Original Effective Date: August 4, 2005 Original Effective Date: July 1, 2006 Revision Date(s): February 27, 2006, Revision Date(s): May 2, 2007; May 2, 2007; November 1, 2007; November 1, 2007; January 1, 2010; January 1, 2010; February 15, 2013; February 15, 2013; December 11, 2013; December 11, 2013; April 15, 2014; April 15, 2014; July 15, 2014; June 10, 2015; July 15, 2014; June 10, 2015; June 8, 2016; June 8, 2016; October 1, 2016; October 1, 2016; May 10, 2017; May 10, 2017; April 25, 2018; April 25, 2018; October 1, 2018 October 1, 2018 Current Effective Date: July 15, 2014 Current Effective Date: July 15, 2014 Archived Date: July 3, 2019 Archived Date: July 3, 2019 State and Federal mandates and health plan member contract language, including specific provisions/exclusions, take precedence over Medical Policy and must be considered first in determining eligibility for coverage. To verify a member's benefits, contact Blue Cross and Blue Shield of Kansas Customer Service. The BCBSKS Medical Policies contained herein are for informational purposes and apply only to members who have health insurance through BCBSKS or who are covered by a self-insured group plan administered by BCBSKS. Medical Policy for FEP members is subject to FEP medical policy which may differ from BCBSKS Medical Policy. The medical policies do not constitute medical advice or medical care. Treating health care providers are independent contractors and are neither employees nor agents of Blue Cross and Blue Shield of Kansas and are solely responsible for diagnosis, treatment and medical advice. If your patient is covered under a different Blue Cross and Blue Shield plan, please refer to the Medical Policies of that plan. Current Procedural Terminology © American Medical Association. All Rights Reserved. Contains Public Information Cardiovascular Magnetic Resonance (CMR) Page 2 of 11 No review or update is scheduled on this Medical Policy as it is unlikely that further published literature would change the policy position. If there are questions about coverage of this service, please contact Blue Cross and Blue Shield of Kansas customer service, your professional or institutional relations representative, or submit a predetermination request. DESCRIPTION Cardiovascular magnetic resonance (CMR) is established in clinical practice for the diagnosis and management of disorders of the cardiovascular system. CMR has several advantages over other imaging modalities: • Non-invasive • No ionizing radiation • No known clinical side effects • Soft tissue imaging is superior • No imaging artifact from bone • Equal clarity in any view: axial, sagittal, coronal, or oblique • Ability to acquire two, three, and four-dimensional data Disadvantages of CMR include: • Requires more patient cooperation • Longer imaging times • Incompatibility with various medical and life support devices • Attraction of ferromagnetic objects • Cost (When applied appropriately with state of the art MRI technology and expertise, initial test cost may be offset by a reduction in downstream utilization of other redundant imaging tests. CMR has the potential to provide a comprehensive examination in one setting at considerably less risk and cost to the patient.) POLICY A. Medically necessary indications for CMR include: 1. Congenital heart disease a. Assessment of shunt size b. Situs anomalies with complex congenital heart disease c. Anomalous pulmonary venous return, especially in complex anomalies and cor triatriatum d. Anomalous systemic venous return e. Systemic or pulmonary venous obstruction f. Ventricular Septal Defect (VSD) associated with complex anomalies g. Supracristal VSD h. Evaluation of right and left ventricular volumes, mass and function i. Pulmonary regurgitation j. Supravalvular aortic stenosis k. Post-operative follow-up of shunts l. Aortic (sinus Valsalva) aneurysm Current Procedural Terminology © American Medical Association. All Rights Reserved. Contains Public Information Cardiovascular Magnetic Resonance (CMR) Page 3 of 11 No review or update is scheduled on this Medical Policy as it is unlikely that further published literature would change the policy position. If there are questions about coverage of this service, please contact Blue Cross and Blue Shield of Kansas customer service, your professional or institutional relations representative, or submit a predetermination request. m. Aortic coarctation n. Vascular rings o. Aortopulmonary window p. Anomalous origin of coronary arteries q. Pulmonary atresia r. Central pulmonary stenosis s. Systemic to pulmonary collaterals 2. Acquired diseases of the vessels a. Diagnosis and follow-up of thoracic and abdominal aortic aneurysm including Marfan syndrome b. Diagnosis and follow-up of chronic aortic dissection c. Diagnosis of aortic intramural hemorrhage d. Diagnosis of penetrating ulcers of the aorta e. Pulmonary artery anatomy and flow f. Assessment of thoracic, abdominal and pelvic veins g. Assessment of renal arteries h. Assessment of iliac, femoral and lower leg arteries i. Assessment of thoracic great vessel origins j. Assessment of cervical carotid arteries k. Assessment of pulmonary veins including one in association with an electrophysiology ablation for atrial fibrillation 3. Coronary artery disease a. Assessment of global ventricular (left and right) function and mass b. Coronary anomalies c. Acute and chronic myocardial infarction - detection and assessment; myocardial viability 4. Pericardial disease, cardiac tumors, cardiomyopathies and cardiac transplants a. Detection and characterization of cardiac and pericardiac tumors b. Hypertrophic cardiomyopathy c. Dilated cardiomyopathy - differentiation from dysfunction related to coronary artery disease d. Arrhythmogenic right ventricular cardiomyopathy (dysplasia) e. Siderotic cardiomyopathy (in particular thalassemia) f. Restrictive cardiomyopathy 5. Valvular heart disease a. Cardiac chamber anatomy and function Current Procedural Terminology © American Medical Association. All Rights Reserved. Contains Public Information Cardiovascular Magnetic Resonance (CMR) Page 4 of 11 No review or update is scheduled on this Medical Policy as it is unlikely that further published literature would change the policy position. If there are questions about coverage of this service, please contact Blue Cross and Blue Shield of Kansas customer service, your professional or institutional relations representative, or submit a predetermination request. b. Quantification of regurgitation or stenosis B. Experimental / investigational indications: 1. CMR as a screening test 2. Coronary MRA for screening of coronary artery disease C. Subject to review for medical necessity: 1. CMR for indications that are not listed above 2. Duplication of services such as CT scan, radionuclide studies, ultrasound, and MRI CODING The following codes for treatment and procedures applicable to this policy are included below for informational purposes. Inclusion or exclusion of a procedure, diagnosis or device code(s) does not constitute or imply member coverage or provider reimbursement. Please refer to the member's contract benefits in effect at the time of service to determine coverage or non- coverage of these services as it applies to an individual member. CPT/HCPCS 75557 Cardiac magnetic resonance imaging for morphology and function without contrast material; 75559 Cardiac magnetic resonance imaging for morphology and function without contrast material; with stress imaging 75561 Cardiac magnetic resonance imaging for morphology and function without contrast material(s), followed by contrast material(s) and further sequences; 75563 Cardiac magnetic resonance imaging for morphology and function without contrast material(s), followed by contrast material(s) and further sequences; with stress imaging 75565 Cardiac magnetic resonance imaging for velocity flow mapping (List separately in addition to code for primary procedure) ICD-10 Diagnoses A18.84 Tuberculosis of heart A52.00 Cardiovascular syphilis, unspecified A52.01 Syphilitic aneurysm of aorta A52.02 Syphilitic aortitis A52.03 Syphilitic endocarditis A52.04 Syphilitic cerebral arteritis A52.06 Other syphilitic heart involvement A52.09 Other cardiovascular syphilis C34.01 Malignant neoplasm of right main bronchus C34.02 Malignant neoplasm of left main bronchus Current Procedural Terminology © American Medical Association. All Rights Reserved. Contains Public Information Cardiovascular Magnetic Resonance (CMR) Page 5 of 11 No review or update is scheduled on this Medical Policy as it is unlikely that further published literature would change the policy position. If there are questions about coverage of this service, please contact Blue Cross and Blue Shield of Kansas customer service, your professional or institutional relations representative, or submit a predetermination request. C34.11 Malignant neoplasm of upper lobe, right bronchus or lung C34.12 Malignant neoplasm of upper
Recommended publications
  • 446 NQF #0773: Operative Mortality Stratified by the Five STS-EACTS Mortality Categories
    Measure #446 (NQF 0733): Operative Mortality Stratified by the Five STS-EACTS Mortality Categories – National Quality Strategy Domain: Patient Safety 2017 OPTIONS FOR INDIVIDUAL MEASURES: REGISTRY ONLY MEASURE TYPE: Outcome DESCRIPTION: Percent of patients undergoing index pediatric and/or congenital heart surgery who die, including both 1) all deaths occurring during the hospitalization in which the procedure was performed, even if after 30 days (including patients transferred to other acute care facilities), and 2) those deaths occurring after discharge from the hospital, but within 30 days of the procedure, stratified by the five STAT Mortality Levels, a multi-institutional validated complexity stratification tool INSTRUCTIONS: This measure is to be reported for all pediatric and/or congenital heart patients each time a surgery is performed during the performance period. This measure is intended to reflect the quality of services provided for patients with congenital heart disease. This measure may be reported by eligible clinicians who perform the quality actions described in the measure based on the services provided and the measure-specific denominator coding. Measure Reporting: The listed denominator criteria is used to identify the intended patient population. The numerator quality-data codes included in this specification are used to submit the quality actions allowed by the measure. All measure-specific coding should be reported on the claim(s) representing the eligible encounter. THERE ARE TWO REPORTING CRITERIA FOR THIS MEASURE:
    [Show full text]
  • Situs Inversus Totalis with Aortopulmonary Shunt: a Case Report in an Ethiopian
    Ethiop. J. Health Biomed Sci., 2009. Vol.2, No.1 CASE REPORT SITUS INVERSUS TOTALIS WITH AORTOPULMONARY SHUNT: A CASE REPORT IN AN ETHIOPIAN Ermias Diro1 SUMMARY I report a patient who presented with long standing dyspnea without physical signs of congestive heart failure and finally diag- nosed to have situs inversus totalis with aortopulmonary window. Situs inversus totalis refers to a mirror image reversal of the normal position of the internal organs. The recognition of concomitant congenital anomalies such as in the heart or other or- gans is extremely important as it may disturb surgical procedures for concomitant diseases. This is a very rare condition and a coexisting aortopulmonary window was not described before to the best of my knowledge. their normal positions. Situs inversus with dextrocar- dia is termed situs inversus totalis because the car- INTRODUCTION diac position as well as the atrial chambers and ab- dominal viscera are mirror images of the normal anatomy (3). The purpose of this case report is to describe and discuss a rare situation with an important clinical Typically, patients with situs inversus have a normal significance. life expectancy except in the rare instances of cardiac anomalies, depending on the severity of the defect. Situs describes the position of the cardiac atria and Patients with Kartagners syndrome, a triad of situs viscera. Situs solitus is the normal position, and situs inversus, sinusitis and bronchiectasis, have a normal inversus is the mirror image of situs solitus. Cardiac life expectancy if the bronchiectasis is treated ade- situs is determined by the atrial location. In situs in- quately.
    [Show full text]
  • Pub 100-04 Medicare Claims Processing Centers for Medicare & Medicaid Services (CMS) Transmittal 3054 Date: August 29, 2014 Change Request 8803
    Department of Health & CMS Manual System Human Services (DHHS) Pub 100-04 Medicare Claims Processing Centers for Medicare & Medicaid Services (CMS) Transmittal 3054 Date: August 29, 2014 Change Request 8803 SUBJECT: Ventricular Assist Devices for Bridge-to-Transplant and Destination Therapy I. SUMMARY OF CHANGES: This Change Request (CR) is effective for claims with dates of service on and after October 30, 2013; contractors shall pay claims for Ventricular Assist Devices as destination therapy using the criteria in Pub. 100-03, part 1, section 20.9.1, and Pub. 100-04, Chapter 32, sec. 320. EFFECTIVE DATE: October 30, 2013 *Unless otherwise specified, the effective date is the date of service. IMPLEMENTATION DATE: September 30, 2014 Disclaimer for manual changes only: The revision date and transmittal number apply only to red italicized material. Any other material was previously published and remains unchanged. However, if this revision contains a table of contents, you will receive the new/revised information only, and not the entire table of contents. II. CHANGES IN MANUAL INSTRUCTIONS: (N/A if manual is not updated) R=REVISED, N=NEW, D=DELETED-Only One Per Row. R/N/D CHAPTER / SECTION / SUBSECTION / TITLE D 3/90.2.1/Artifiical Hearts and Related Devices R 32/Table of Contents N 32/320/Artificial Hearts and Related Devices N 32/320.1/Coding Requirements for Furnished Before May 1, 2008 N 32/320.2/Coding Requirements for Furnished After May 1, 2008 N 32/320.3/ Ventricular Assist Devices N 32/320.3.1/Postcardiotomy N 32/320.3.2/Bridge-To -Transplantation (BTT) N 32/320.3.3/Destination Therapy (DT) N 32/320.3.4/ Other N 32/320.4/ Replacement Accessories and Supplies for External Ventricular Assist Devices or Any Ventricular Assist Device (VAD) III.
    [Show full text]
  • A Case of Stenosis of Mitral and Tricuspid Valves in Pregnancy, Treated by Percutaneous Sequential Balloon Valvotomy
    Case Report Annals of Clinical Medicine and Research Published: 30 Jun, 2020 A Case of Stenosis of Mitral and Tricuspid Valves in Pregnancy, Treated by Percutaneous Sequential Balloon Valvotomy Vipul Malpani, Mohan Nair*, Pritam Kitey, Amitabh Yaduvanshi, Vikas Kataria and Gautam Singal Department of Cardiology, Holy Family Hospital, New Delhi, India Abstract Rheumatic mitral stenosis is associated with other lesions, but combination of mitral stenosis and tricuspid stenosis is unusual. We are reporting a case of mitral and tricuspid stenosis in a pregnant lady that was successfully treated by sequential balloon valvuloplasty in a single sitting. Keywords: Mitral stenosis; Tricuspid stenosis; Balloon valvotomy Abbreviations MS: Mitral Stenosis; TS: Tricuspid Stenosis; BMV: Balloon Mitral Valvotomy; CMV: Closed Mitral Valvotomy; BTV: Balloon Tricuspid Valvotomy; PHT: Pressure Half Time; MVA: Mitral Valve Area; TVA: Tricuspid Valve Area; LA: Left Atrium; RA: Right Atrium; TR: Tricuspid Regurgitation Introduction Rheumatic Tricuspid valve Stenosis (TS) is rare, and it generally accompanies mitral valve disease [1]. TS is found in 15% cases of rheumatic heart disease but it is of clinical significance in only 5% cases [2]. Isolated TS accounts for about 2.4% of all cases of organic tricuspid valve disease and is mostly seen in young women [3,4]. Combined stenosis of mitral and tricuspid valves is extremely uncommon. Combined stenosis of both the valves has never been reported in pregnancy. Balloon Mitral Valvotomy (BMV) and surgical Closed Mitral Valvotomy (CMV) are two important OPEN ACCESS therapeutic options in the management of rheumatic mitral stenosis. Significant stenosis of the *Correspondence: tricuspid valve can also be treated by Balloon Tricuspid Valvotomy (BTV) [5,6].
    [Show full text]
  • Abernathys Surgical Secrets 6Th Edition
    1600 John F. Kennedy Blvd. Ste 1800 Philadelphia, PA 19103–2899 ABERNATHY’S SURGICAL SECRETS, SIXTH EDITION ISBN: 978-0-323-05711-0 Copyright Q 2009, 2005, 2003, 2000, 1996, 1991, 1986 by Mosby, Inc., an affiliate of Elsevier Inc. All rights reserved. No part of this publication may be reproduced or transmitted in any form or by any means, electronic or mechanical, including photocopying, recording, or any information storage and retrieval system, without permission in writing from the publisher. Permissions may be sought directly from Elsevier’s Rights Department: phone: (þ1) 215 239 3804 (US) or (þ44) 1865 843830 (UK); fax: (þ44) 1865 853333; e-mail: [email protected]. You may also complete your request on-line via the Elsevier website at http://www.elsevier.com/permissions. NOTICE Knowledge and best practice in this field are constantly changing. As new research and experience broaden our knowledge, changes in practice, treatment and drug therapy may become necessary or appropriate. Readers are advised to check the most current information provided (i) on procedures featured or (ii) by the manufacturer of each product to be administered, to verify the recommended dose or formula, the method and duration of administration, and contraindications. It is the responsibility of the practitioner, relying on their own experience and knowledge of the patient, to make diagnoses, to determine dosages and the best treatment for each individual patient, and to take all appropriate safety precautions. To the fullest extent of the law, neither the Publisher nor the Editor assumes any liability for any injury and/or damage to persons or property arising out of or related to any use of the material contained in this book.
    [Show full text]
  • Severe Tricuspid Valve Stenosis
    Severe Tricuspid Valve Stenosis A Cause of Silent Mitral Stenosis Abdolhamid SHEIKHZADEH, M.D., Homayoon MOGHBELI, M.D., Parviz GHABUSSI, M.D., and Siavosh TARBIAT, M.D. SUMMARY The diastolic rumbling murmur of mitral stenosis (MS) may be attenuated in the presence of low cardiac output, right ventri- cular enlargement, Lutembacher's syndrome, pulmonary emphy- sema, and obesity. In this report we would like to stress that the presence of tricuspid stenosis (TS) is an additional significant cause of silent MS. The clinical material consisted of 73 patients with rheumatic TS who had undergone cardiac surgery. Five of these cases had clinical findings of TS without auscultatory findings of MS. They were found to have severe MS at the time of operation and to re- quire mitral valve surgery. At cardiac catheterization the mean diastolic gradient (MDG) across the mitral valve (MV) was less than 3mmHg and pulmonary arterial systolic pressure was 29- 42mmHg. The MDG across the tricuspid valve was 6-17mmHg. In conclusion, TS can mask clinical and hemodynamic find- ings of MS. The reason for this is the mechanical barrier imposed by TS proximal to the MV. Additional Indexing Words: Rheumatic valvular disease Atrial imprint Tricuspid valve surgery HE most common silent valvular lesion is that of mitral stenosis (MS).1) T The auscultatory findings of MS particularly the diastolic rumble, can be masked in patients with low cardiac output,2) severe pulmonary hyperten- sion right ventricular hypertrophy,3) Lutembacher's syndrome,4) pulmonary emphysema, and obesity.2) The purpose of this communication is to report another cause of true silent MS.
    [Show full text]
  • All Forms Combined
    Not Started Institutional Practice Details Print this Form Date of Completion DD/MM/YYYY 1. Indicate the day, month, and year the form is being completed. Previous year’s hospital case Less than or equal to 100 per year 2. volume of congenital cardiac 101-250 per year surgeries 251-500 per year Indicate the case volume of Tier 1 AND Tier 2 surgeries for the previous Greater than 500 per year calendar year. (This is the total number of surgeries, not the number of patients.) Active congenital heart surgeons active congenital heart 3. Indicate the number of active congenital heart surgeons currently surgeons practicing at your hospital. How is a congenital heart 3a surgeon certified in your country? Cardioplegia Type Buckberg 4. Check all cardioplegia types that your hospital uses. If there are Custodiol/Bretschneider (HTK) multiple cardioplegia types that your hospital uses that are not Del Nido options in the list provided, enter all of them in the "other, specify" box Microplegia with Adenocaine seperating them by commas (,). 0 option(s) selected Microplegia with Potassium Plegisol/St. Thomas Roe's Solution University of Wisconsin Other, specify Geographic Region Served Local: one city or metro area 5. Regional: geographically larger than a metro area National: one country International: multiple countries Estimated Population Served Less than 10 million 6. Based on answer to the previous question. 10-30 million 31-50 million Greater than 51 million Unknown Total number of institutions Missing Reason: 7. providing pediatric cardiac Clear Unknown services in the region. Based on answer to question 5. Specify the total number including your institution.
    [Show full text]
  • Building Blocks of Clinical Practice Helping Athletic Trainers Build a Strong Foundation Issue #7: Cardiac Assessment: Basic Cardiac Auscultation Part 2 of 2
    Building Blocks of Clinical Practice Helping Athletic Trainers Build a Strong Foundation Issue #7: Cardiac Assessment: Basic Cardiac Auscultation Part 2 of 2 AUSCULTATION Indications for Cardiac Auscultation • History of syncope, dizziness • Chest pain, pressure or dyspnea during or after activity / exercise • Possible indication of hypertrophic cardiomyopathy • Sensations of heart palpitations • Tachycardia or bradycardia • Sustained hypertension and/or hypercholesterolemia • History of heart murmur or heart infection • Noted cyanosis • Trauma to the chest • Signs of Marfan’s syndrome * Enlarged or bulging aorta * Ectomorphic, scoliosis or kyphosis, pectus excavatum or pectus carinatum * Severe myopia Stethoscope • Diaphragm – best for hearing high pitched sounds • Bell – best for hearing low pitched sounds • Ideally, auscultate directly on skin, not over clothes Adult Rate • > 100 bpm = tachycardia • 60-100 bpm = normal (60-95 for children 6-12 years old) • < 60 bpm = bradycardia Rhythm • Regular • Irregular – regularly irregular or “irregularly” irregular Auscultation Sites / Valvular Positions (see part 1 of 2 for more information) • Aortic: 2nd right intercostal space • Pulmonic: 2nd left intercostal space • Tricuspid: 4th left intercostal space • Mitral: Apex, 5th intercostal space (mid-clavicular line) Auscultate at each valvular area with bell and diaphragm and assess the following: • Cardiac rhythm – regular or irregular • Heart sounds – note the quality • Murmurs – valvular locations • Extra-Cardiac Sounds – clicks, snaps and
    [Show full text]
  • Klinička Slika Kasne Novorođenačke Sepse – I Dalje Ozbiljan Diferencijalnodijagnostički Problem
    Liječ Vjesn 2019;141:150–161 https://doi.org/10.26800/LV-141-5-6-21 Pregled | Review Klinička slika kasne novorođenačke sepse – i dalje ozbiljan diferencijalnodijagnostički problem Clinical manifestation of late neonatal sepsis – continuous differential diagnostic dilemma Matej Katavić1, Andrea Dasović Buljević2 1 Klinika za pedijatriju, KBC Sestre milosrdnice 2 Zavod za neonatologiju i neonatalno intenzivno liječenje, Klinika za pedijatriju, Medicinski fakultet Sveučilišta u Zagrebu, KBC Zagreb Deskriptori SAŽETAK. Novorođenačka sepsa kao klinički sindrom jedan je od najčešćih dijagnostičko-terapijskih izazova u NOVOROĐENAČKA SEPSA – dijagnoza, etiologija, novorođenačkoj dobi s relativno visokom stopom smrtnosti. Prema dobi manifestacije, dijeli se na ranu i kasnu liječenje; SEPTIČKI ŠOK – dijagnoza, liječenje; sepsu, ovisno o izvorima i mišljenjima raznih stručnjaka. Može se očitovati poremećajem svih organskih sustava i DIFERENCIJALNA DIJAGNOZA; brojnim kasnim komplikacijama te znatnim morbiditetom i mortalitetom. Razdoblje od drugog tjedna života NOVOROĐENAČKE BOLESTI – dijagnoza, liječenje primarni je interes ovog rada jer je u tom periodu (dotad prividno zdrava) novorođenčad otpuštena kući iz rodi- lišta, adaptirana na svakodnevne zahtjeve ekstrauterinog života, s mogućnošću razvoja niza neinfektivnih stanja i bolesti koji klinički izgledaju kao septičko stanje. Široka diferencijalna dijagnoza takvog stanja može biti ozbiljan problem koji nalaže hitnu reakciju, pravilno i pravodobno liječenje te, naposljetku, zbrinjavanje u adekvatnoj
    [Show full text]
  • Unifocalization of Major Aortopulmonary Collaterals in Single-Ventricle Patients Olaf Reinhartz, MD, V
    CARDIOVASCULAR Unifocalization of Major Aortopulmonary Collaterals in Single-Ventricle Patients Olaf Reinhartz, MD, V. Mohan Reddy, MD, Edwin Petrossian, MD, Sam Suleman, BS, Richard D. Mainwaring, MD, David N. Rosenthal, MD, Jeffrey A. Feinstein, MD, Raj Gulati, MD, and Frank L. Hanley, MD Department of Cardiothoracic Surgery, Division of Pediatric Cardiac Surgery, and Department of Pediatrics, Division of Pediatric Cardiology, Stanford University, Stanford, California Background. Unifocalization of major aortopulmonary procedures. Median postoperative pulmonary artery collateral arteries (MAPCAs) in pulmonary atresia with pressures measured 12.5 mm Hg (Glenn) and 14 mm Hg ventricular septal defect and intracardiac repair has be- (Fontan), respectively. Six patients are alive today (46%), come the standard of care. However, there are no reports with 1 patient lost to follow-up. Three patients died early addressing unifocalization of MAPCAs in single-ventri- and 3 late after initial unifocalization to shunts. One cle patients. It is unknown whether their pulmonary other patient survived unifocalization, but was not con- vascular bed can be reconstructed and low enough pul- sidered a candidate for a Glenn procedure and died after monary vascular resistance achieved to allow for superior high-risk two-ventricle repair. Another patient with or total cavopulmonary connections. right-ventricle–dependent coronary circulation died of Methods. We reviewed data on all patients with func- sepsis late after Glenn. tional single ventricles and unifocalization procedures of Conclusions. In selected patients with functional single MAPCAs. From 1997 to 2005, 14 consecutive children ventricles and MAPCAs, the pulmonary vascular bed can with various single-ventricle anatomies were operated be reconstructed sufficiently to allow for cavopulmonary on.
    [Show full text]
  • Surgical Management of Tricuspid Stenosis
    Art of Operative Techniques Surgical management of tricuspid stenosis Marisa Cevasco, Prem S. Shekar Division of Cardiac Surgery, Brigham and Women’s Hospital, Boston, MA, USA Correspondence to: Prem S. Shekar, MD. Chief of Cardiac Surgery, 75 Francis Street, Boston, MA 02115, USA. Email: [email protected]. Tricuspid valve stenosis (TS) is rare, affecting less than 1% of patients in developed nations and approximately 3% of patients worldwide. Detection requires careful evaluation, as it is almost always associated with left-sided valve lesions that may obscure its significance. Primary TS is most frequently caused by rheumatic valvulitis. Other causes include carcinoid, radiation therapy, infective endocarditis, trauma from endomyocardial biopsy or pacemaker placement, or congenital abnormalities. Surgical management of TS is not commonly addressed in standard cardiac texts but is an important topic for the practicing surgeon. This paper will elucidate the anatomy, pathophysiology, and surgical management of TS. Keywords: Tricuspid stenosis (TS); tricuspid valve replacement (TVR) Submitted Feb 26, 2017. Accepted for publication Apr 21, 2017. doi: 10.21037/acs.2017.05.14 View this article at: http://dx.doi.org/10.21037/acs.2017.05.14 Introduction has also been accommodated in the design of annuloplasty rings, which have a gap in the ring in this area. Anatomy The anterior papillary muscle provides chordae to the The tricuspid valve consists of three leaflets (anterior, anterior and posterior leaflets, the posterior papillary muscle posterior, and septal), their associated chordae tendineae provides chordae to the posterior and septal leaflets, and the and papillary muscles, the fibrous tricuspid annulus, and the septal wall gives chordae to the anterior and septal leaflets.
    [Show full text]
  • 2014 AHA/ACC Guideline for the Management of Patients With
    Journal of the American College of Cardiology Vol. 63, No. 22, 2014 Ó 2014 by the American Heart Association, Inc., and the American College of Cardiology Foundation ISSN 0735-1097/$36.00 Published by Elsevier Inc. http://dx.doi.org/10.1016/j.jacc.2014.02.536 PRACTICE GUIDELINE 2014 AHA/ACC Guideline for the Management of Patients With Valvular Heart Disease A Report of the American College of Cardiology/American Heart Association Task Force on Practice Guidelines Developed in Collaboration With the American Association for Thoracic Surgery, American Society of Echocardiography, Society for Cardiovascular Angiography and Interventions, Society of Cardiovascular Anesthesiologists, and Society of Thoracic Surgeons Writing Rick A. Nishimura, MD, MACC, FAHA, Paul Sorajja, MD, FACC, FAHA# Committee Co-Chairy Thoralf M. Sundt III, MD***yy Members* Catherine M. Otto, MD, FACC, FAHA, James D. Thomas, MD, FASE, FACC, FAHAzz Co-Chairy *Writing committee members are required to recuse themselves from voting on sections to which their specific relationships with industry and Robert O. Bonow, MD, MACC, FAHAy other entities may apply; see Appendix 1 for recusal information. yACC/ y AHA representative. zACC/AHA Task Force on Performance Measures Blase A. Carabello, MD, FACC* x { z liaison. ACC/AHA Task Force on Practice Guidelines liaison. Society John P. Erwin III, MD, FACC, FAHA of Cardiovascular Anesthesiologists representative. #Society for Cardio- Robert A. Guyton, MD, FACC*x vascular Angiography and Interventions representative. **American ’ y Association for Thoracic Surgery representative. yySociety of Thoracic Patrick T. O Gara, MD, FACC, FAHA Surgeons representative. zzAmerican Society of Echocardiography Carlos E. Ruiz, MD, PHD, FACCy representative.
    [Show full text]