All Forms Combined
Total Page:16
File Type:pdf, Size:1020Kb
Load more
Recommended publications
-
446 NQF #0773: Operative Mortality Stratified by the Five STS-EACTS Mortality Categories
Measure #446 (NQF 0733): Operative Mortality Stratified by the Five STS-EACTS Mortality Categories – National Quality Strategy Domain: Patient Safety 2017 OPTIONS FOR INDIVIDUAL MEASURES: REGISTRY ONLY MEASURE TYPE: Outcome DESCRIPTION: Percent of patients undergoing index pediatric and/or congenital heart surgery who die, including both 1) all deaths occurring during the hospitalization in which the procedure was performed, even if after 30 days (including patients transferred to other acute care facilities), and 2) those deaths occurring after discharge from the hospital, but within 30 days of the procedure, stratified by the five STAT Mortality Levels, a multi-institutional validated complexity stratification tool INSTRUCTIONS: This measure is to be reported for all pediatric and/or congenital heart patients each time a surgery is performed during the performance period. This measure is intended to reflect the quality of services provided for patients with congenital heart disease. This measure may be reported by eligible clinicians who perform the quality actions described in the measure based on the services provided and the measure-specific denominator coding. Measure Reporting: The listed denominator criteria is used to identify the intended patient population. The numerator quality-data codes included in this specification are used to submit the quality actions allowed by the measure. All measure-specific coding should be reported on the claim(s) representing the eligible encounter. THERE ARE TWO REPORTING CRITERIA FOR THIS MEASURE: -
Situs Inversus Totalis with Aortopulmonary Shunt: a Case Report in an Ethiopian
Ethiop. J. Health Biomed Sci., 2009. Vol.2, No.1 CASE REPORT SITUS INVERSUS TOTALIS WITH AORTOPULMONARY SHUNT: A CASE REPORT IN AN ETHIOPIAN Ermias Diro1 SUMMARY I report a patient who presented with long standing dyspnea without physical signs of congestive heart failure and finally diag- nosed to have situs inversus totalis with aortopulmonary window. Situs inversus totalis refers to a mirror image reversal of the normal position of the internal organs. The recognition of concomitant congenital anomalies such as in the heart or other or- gans is extremely important as it may disturb surgical procedures for concomitant diseases. This is a very rare condition and a coexisting aortopulmonary window was not described before to the best of my knowledge. their normal positions. Situs inversus with dextrocar- dia is termed situs inversus totalis because the car- INTRODUCTION diac position as well as the atrial chambers and ab- dominal viscera are mirror images of the normal anatomy (3). The purpose of this case report is to describe and discuss a rare situation with an important clinical Typically, patients with situs inversus have a normal significance. life expectancy except in the rare instances of cardiac anomalies, depending on the severity of the defect. Situs describes the position of the cardiac atria and Patients with Kartagners syndrome, a triad of situs viscera. Situs solitus is the normal position, and situs inversus, sinusitis and bronchiectasis, have a normal inversus is the mirror image of situs solitus. Cardiac life expectancy if the bronchiectasis is treated ade- situs is determined by the atrial location. In situs in- quately. -
Congenital Cardiac Surgery ICD9 to ICD10 Crosswalks Page 1 of 4 8
Congenital Cardiac Surgery ICD9 to ICD10 Crosswalks ICD-9 code ICD-9 Descriptor ICD-10 Code ICD-10 Descriptor 164.1 Malignant neoplasm of heart C38.0 Malignant neoplasm of heart 164.1 Malignant neoplasm of heart C45.2 Mesothelioma of pericardium 212.7 Benign neoplasm of heart D15.1 Benign neoplasm of heart 425.11 Hypertrophic obstructive cardiomyopathy I42.1 Obstructive hypertrophic cardiomyopathy 425.18 Other hypertrophic cardiomyopathy I42.2 Other hypertrophic cardiomyopathy 425.3 Endocardial fibroelastosis I42.4 Endocardial fibroelastosis 425.4 Other primary cardiomyopathies I42.0 Dilated cardiomyopathy 425.4 Other primary cardiomyopathies I42.5 Other restrictive cardiomyopathy 425.4 Other primary cardiomyopathies I42.8 Other cardiomyopathies 425.4 Other primary cardiomyopathies I42.9 Cardiomyopathy, unspecified 426.9 Conduction disorder, unspecified I45.9 Conduction disorder, unspecified 745.0 Common truncus Q20.0 Common arterial trunk 745.10 Complete transposition of great vessels Q20.3 Discordant ventriculoarterial connection 745.11 Double outlet right ventricle Q20.1 Double outlet right ventricle 745.12 Corrected transposition of great vessels Q20.5 Discordant atrioventricular connection 745.19 Other transposition of great vessels Q20.2 Double outlet left ventricle 745.19 Other transposition of great vessels Q20.3 Discordant ventriculoarterial connection 745.19 Other transposition of great vessels Q20.8 Other congenital malformations of cardiac chambers and connections 745.2 Tetralogy of fallot Q21.3 Tetralogy of Fallot 745.3 Common -
A Human Laterality Disorder Associated with a Homozygous WDR16 Deletion
European Journal of Human Genetics (2015) 23, 1262–1265 & 2015 Macmillan Publishers Limited All rights reserved 1018-4813/15 www.nature.com/ejhg SHORT REPORT A human laterality disorder associated with a homozygous WDR16 deletion Asaf Ta-Shma*,1,3, Zeev Perles1,3, Barak Yaacov2, Marion Werner2, Ayala Frumkin2, Azaria JJT Rein1 and Orly Elpeleg2 The laterality in the embryo is determined by left-right asymmetric gene expression driven by the flow of extraembryonic fluid, which is maintained by the rotary movement of monocilia on the nodal cells. Defects manifest by abnormal formation and arrangement of visceral organs. The genetic etiology of defects not associated with primary ciliary dyskinesia is largely unknown. In this study, we investigated the cause of situs anomalies, including heterotaxy syndrome and situs inversus totalis, in a consanguineous family. Whole-exome analysis revealed a homozygous deleterious deletion in the WDR16 gene, which segregated with the phenotype. WDR16 protein was previously proposed to play a role in cilia-related signal transduction processes; the rat Wdr16 protein was shown to be confined to cilia-possessing tissues and severe hydrocephalus was observed in the wdr16 gene knockdown zebrafish. The phenotype associated with the homozygous deletion in our patients suggests a role for WDR16 in human laterality patterning. Exome analysis is a valuable tool for molecular investigation even in cases of large deletions. European Journal of Human Genetics (2015) 23, 1262–1265; doi:10.1038/ejhg.2014.265; published online 3 December 2014 INTRODUCTION and development, followed till 7 years, were normal. Her younger brother, Visceral asymmetry is determined through embryonic ciliary motion, patient II-4, was brought to medical attention at 7 weeks of age because of viral and normal function of the motile cilia plays a key role in the bronchiolitis. -
Isolated Levocardia with Situs Inversus Without Cardiac Abnormality in Fetus: Prenatal Diagnosis and Management
A L J O A T U N R I N R A E L P Case Report P L E R A Perinatal Journal 2020;28(1):48–51 I N N R A U T A L J O ©2020 Perinatal Medicine Foundation Isolated levocardia with situs inversus without cardiac abnormality in fetus: prenatal diagnosis and management Mucize Eriç ÖzdemirİD , Oya Demirci İD Department of Perinatology, Zeynep Kamil Maternity and Children’s Diseases Training and Research Hospital., Health Sciences University, Istanbul, Turkey Abstract Özet: Kardiyak anomalisi olmayan fetüste situs inversuslu izole levokardi: Prenatal tan› ve yönetim Objective: Isolated levocardia is a situs abnormality that the heart is Amaç: ‹zole levokardi, kalbin normal levo pozisyonunda oldu¤u in the normal levo position, but the abdominal viscera are in dextro fakat abdominal iç organlar›n dekstro pozisyonunda oldu¤u bir si- position. Most cases are accompanied by structural heart anomalies. tus anomalisidir. Ço¤u olguda yap›sal kalp anomalileri de efllik et- In this case, we aimed to present a fetus with isolated levocardia with- mektedir. Çal›flmam›zda, kardiyak anomalisi olmayan izole levo- out cardiac abnormality. kardili bir fetüsü sunmay› amaçlad›k. Case: The mother was referred to our clinic with a suspicion of fetal Olgu: Olgumuz, 22. gebelik haftas›nda fetal dekstrokardi flüphe- dextrocardia at 22 weeks of gestation. When detailed examination was siyle klini¤imize sevk edildi. Planlanan detayl› ultrason muayene- planned by ultrasonography isolated levocardia was detected in fetus. sinde, fetüste izole levokardi tespit edildi. Fetal ekokardiyografide There were no cardiac abnormalities in fetal echocardiography. Fetus hiçbir kardiyak anomali görülmedi. -
Factors Impacting Echocardiographic Imaging After the Fontan Procedure: a Report from the Pediatric Heart Network Fontan Cross- Sectional Study
Children's Mercy Kansas City SHARE @ Children's Mercy Manuscripts, Articles, Book Chapters and Other Papers 10-1-2013 Factors impacting echocardiographic imaging after the Fontan procedure: a report from the pediatric heart network fontan cross- sectional study. Richard V. Williams Renee Margossian Minmin Lu Andrew M. Atz Timothy J. Bradley See next page for additional authors Follow this and additional works at: https://scholarlyexchange.childrensmercy.org/papers Part of the Cardiology Commons, Cardiovascular System Commons, Congenital, Hereditary, and Neonatal Diseases and Abnormalities Commons, Pediatrics Commons, and the Surgical Procedures, Operative Commons Recommended Citation Williams, R. V., Margossian, R., Lu, M., Atz, A. M., Bradley, T. J., Campbell, M. J., Colan, S. D., Gallagher, D., Lai, W. W., Pearson, G. D., Prakash, A., Shirali, G. S., Cohen, M. S., . Factors impacting echocardiographic imaging after the Fontan procedure: a report from the pediatric heart network fontan cross-sectional study. Echocardiography (Mount Kisco, N.Y.) 30, 1098-1106 (2013). This Article is brought to you for free and open access by SHARE @ Children's Mercy. It has been accepted for inclusion in Manuscripts, Articles, Book Chapters and Other Papers by an authorized administrator of SHARE @ Children's Mercy. For more information, please contact [email protected]. Creator(s) Richard V. Williams, Renee Margossian, Minmin Lu, Andrew M. Atz, Timothy J. Bradley, Michael Jay Campbell, Steven D. Colan, Dianne Gallagher, Wyman W. Lai, Gail D. Pearson, Ashwin Prakash, Girish S. Shirali, Meryl S. Cohen, and Pediatric Heart Network Investigators This article is available at SHARE @ Children's Mercy: https://scholarlyexchange.childrensmercy.org/papers/906 NIH Public Access Author Manuscript Echocardiography. -
Pub 100-04 Medicare Claims Processing Centers for Medicare & Medicaid Services (CMS) Transmittal 3054 Date: August 29, 2014 Change Request 8803
Department of Health & CMS Manual System Human Services (DHHS) Pub 100-04 Medicare Claims Processing Centers for Medicare & Medicaid Services (CMS) Transmittal 3054 Date: August 29, 2014 Change Request 8803 SUBJECT: Ventricular Assist Devices for Bridge-to-Transplant and Destination Therapy I. SUMMARY OF CHANGES: This Change Request (CR) is effective for claims with dates of service on and after October 30, 2013; contractors shall pay claims for Ventricular Assist Devices as destination therapy using the criteria in Pub. 100-03, part 1, section 20.9.1, and Pub. 100-04, Chapter 32, sec. 320. EFFECTIVE DATE: October 30, 2013 *Unless otherwise specified, the effective date is the date of service. IMPLEMENTATION DATE: September 30, 2014 Disclaimer for manual changes only: The revision date and transmittal number apply only to red italicized material. Any other material was previously published and remains unchanged. However, if this revision contains a table of contents, you will receive the new/revised information only, and not the entire table of contents. II. CHANGES IN MANUAL INSTRUCTIONS: (N/A if manual is not updated) R=REVISED, N=NEW, D=DELETED-Only One Per Row. R/N/D CHAPTER / SECTION / SUBSECTION / TITLE D 3/90.2.1/Artifiical Hearts and Related Devices R 32/Table of Contents N 32/320/Artificial Hearts and Related Devices N 32/320.1/Coding Requirements for Furnished Before May 1, 2008 N 32/320.2/Coding Requirements for Furnished After May 1, 2008 N 32/320.3/ Ventricular Assist Devices N 32/320.3.1/Postcardiotomy N 32/320.3.2/Bridge-To -Transplantation (BTT) N 32/320.3.3/Destination Therapy (DT) N 32/320.3.4/ Other N 32/320.4/ Replacement Accessories and Supplies for External Ventricular Assist Devices or Any Ventricular Assist Device (VAD) III. -
Heterotaxy and Complex Structural Heart Defects in a Mutant Mouse Model of Primary Ciliary Dyskinesia
Heterotaxy and complex structural heart defects in a mutant mouse model of primary ciliary dyskinesia Serena Y. Tan, … , Linda Leatherbury, Cecilia W. Lo J Clin Invest. 2007;117(12):3742-3752. https://doi.org/10.1172/JCI33284. Research Article Development Primary ciliary dyskinesia (PCD) is a genetically heterogeneous disorder associated with ciliary defects and situs inversus totalis, the complete mirror image reversal of internal organ situs (positioning). A variable incidence of heterotaxy, or irregular organ situs, also has been reported in PCD patients, but it is not known whether this is elicited by the PCD- causing genetic lesion. We studied a mouse model of PCD with a recessive mutation in Dnahc5, a dynein gene commonly mutated in PCD. Analysis of homozygous mutant embryos from 18 litters yielded 25% with normal organ situs, 35% with situs inversus totalis, and 40% with heterotaxy. Embryos with heterotaxy had complex structural heart defects that included discordant atrioventricular and ventricular outflow situs and atrial/pulmonary isomerisms. Variable combinations of a distinct set of cardiovascular anomalies were observed, including superior-inferior ventricles, great artery alignment defects, and interrupted inferior vena cava with azygos continuation. The surprisingly high incidence of heterotaxy led us to evaluate the diagnosis of PCD. PCD was confirmed by EM, which revealed missing outer dynein arms in the respiratory cilia. Ciliary dyskinesia was observed by videomicroscopy. These findings show that Dnahc5 is required for the specification of left-right asymmetry and suggest that the PCD-causing Dnahc5 mutation may also be associated with heterotaxy. Find the latest version: https://jci.me/33284/pdf Research article Heterotaxy and complex structural heart defects in a mutant mouse model of primary ciliary dyskinesia Serena Y. -
Atrial Septal Stenting to Increase Interatrial Shunting in Cyanotic Congenital Heart Diseases: a Report of Two Cases
422 Türk Kardiyol Dern Arş - Arch Turk Soc Cardiol 2011;39(5):422-426 doi: 10.5543/tkda.2011.01368 Atrial septal stenting to increase interatrial shunting in cyanotic congenital heart diseases: a report of two cases Siyanotik doğuştan kalp hastalıklarında interatriyal şantı artırmak amacıyla atriyal septuma stent uygulaması: İki olgu sunumu Yalım Yalçın, M.D., Cenap Zeybek, M.D.,§ İbrahim Özgür Önsel, M.D.,# Mehmet Salih Bilal, M.D.† Departments of Pediatric Cardiology, #Anesthesiology and Reanimation, and †Cardiovascular Surgery, Medicana International Hospital; §Department of Pediatric Cardiology, Şişli Florence Nightingale Hospital, İstanbul Summary – Aiming to increase mixing at the atrial level, Özet – Siyanotik doğuştan kalp hastalığı tanısıyla izle- atrial septal stenting was performed in two pediatric nen iki bebekte, atriyal düzeyde karışımı artırmak ama- cases with cyanotic congenital cardiac diseases. The cıyla atriyal septuma stent yerleştirme işlemi uygulandı. first case was a 3-month-old male infant with transpo- Birinci olgu, büyük arterlerin transpozisyonu tanısıyla sition of the great arteries. The second case was an izlenen üç aylık bir erkek bebekti. Diğer olgu, ameliyat 18-month-old male infant with increased central venous sonrası dönemde sağ ventrikül çıkım yolu tıkanıklığına pressure due to postoperative right ventricular outflow bağlı olarak santral venöz basınç yüksekliği gelişen 18 tract obstruction. Premounted bare stents of 8 mm in aylık bir erkek bebekti. Her iki olguda da 8 mm çapında, diameter were used in both cases. The length of the balona monte edilmiş çıplak stent kullanıldı. Stent uzun- stent was 20 mm in the first case and 30 mm in the lat- luğu ilk olguda 20 mm, ikinci olguda 30 mm idi. -
Situs Inversus Totalis - a Case Report
IOSR Journal of Applied Physics (IOSR-JAP) e-ISSN: 2278-4861. Volume 3, Issue 6 (May. - Jun. 2013), PP 12-16 www.iosrjournals.org Situs Inversus Totalis - A Case Report *Dr. G.Supriya,** Dr. S.Saritha, **Dr. Seema Madan *Assistant professor, ** Professor of Anatomy, GMC, Secunderabad Abstract: SITUS INVERSUS TOTALIS is a congenital positional anomaly characterized by transposition of abdominal viscera associated with a right sided heart (Dextrocardia) .It was Mathew Baillie who first described situs inversus totalis in early twentieth century. A transposed thoracic and abdominal organ is a mirror image of the normal anatomy when examined or visualized by tests such as x-ray filming. The term situs inversus is a short form of the Latin meaning inverted position of the internal organs. Generally individuals with situs inversus totalis are asymptomatic and have a normal life expectancy. Many people with situs inversus totalis are unaware of their unusual anatomy until they seek medical attention for an unrelated condition. The reversal of the organs may lead to some confusion as many signs and symptoms will be on the reverse side. A 27 years old male patient reported to the Department of Nephrology with the c/o left sided flank pain since 1 week. The Chest X-ray, Ultrasonography, CT scan and MRI were done and he was diagnosed as SITUS INVERSUS TOTALIS. The anatomic, pathologic, embryologic and etiology of complete Situs inversus and related abnormalities are presented in this case with special emphasis to genetic correlation. Key words: Situs inversus totalis, Dextrocardia, Congenital, Transposition, Thoracic and abdominal organs. I. -
Abernathys Surgical Secrets 6Th Edition
1600 John F. Kennedy Blvd. Ste 1800 Philadelphia, PA 19103–2899 ABERNATHY’S SURGICAL SECRETS, SIXTH EDITION ISBN: 978-0-323-05711-0 Copyright Q 2009, 2005, 2003, 2000, 1996, 1991, 1986 by Mosby, Inc., an affiliate of Elsevier Inc. All rights reserved. No part of this publication may be reproduced or transmitted in any form or by any means, electronic or mechanical, including photocopying, recording, or any information storage and retrieval system, without permission in writing from the publisher. Permissions may be sought directly from Elsevier’s Rights Department: phone: (þ1) 215 239 3804 (US) or (þ44) 1865 843830 (UK); fax: (þ44) 1865 853333; e-mail: [email protected]. You may also complete your request on-line via the Elsevier website at http://www.elsevier.com/permissions. NOTICE Knowledge and best practice in this field are constantly changing. As new research and experience broaden our knowledge, changes in practice, treatment and drug therapy may become necessary or appropriate. Readers are advised to check the most current information provided (i) on procedures featured or (ii) by the manufacturer of each product to be administered, to verify the recommended dose or formula, the method and duration of administration, and contraindications. It is the responsibility of the practitioner, relying on their own experience and knowledge of the patient, to make diagnoses, to determine dosages and the best treatment for each individual patient, and to take all appropriate safety precautions. To the fullest extent of the law, neither the Publisher nor the Editor assumes any liability for any injury and/or damage to persons or property arising out of or related to any use of the material contained in this book. -
Transcatheter Device Closure of Atrial Septal Defect in Dextrocardia with Situs Inversus Totalis
Case Report Nepalese Heart Journal 2019; Vol 16(1), 51-53 Transcatheter device closure of atrial septal defect in dextrocardia with situs inversus totalis Kiran Prasad Acharya1, Chandra Mani Adhikari1, Aarjan Khanal2, Sachin Dhungel1, Amrit Bogati1, Manish Shrestha3, Deewakar Sharma1 1 Department of Cardiology, Shahid Gangalal National Heart Centre, Kathmandu, Nepal 2 Department of Internal Medicine, Kathmandu Medical College, Kathmandu,Nepal 3 Department of Pediatric Cardiology, Shahid Gangalal National Heart Centre, Kathmandu, Nepal Corresponding Author: Chandra Mani Adhikari Department of Cardiology Shahid Gangalal National Heart Centre Kathmandu, Nepal Email: [email protected] Cite this article as: Acharya K P, Adhikari C M, Khanal A, et al. Transcatheter device closure of atrial septal defect in dextrocardia with situs inversus totalis. Nepalese Heart Journal 2019; Vol 16(1), 51-53 Received date: 17th February 2019 Accepted date: 16th April 2019 Abstract Only few cases of Device closure of atrial septal defect in dextrocardia with situs inversus totalis has been reported previously. We present a case of a 36 years old male, who had secundum type of atrial septal defect in dextrocardia with situs inversus totalis. ASD device closure was successfully done. However, we encountered few technical difficulties in this case which are discussed in this case review. Keywords: atrial septal defect; dextrocardia; transcatheter device closure, DOI: https://doi.org/10.3126/njh.v16i1.23901 Introduction There are only two case reported of closure of secundum An atrial septal defect (ASD) is an opening in the atrial ASD associated in patients with dextrocardia and situs inversus septum, excluding a patent foramen ovale.1 ASD is a common totalis.