(COTS) Project

Total Page:16

File Type:pdf, Size:1020Kb

(COTS) Project Overv iew o f NASA’s C ommerci al Orbital Transportation Services (COTS) Project 2nd SpaceOps Workshop RAL Oxford, UK June 14, 2011 Bruce Manners Project Executive Commercial Crew & Cargo Program Exploration Systems Mission Directorate NASA Johnson Space Center Outline Background – Genesis of the COTS Program PjtObjtiProject Objectives “Immediate” NASA Need COTS Project O ver v iew Unique aspects of COTS Status of COTS Conclusions 2 Genesis of Program Creation High cost of space transportation biggest obstacle to space exploration and utilization Low cost, commercially viable space transportation will transform human society as much as the invention of the airplane After 50 years of spaceflight, little progress made on lowering costs ViVarious op iiinions wh y... Minimal progress in propulsion technology Government focus on highly reliable systems – National defense – Human spaceflight Government contracting practices – cost plus Small space market LkfLack of rea lfl free marktfket forces Etc... Government’s role to explore, push boundaries of space frontier – private sector to handle “routine” space flight 3 Program Objectives The Commercial Crew & Cargo Program Office established at the Johnson Space Center in November 2005 to accomplish the following objectives: Implement U.S. Space Exploration policy with investments to stimulate the commercial space industry Fac ilitat e U .S . pri vat e i nd ust ry d emonst rati on of cargo and crew space transportation capabilities with the goal of achieving safe, reliable, cost effective access to low-Earth orbit Create a market environment in which commercial space transportation services are available to Government and private sector customers Extendinggp human presence in sp pygpgace by enabling an expanding and robust U.S. commercial space transportation industry 4 “Immediate” NASA Needs Need NASA has an immediate and long term commiihISSitment to service the ISS Status Sppyace Shuttle to be retired later this year following completion of ISS assembly Baseline barter and purchase agreements for International Partner spppace transportation ca pabilities (Progress, Soyuz, ATV, HTV) not sufficient to meet projected ISS operational needs without shuttle Without another system available to NASA there is a shortfall and ggpap in accommodating ISS resupply Solutions Commercial Orbital Transportation Services is the preferred approach if proven reliable and cost effective NASA CEV originally envisioned as a back-up capability, but cancellation of Constellation program removed this as an immediate option 5 Commercial Orbital Transportation Services (COTS) Overview Vision of “FedEx Space” for cargo to International Space Station Initially $500M budgeted in FY06-FY10 as an investment for the demons tra tion o f commerc ia l or bita l transpor ta tion capa bilities COTS Project executed in two phases: Phase 1: Technical Development/Demonstration funded Space Act Agreements (SAA) Phase 2: Competitive Procurement of ISS Commercial Resupply Services (managed by Space Operations Mission Directorate and ISS Program) Phase 1 competition for funded SAAs awarded Aug, 2006 SpaceX & Rocketplane-Kistler (RPK) RPK agreement ultimately terminated Orbital Sciences awarded remainder of funding in Feb, 2008 following another competition Fixed price Commercial Resupply Services (CRS) contract awarded following a separate competitive procurement effort in Dec 2008 $300M recentl y add ed t o COTS t o red uce t ech ni cal and/ or sch ed ul e risk to services under the CRS contract COTS Phase 1 is NOT a procurement or contract for products and services – It is NASA’s catalyst for commercial capability demonstrations where the potential high return on investment outweighs the associated financial risk 6 Unique Aspects of COTS True Partnership between NASA and Industry Risk & Rewards are shared by all partners NASA not driving design or taking ownership of vehicles Investment (i.e.. Funding) not exclusively provided by NASA Each partner bringing their own unique contributions NASA – Funding ($$) – Technical Expertise (staff & intellectual property (IP)as required) – Need for services (i.e. anchor tenant for new market) Industry – Funding ($$$$) – Technical Expertise (staff, facilities, & IP) NASA attempting to serve role of lead investor COTS is not a commercial activity, but is intended to be commercial enabling Par tners hip fac ilitat ed b y “ cont ract” mech ani sm 7 COTS Innovative Features Competition Utilized NASA’s Space Act authority vs. Federal Acquisition Regulation (FAR) contract Bus iness p lan an d fi nanc ia l crit eri a si mil ar t o pri vat e i nvest ment mod el s Broadly targeted technical goals for the general space transportation market – Firm requirements/processes where necessary for ISS certification and human safety Encouraged private investment to share costs, enable multiple awards, and maximize capability coverage Space Act Agreement Fixed-price performance milestone payments – Series of incremental milestones based on objective criteria Companies retain maximum rights to intellectual & personal property allowed by law FAA licensing and cross-waiver liability provisions Restricted termination provisions COTS is a Government-Industry partnership pavifdibiiththitting a new way of doing business with the private sector 8 COTS Overall Status NASA is depending on our commercial cargo partners. We need their COTS development efforts to succeed so that they can begin providing cargo resupply to the International Space Station as part of the Commercial Resupply Services contracts. Both Orbital and SpaceX continue to make steady progress toward completing their COTS demonstration flights Space Exploration Technologies (SpaceX): – SpaceX successfully completed its first COTS demonstration mission on December 8, 2010 – Remaining demonstration flights for NASA (C2 and C3) are scheduled for November 2011 and January 2012 – NASA is evaluating proposal for accelerating C3 mission objectives (ISS berthing) on C2 flight Provides additional opportunity to demonstrate berthing with the ISS and potentially accelerate cargo services Orbital Sciences Corporation (Orbital): – Orbital has begun final integration and test of the Cygnus Service Module in Dulles, VA and the Taurus II launch vehicle at NASA’s new Horizontal Integration Facility at Wallops Flight Facility – Orbital is preparing for a maiden test flight of the Taurus II in October and its ISS demonstration flight for NASA is scheduled for December 2011 9 9 Orbital COTS Status Taurus II Launch Vehicle with Aerojet AJ-26 engines (2) & Castor® 30 2nd stage Cygnus Spacecraft made up of a Service Module (SM) & Pressurized Cargo Module (PCM) Orbital Sciences developing the SM leveraging their experience in commercial and scientific spacecraft Pressurized Cargo Module developed by Thales-Alenia Space leveraging their ISS Multi-Purpose Logistics Modules (MPLM) experience Mid-Atlantic Regional Spaceport (MARS) at Pressurized Cargo Module the NASA Wallops Flight Facility (WFF) & Service Module Launch Site Space Act Agreement awarded February 2008 with 22 of 31 milestones completed for total payments of $226.5M out of $288M Taurus II MARS/Wallops Launch Site 10 10 Orbital Recent Progress First 3 AJ26s have undergone successful Acceptance Hot Fire Tests at NASA Stennis Cygnus PCM 2TaurusII12 Taurus II 1st Stage Cores delivered to NASA Cargo Integration Cygnus SM Wallops Flight Facility from Ukraine for T2 Team Integration Maiden Flight and Demo to ISS Cygnus Service Module currentl y under goin g integration and testing and Orbital's Dulles facility Pressurized Cargo Module has completed it's Qualification and Acceptance Reviews and is being prepped for shipment from Thales Alenia Space's facility in Turin, Italy Construction of final integration & launch facilities continues to make progress Launch pad under construction at WFF AJ26 Testing at NASA Stennis 11 SpaceX COTS Status Falcon 9 Launch Vehicle 9 Merlin 1-C LOX/RP engines first stage and Merlin Vac engine second stage Dragon Dragon Crew/Cargo Spacecraft Cargo Capsule Cape Canaveral LC-40 Launch Site Falcon 9 Space Act Agreement awarded Rocket Dragon August 2006 with 25 of 40 Milestones Crew Capsule completed for total payments of $298M out of $396M SpaceX Launch Site at Cape SLC 40 12 12 SpaceX C1 Demo Mission, Dec. 8, 2010 Overall hugely successful mission. All primary and secondary objectives achieved Moments after stage sep Dragon Recovery of C1 Demo Flight Dragon Approaching Splashdown Dragon Recover Ops C1 Demo Mission launching from KSC on Dec 8, 2010 Demo C1 Mission Orbital Path 13 SpaceX Recent Progress DragonEye II launched on STS-133 Preliminary LIDAR and Thermal Imager data collection was successful C2 Dragon Capsule in final assembly Performed mission sim with future ISS crew manipulating the Robotic Work DragonEye II Station – Dragon successfully berthed Thermal Imager DragonEye II on STS-133 C2 F9 First Stage completed static fire tests and is now at Cape Canaveral Second Stage is now in Texas preparing for static fire tests Dragon Trunk successfully structurally tested Dragon berthing sim with future ISS Crew NASA-SpaceX Joint tests in process Digital PreAssembly (DPA) complete Crew Interface Testing CBM “mating” testing with ISS simulator Dragon Thermal Vacuum test planned for 6/15 C2 F9-003 1st Stage C2 F9-003 Second Stage Static Fire 14 Conclusions ISS is depppjendant on the success of the COTS project Success of Orbital Sciences & SpaceX COTS missions will demonstrate new capabilities for resupplying the ISS COTS represents a potential new paradigm for partnering with industry to meet an agencies needs 15 16.
Recommended publications
  • Rocketplane Kistler Support for Space Exploration
    Rocketplane Kistler Support for Space Exploration Rocketplane Kistler Diverse Markets Minimize Risk • Rocketplane XP - Suborbital services • Space tourism • Kistler K-1 - Orbital services • USAF “Responsive space” • ISS servicing • Microgravity research • USAF “Responsive space” • Satellite launch (comm’l & gov’t) • XP Program • Vehicle 1 is 25% complete • K-1 Program • First flight late 2008 • Vehicle 1 is 75% complete • First flight late 2008 • Estimated $10-20 billion market over ten • Estimated $4 billion market per year over years. (Futron/Zogby study) next five years. 2 Support for Space Exploration RpK’s Unique Position: • Low cost sub-orbital and orbital access through a single interface. RpK’s Direct Support: • Low cost technology and systems development and demonstration •Sub-orbital with the XP •Orbital with the K-1 • Exploration logistics train to LEO •And beyond with evolutionary vehicle development • Crew transfer to LEO •And beyond with evolutionary vehicle development RpK’s Indirect Support: • Support STS retirement to free resources for space exploration •Cargo •Crew transfer • Lower cost of space access •Enable supportive space enterprise in near earth space •Enable a sustainable presence in the solar system 3 Rocketplane XP Suborbital Passenger and Payload Services XP Offers Microgravity Time and Responsive Space Access •3-4 min µg, 330kft, Mach 3.5 •Payload: 1000lb+ •Horizontal Take off & Landing •Aircraft Like Operations •Rapid Turnaround – <24 hours 5 Potential XP Support Services • Microgravity Research Flights • Materials, sensors, crystals • Exploration systems development •ECLSS, • resource extraction systems, • radiation protection systems, •etc. • External Payloads • TPS, sensors, experiments All of these development programs can be “passed along” to the K-1 when they reach that point in development.
    [Show full text]
  • Commercial Orbital Transportation Services
    National Aeronautics and Space Administration Commercial Orbital Transportation Services A New Era in Spaceflight NASA/SP-2014-617 Commercial Orbital Transportation Services A New Era in Spaceflight On the cover: Background photo: The terminator—the line separating the sunlit side of Earth from the side in darkness—marks the changeover between day and night on the ground. By establishing government-industry partnerships, the Commercial Orbital Transportation Services (COTS) program marked a change from the traditional way NASA had worked. Inset photos, right: The COTS program supported two U.S. companies in their efforts to design and build transportation systems to carry cargo to low-Earth orbit. (Top photo—Credit: SpaceX) SpaceX launched its Falcon 9 rocket on May 22, 2012, from Cape Canaveral, Florida. (Second photo) Three days later, the company successfully completed the mission that sent its Dragon spacecraft to the Station. (Third photo—Credit: NASA/Bill Ingalls) Orbital Sciences Corp. sent its Antares rocket on its test flight on April 21, 2013, from a new launchpad on Virginia’s eastern shore. Later that year, the second Antares lifted off with Orbital’s cargo capsule, (Fourth photo) the Cygnus, that berthed with the ISS on September 29, 2013. Both companies successfully proved the capability to deliver cargo to the International Space Station by U.S. commercial companies and began a new era of spaceflight. ISS photo, center left: Benefiting from the success of the partnerships is the International Space Station, pictured as seen by the last Space Shuttle crew that visited the orbiting laboratory (July 19, 2011). More photos of the ISS are featured on the first pages of each chapter.
    [Show full text]
  • Understanding Socio-Technical Issues Affecting the Current Microgravity Research Marketplace
    Understanding Socio-Technical Issues Affecting the Current Microgravity Research Marketplace The MIT Faculty has made this article openly available. Please share how this access benefits you. Your story matters. Citation Joseph, Christine and Danielle Wood. "Understanding Socio- Technical Issues Affecting the Current Microgravity Research Marketplace." 2019 IEEE Aerospace Conference, March 2019, Big Sky, Montana, USA, Institute of Electrical and Electronics Engineers, June 2019. © 2019 IEEE As Published http://dx.doi.org/10.1109/aero.2019.8742202 Publisher Institute of Electrical and Electronics Engineers (IEEE) Version Author's final manuscript Citable link https://hdl.handle.net/1721.1/131219 Terms of Use Creative Commons Attribution-Noncommercial-Share Alike Detailed Terms http://creativecommons.org/licenses/by-nc-sa/4.0/ Understanding Socio-Technical Issues Affecting the Current Microgravity Research Marketplace Christine Joseph Danielle Wood Massachusetts Institute of Technology Massachusetts Institute of Technology 77 Massachusetts Ave 77 Massachusetts Ave Cambridge, MA 02139 Cambridge, MA 02139 [email protected] [email protected] Abstract— For decades, the International Space Station (ISS) 1. INTRODUCTION has operated as a bastion of international cooperation and a unique testbed for microgravity research. Beyond enabling For anyone who is a teenager in October 2019, the insights into human physiology in space, the ISS has served as a International Space Station has been in operation and hosted microgravity platform for numerous science experiments. In humans for the entirety of that person’s life. The platform has recent years, private industry has also been affiliating with hosted a diverse spectrum of microgravity, human space NASA and international partners to offer transportation, exploration, technology demonstration, and education related logistics management, and payload demands.
    [Show full text]
  • Space Planes and Space Tourism: the Industry and the Regulation of Its Safety
    Space Planes and Space Tourism: The Industry and the Regulation of its Safety A Research Study Prepared by Dr. Joseph N. Pelton Director, Space & Advanced Communications Research Institute George Washington University George Washington University SACRI Research Study 1 Table of Contents Executive Summary…………………………………………………… p 4-14 1.0 Introduction…………………………………………………………………….. p 16-26 2.0 Methodology…………………………………………………………………….. p 26-28 3.0 Background and History……………………………………………………….. p 28-34 4.0 US Regulations and Government Programs………………………………….. p 34-35 4.1 NASA’s Legislative Mandate and the New Space Vision………….……. p 35-36 4.2 NASA Safety Practices in Comparison to the FAA……….…………….. p 36-37 4.3 New US Legislation to Regulate and Control Private Space Ventures… p 37 4.3.1 Status of Legislation and Pending FAA Draft Regulations……….. p 37-38 4.3.2 The New Role of Prizes in Space Development…………………….. p 38-40 4.3.3 Implications of Private Space Ventures…………………………….. p 41-42 4.4 International Efforts to Regulate Private Space Systems………………… p 42 4.4.1 International Association for the Advancement of Space Safety… p 42-43 4.4.2 The International Telecommunications Union (ITU)…………….. p 43-44 4.4.3 The Committee on the Peaceful Uses of Outer Space (COPUOS).. p 44 4.4.4 The European Aviation Safety Agency…………………………….. p 44-45 4.4.5 Review of International Treaties Involving Space………………… p 45 4.4.6 The ICAO -The Best Way Forward for International Regulation.. p 45-47 5.0 Key Efforts to Estimate the Size of a Private Space Tourism Business……… p 47 5.1.
    [Show full text]
  • Nasa's Commercial Crew Development
    NASA’S COMMERCIAL CREW DEVELOPMENT PROGRAM: ACCOMPLISHMENTS AND CHALLENGES HEARING BEFORE THE COMMITTEE ON SCIENCE, SPACE, AND TECHNOLOGY HOUSE OF REPRESENTATIVES ONE HUNDRED TWELFTH CONGRESS FIRST SESSION WEDNESDAY, OCTOBER 26, 2011 Serial No. 112–46 Printed for the use of the Committee on Science, Space, and Technology ( Available via the World Wide Web: http://science.house.gov U.S. GOVERNMENT PRINTING OFFICE 70–800PDF WASHINGTON : 2011 For sale by the Superintendent of Documents, U.S. Government Printing Office Internet: bookstore.gpo.gov Phone: toll free (866) 512–1800; DC area (202) 512–1800 Fax: (202) 512–2104 Mail: Stop IDCC, Washington, DC 20402–0001 COMMITTEE ON SCIENCE, SPACE, AND TECHNOLOGY HON. RALPH M. HALL, Texas, Chair F. JAMES SENSENBRENNER, JR., EDDIE BERNICE JOHNSON, Texas Wisconsin JERRY F. COSTELLO, Illinois LAMAR S. SMITH, Texas LYNN C. WOOLSEY, California DANA ROHRABACHER, California ZOE LOFGREN, California ROSCOE G. BARTLETT, Maryland BRAD MILLER, North Carolina FRANK D. LUCAS, Oklahoma DANIEL LIPINSKI, Illinois JUDY BIGGERT, Illinois GABRIELLE GIFFORDS, Arizona W. TODD AKIN, Missouri DONNA F. EDWARDS, Maryland RANDY NEUGEBAUER, Texas MARCIA L. FUDGE, Ohio MICHAEL T. MCCAUL, Texas BEN R. LUJA´ N, New Mexico PAUL C. BROUN, Georgia PAUL D. TONKO, New York SANDY ADAMS, Florida JERRY MCNERNEY, California BENJAMIN QUAYLE, Arizona JOHN P. SARBANES, Maryland CHARLES J. ‘‘CHUCK’’ FLEISCHMANN, TERRI A. SEWELL, Alabama Tennessee FREDERICA S. WILSON, Florida E. SCOTT RIGELL, Virginia HANSEN CLARKE, Michigan STEVEN M. PALAZZO, Mississippi VACANCY MO BROOKS, Alabama ANDY HARRIS, Maryland RANDY HULTGREN, Illinois CHIP CRAVAACK, Minnesota LARRY BUCSHON, Indiana DAN BENISHEK, Michigan VACANCY (II) C O N T E N T S Wednesday, October 26, 2011 Page Witness List ............................................................................................................
    [Show full text]
  • N AS a Facts
    National Aeronautics and Space Administration Commercial Crew Development Round 2 ASA’s Commercial Crew Program is certified, NASA would be able to The agency also signed unfunded N(CCP) is investing in multiple purchase transportation services to meet agreements to establish a framework American companies that are designing its ISS crew rotation and emergency of collaboration with additional and developing transportation return obligations. aerospace companies. As part of those capabilities to and from low Earth orbit Through Commercial Crew agreements, NASA is reviewing and and the International Space Station (ISS). Development Round 2 (CCDev2), NASA providing expert feedback to Alliant Through the development and awarded $270 million in 2011 for the Techsystems Inc. (ATK), United Launch certification processes, NASA is laying development of commercial rockets and Alliance (ULA) and Excalibur Almaz Inc. the foundation for future commercial spacecraft. This development round will (EAI) on overall concepts and designs, transportation capabilities. Ultimately, be completed in mid- to late-2012. systems requirements, launch vehicle the goal is to lead to safe, reliable, The industry partners with whom compatibility, testing and integration affordable and more routine access to NASA signed funded Space Act plans, and operational and facilities plans. space so that commercial partners can Agreements (SAAs) are Blue Origin, To find out more about the beginning facts market transportation services to the U.S. The Boeing Co., Sierra Nevada Corp. of a new era in space exploration and government and other customers. and Space Exploration Technologies NASA’s Commercial Crew Program, visit After a transportation capability (SpaceX). .www.nasa.gov/commercialcrew. ATK Liberty NASA INVESTMENT: Unfunded PROFILE: Solid rocket boosters, Ariane 5 core stage, Vulcain 2 engine CAPABILITY: 44,500 pounds to low Earth orbit ASA and Alliant Techsystems Inc.
    [Show full text]
  • Author's Instructions For
    Feasibility Analysis for a Manned Mars Free-Return Mission in 2018 Dennis A. Tito Grant Anderson John P. Carrico, Jr. Wilshire Associates Incorporated Paragon Space Development Applied Defense Solutions, Inc. 1800 Alta Mura Road Corporation 10440 Little Patuxent Pkwy Pacific Palisades, CA 90272 3481 East Michigan Street Ste 600 310-260-6600 Tucson, AZ 85714 Columbia, MD 21044 [email protected] 520-382-4812 410-715-0005 [email protected] [email protected] Jonathan Clark, MD Barry Finger Gary A Lantz Center for Space Medicine Paragon Space Development Paragon Space Development Baylor College Of Medicine Corporation Corporation 6500 Main Street, Suite 910 1120 NASA Parkway, Ste 505 1120 NASA Parkway, Ste 505 Houston, TX 77030-1402 Houston, TX 77058 Houston, TX 77058 [email protected] 281-702-6768 281-957-9173 ext #4618 [email protected] [email protected] Michel E. Loucks Taber MacCallum Jane Poynter Space Exploration Engineering Co. Paragon Space Development Paragon Space Development 687 Chinook Way Corporation Corporation Friday Harbor, WA 98250 3481 East Michigan Street 3481 East Michigan Street 360-378-7168 Tucson, AZ 85714 Tucson, AZ 85714 [email protected] 520-382-4815 520-382-4811 [email protected] [email protected] Thomas H. Squire S. Pete Worden Thermal Protection Materials Brig. Gen., USAF, Ret. NASA Ames Research Center NASA AMES Research Center Mail Stop 234-1 MS 200-1A Moffett Field, CA 94035-0001 Moffett Field, CA 94035 (650) 604-1113 650-604-5111 [email protected] [email protected] Abstract—In 1998 Patel et al searched for Earth-Mars free- To size the Environmental Control and Life Support System return trajectories that leave Earth, fly by Mars, and return to (ECLSS) we set the initial mission assumption to two crew Earth without any deterministic maneuvers after Trans-Mars members for 500 days in a modified SpaceX Dragon class of Injection.
    [Show full text]
  • A New British Space Age
    A New British Space Age A Response to the Royal Astronomical Society Report on Human Spaceflight Dr J. Duncan Law-Green Department of Physics & Astronomy University of Leicester T: 0116 252 2589 [email protected] 3 Jan 2007 Artist’s impression of the Virgin Galactic SpaceShipTwo suborbital spaceplane and WhiteKnightTwo carrier aircraft in flight. Image © Virgin Galactic. Summary: The recent Royal Astronomical Society report on human spaceflight (“Report of the Commission on the Scientific Case for Human Space Exploration”, Close et al. 2005) highlighted the scientific and cultural value of human spaceflight, and noted that this is a field of endeavour that has historically been neglected in the United Kingdom. It recommended that the UK Government invest sufficient additional funds in the European Space Agency to allow the training of a small number of UK astronauts. Total additional expenditures in the range of £50 million to £120 million over five years have been quoted. This author agrees with the positive assessment of Close et al. of the value of human spaceflight to the United Kingdom, but disagrees with the emphasis of the policy recommendations made so far. A number of relatively modest investments in UK commercial spaceflight would potentially deliver the same or greater scientific, cultural and economic returns, more promptly and at less overall expense than the proposed ESA funding. This document outlines a number of potential projects to: enhance the UK's space technology base, improve cooperation with allied nations on commercial spaceflight, increase outreach and public involvement with UK space projects, preserve and protect the UK's space history, benefit UK science education and enhance the UK's international reputation in innovation and engineering excellence.
    [Show full text]
  • Failure to Launch: Why Nasa¶S Unchecked Use of Ota Power May
    )$,/85(72/$81&+ :+<1$6$¶681&+(&.('86(2)27$32:(5 0$<21('$<'2207+($*(1&< Andrew Strauss ,,1752'8&7,21 ,,1$6$¶6&5($7,21$1'+2:7+($*(1&<+$686(',7627$ 32:(5 A. The National Aeronautics and Space Act of 1958 ..................... B. An Overview of the Scope and Use of NASA’s OTA Power ....... 27$DQGWKH&2763URJUDP C. SAAs and Government Procurement Contracts: A Comparison .............................................................................. )HGHUDO$FTXLVLWLRQ5HJXODWLRQ :KHQDQ$JHQF\0XVW)ROORZWKH)$5 1$6$)HGHUDO$FTXLVLWLRQ5HJXODWLRQ6XSSOHPHQW 7KH&2763URJUDP D. The GAO’s Decision and Chevron Deference ........................... E. When Does Chevron Deference Apply? ..................................... F. Energy Conversion Devices: The GAO’s First OTA Question .. G. The GAO and Exploration Partners .......................................... H. The GAO and Rocketplane Kistler ............................................ I. The GAO and Competitiveness Concerns: The Case of Blue Origin ....................................................................................... ,,,1$6$¶6,17(535(7$7,212),7627$32:(5$1'7+(*$2¶6 $87+25,7<725(9,(: A. A Look at NASA’s OTA Power Through the Lens of Statutory Construction and Legislative History ...................................... B. Should NASA’s Interpretation of “Other Transaction Authority” Be Given Chevron Deference? .............................. $SSO\LQJWKHChevron7ZR6WHSWR1$6$ 7KH6SDFH$FWDQG7H[WXDO&DQRQV 7KH7H[WRIWKH6SDFH$FW,WVHOI C. The GAO’s Decision not to Review SAAs: Why NASA
    [Show full text]
  • Cecil Spaceport Master Plan 2012
    March 2012 Jacksonville Aviation Authority Cecil Spaceport Master Plan Table of Contents CHAPTER 1 Executive Summary ................................................................................................. 1-1 1.1 Project Background ........................................................................................................ 1-1 1.2 History of Spaceport Activities ........................................................................................ 1-3 1.3 Purpose of the Master Plan ............................................................................................ 1-3 1.4 Strategic Vision .............................................................................................................. 1-4 1.5 Market Analysis .............................................................................................................. 1-4 1.6 Competitor Analysis ....................................................................................................... 1-6 1.7 Operating and Development Plan................................................................................... 1-8 1.8 Implementation Plan .................................................................................................... 1-10 1.8.1 Phasing Plan ......................................................................................................... 1-10 1.8.2 Funding Alternatives ............................................................................................. 1-11 CHAPTER 2 Introduction .............................................................................................................
    [Show full text]
  • The Ultimate High Ground—U.S. Intersector Cooperation in Outer Space C
    Journal of Air Law and Commerce Volume 81 | Issue 4 Article 2 2016 The Ultimate High Ground—U.S. Intersector Cooperation in Outer Space C. Brandon Halstead Follow this and additional works at: https://scholar.smu.edu/jalc Recommended Citation C. Brandon Halstead, The Ultimate High Ground—U.S. Intersector Cooperation in Outer Space, 81 J. Air L. & Com. 595 (2016) https://scholar.smu.edu/jalc/vol81/iss4/2 This Article is brought to you for free and open access by the Law Journals at SMU Scholar. It has been accepted for inclusion in Journal of Air Law and Commerce by an authorized administrator of SMU Scholar. For more information, please visit http://digitalrepository.smu.edu. THE ULTIMATE HIGH GROUND—U.S. INTERSECTOR COOPERATION IN OUTER SPACE C. BRANDON HALSTEAD* I. INTRODUCTION PACE, THE FINAL FRONTIER.” Those words opened “Seach episode of the original 1960s’ television series Star Trek.1 In a seemingly relentless effort to dominate this final fron- tier, the second half of the 20th century was marked by a space race of United States and Soviet Union competition to attain superior space capabilities. Those few States2 able to achieve or- bit comprised an exclusive club, with the technology and fi- nances necessary to successfully launch, orbit, and recover space vehicles embodying State prestige and power. Yet as the campy science fiction films and television series of the 1950s and 1960s gave way to blockbuster space movies and television dramas from the 1970s onward, so too has science fiction and space ca- pabilities transformed from the silver screen to reality.
    [Show full text]
  • Completing Public/Private Human Earth-Orbit Access Programs in a Timely Manner an AIAA Information Paper ABSTRACT Since the Reti
    Completing Public/Private Human Earth-Orbit Access Programs in a Timely Manner An AIAA Information Paper ABSTRACT Since the retirement of the Space Shuttle, there has been no U.S.-operated means for human access to Earth orbit. Currently, all U.S. crew members for the International Space Station must use the Russian Soyuz at a cost approaching $70 million per seat. Public/Private Partnerships (PPPs) involving commercially conceived concepts for reestablishing U.S. means for human access to space are being pursued by NASA following the successful PPP model that has provided cargo resupply capability for the International Space Station (ISS). However, initial operational availability of commercial crew access to Earth orbit is not expected until at least 2017 due to NASA funding contribution constraints. Also, the process for human safety certification of vehicles developed using PPPs still need formulation. ISSUE BACKGROUND For 30 years the Space Shuttle transported humans to and from Earth orbit. In 2011, after 135 launches, the Space Shuttle was retired from service. This was the result of policy decisions made after the 2003 loss of the Columbia that directed an end to Shuttle flights after completing orbital delivery of the then-planned International Space Station (ISS) elements. With the Shuttle’s retirement, the U.S. has no operational means of its own to enable human access to Earth orbit, so that access to the ISS is currently only possible using Russian Soyuz vehicles. The cost for U.S. astronauts to use the Soyuz to get to and from the ISS has risen substantially with each new service procurement contract, currently approaching $70 million per seat.
    [Show full text]