The Late Summer of 2006

Total Page:16

File Type:pdf, Size:1020Kb

The Late Summer of 2006 STATE OF THE ART Space Deals The Coming of the New Space Industry he late summer of 2006 pro- ly accidents and disasters, like those vided many exciting devel- that befell the Challenger and Columbia Topments for those interested shuttles, can be minimized. in the high frontier—including both The choice of contractor was a sur- supporters of NASA’s human space- prise to many in the space community, flight program, and enthusiasts of the and a blow to the Boeing Corporation new, entrepreneurial space passenger in particular. The conventional wisdom activities of the private sector. was that the team led by Northrop In late August, NASA achieved a Grumman, along with Boeing (des- major milestone in its plans to return to ignated NGB), was favored to win, the moon, over a third of a century after because those companies (particularly the last men left it, when it awarded a with Boeing’s acquisition in the 1990s multi-billion-dollar contract for the of Rockwell International’s space divi- Orion spacecraft to a team of contrac- sions and the McDonnell Douglas cor- tors led by Lockheed Martin. Orion, poration) had most of the historical formerly called the Crew Exploration experience with manned space pro- Vehicle (CEV), is the modern version grams. Though it builds the external of the Apollo command module/ser- tank for the space shuttle, and is a co- vice module (CSM) that represents owner with Boeing of the United Space part of NASA Administrator Mike Alliance, which operates the shuttle and Griffin’s so-called “Apollo on steroids” the International Space Station (ISS) for approach to fulfilling the Vision for NASA, observers considered Lockheed Space Exploration announced in early Martin to have little experience with 2004 by President Bush. Like the orig- the development of systems designed inal CSM, after being launched on an for human spaceflight. In addition, expendable vehicle, it will carry crew some thought that the company’s per- to lunar orbit (though with at least one formance on the ill-fated X-33 program more crewperson than the three-man in the 1990s, in which a billion taxpayer Apollo missions), remain there while dollars were wasted on an experimental some or all of them descend to the prototype of a potential shuttle replace- surface in another vehicle, and return ment that never flew, would weigh them to Earth, reentering the atmo- heavily in NASA’s decision. sphere in a blunt capsule and landing Perhaps these expectations led to by parachute, either on land or water. complacency on the part of the NGB The idea is that by going back to the team (on which I played a part as a methods used safely and successfully consultant in systems engineering). in the Sixties, the chances of dead- NASA indicated that one of the factors 130 ~ THE NEW ATLANTIS Copyright 2006. All rights reserved. See www.TheNewAtlantis.com for more information. A CONTINUING SURVEY OF TECHNOLOGY AND SOCIETY in its decision was the performance tract in which the contractor is reim- of the two teams in the first phase of bursed for actual costs as reported, plus the program, with Lockheed Martin a fixed percentage for profit, regardless reportedly outdoing NGB and show- of whether or not the hardware ever ing more innovation in its proposed works up to specification (the shuttle solutions. Politically, Lockheed seemed and ISS being examples, though there more aggressive in promising to move are many military ones as well), COTS the work to favored NASA locations, will provide incremental payment only such as Houston, Texas; Huntsville, upon the successful satisfaction of pre- Alabama; and the Space Coast of defined program milestones. NASA Florida, rather than California, where micromanaging will be limited, and NGB reportedly proposed to do much the hope is that the “bang for the buck” of the work. will be much greater. Another much smaller NASA Rocketplane Kistler, one of the two award, announced in mid-August, is COTS awardees, is a recent merger of of more interest to those who follow two companies that had been around “NewSpace”—a term used to describe since the early 1990s—Rocketplane the emerging industry of startup LLC, and Kistler Aerospace. The for- ventures aimed at developing new, mer was originally formed to build low-cost systems that can satisfy the a two-stage partially reusable vehicle expected demand for private space for orbital delivery, with a first stage travel. From a field of contenders supplied with liquid oxygen in mid-air that had already been winnowed down from a tanker to minimize its takeoff to six, NASA selected two compa- weight. It never got funding for this nies, Rocketplane Kistler and Space project, but recently has gotten fund- Exploration Technologies, for a new ing (helped with transferable tax cred- program called Commercial Orbital its from the state of Oklahoma) to build Transportation Services (COTS). The a suborbital passenger system that will goal of this program is to nurture compete with the services Richard potential providers of commercial ser- Branson plans for his Virgin Galactic vices to resupply and possibly help space tourism company. Kistler has carry crews to and from the ISS after been planning a vertical-takeoff two- the space shuttle is retired in 2010. A stage reusable vehicle type since its half-billion dollars will be provided inception, and raised (and spent) sever- to the two firms, split roughly in half al hundred million dollars toward that between them, to develop the systems end, but ran out of funding when the they will need to provide such ser- projected low-earth-orbit communica- vices. tions satellite market collapsed in the This is a new way of doing business late 1990s. The companies’ merger ear- for NASA. While the Orion program lier this year resulted in a more diversi- is a traditional cost-plus-fixed-fee con- fied entity, with potential for both hori- FALL 2006 ~ 131 Copyright 2006. All rights reserved. See www.TheNewAtlantis.com for more information. STATE OF THE ART zontal and vertical takeoff, and both “Transhab” that NASA never actu- suborbital and orbital markets. ally used, Bigelow built an inflatable By contrast, the other COTS award- module carrying hundreds of personal ee, Space Exploration Technologies items that people paid to have sent on (SpaceX), is a new kid on the block, it; they are floating around in a kalei- only formed four years ago. Founded doscopic whirl in weightlessness, with and funded by Elon Musk—one of a camera watching and beaming the the founders of the Internet money images down to Earth. Bigelow offers firm PayPal—it has not had to raise a money-back guarantee that every any outside capital to date. It had a individual’s memento will be viewed failed first launch attempt in March at some time as it tumbles around 2006, but plans another for later this in space. (You can see this online at year, and continues to build hardware BigelowAerospace.com.) intended to grow to both heavy-lift While Bigelow was prepared for the capability and human transport capa- failure of this first attempt, the Genesis bility, with expected low costs. 1 mission was successful beyond his NASA’s innovative COTS program, wildest expectations—so successful and its selection of these two provid- that in September he announced his ers, indicates a seriousness in creat- intention to fund and fly a three-per- ing a competitive commercial launch son habitat to low Earth orbit by the industry far beyond anything it has end of the decade. It would be expand- attempted in the past, even if the fund- ed to a capacity of nine people by 2012. ing level remains a tiny fraction of the He was, he said, not going to wait for total budget it plans to spend on the the rocket industry or passenger mar- development of its own vehicles. ket to catch up. But progress is rapid among However, it turned out that Bigelow NewSpace companies unblessed by was hedging his bets. Later the same NASA contracts as well. In July 2006, day, he held a joint press conference the Bigelow Aerospace company— with George Sowers of Lockheed started by billionaire Bob Bigelow, Martin, in which they announced an owner of the Budget Suites chain of agreement to explore the possibilities hotels—launched a prototype space of “human rating” Lockheed’s Atlas hotel, called Genesis 1, on a Russian V launch vehicle to allow it to carry Dnieper rocket. (Bigelow had origi- a passenger module for transporting nally hoped, and even contracted, to customers to and from Bigelow’s new use a SpaceX vehicle, but it wasn’t hotel. ready on time.) Genesis 1 is an inflat- Following on the heels of Lockheed able module, littered with instrumen- Martin’s surprise win of NASA’s Orion tation to determine how it performs contract, this was yet another shock to in orbit. Based on NASA technology most of the space industry, for at least from a taxpayer-funded program called two reasons. First, it was extremely 132 ~ THE NEW ATLANTIS Copyright 2006. All rights reserved. See www.TheNewAtlantis.com for more information. A CONTINUING SURVEY OF TECHNOLOGY AND SOCIETY out of character. Lockheed is primarily commercial satellite and government a government contractor; the company business. That market reduction is had done nothing remotely commer- partly the result of NASA’s insistence cial for decades. Second, and even more on developing the Ares I, rather than surprising, were the timing and politi- using existing vehicles like the Atlas. cal implications. Only three weeks ear- One way out of this chicken-and-egg lier Lockheed had been selected as problem would be to find a new mar- NASA’s partner for the Orion project, ket, which Bigelow is obviously seri- which will involve two new launch ous about.
Recommended publications
  • Rocketplane Kistler Support for Space Exploration
    Rocketplane Kistler Support for Space Exploration Rocketplane Kistler Diverse Markets Minimize Risk • Rocketplane XP - Suborbital services • Space tourism • Kistler K-1 - Orbital services • USAF “Responsive space” • ISS servicing • Microgravity research • USAF “Responsive space” • Satellite launch (comm’l & gov’t) • XP Program • Vehicle 1 is 25% complete • K-1 Program • First flight late 2008 • Vehicle 1 is 75% complete • First flight late 2008 • Estimated $10-20 billion market over ten • Estimated $4 billion market per year over years. (Futron/Zogby study) next five years. 2 Support for Space Exploration RpK’s Unique Position: • Low cost sub-orbital and orbital access through a single interface. RpK’s Direct Support: • Low cost technology and systems development and demonstration •Sub-orbital with the XP •Orbital with the K-1 • Exploration logistics train to LEO •And beyond with evolutionary vehicle development • Crew transfer to LEO •And beyond with evolutionary vehicle development RpK’s Indirect Support: • Support STS retirement to free resources for space exploration •Cargo •Crew transfer • Lower cost of space access •Enable supportive space enterprise in near earth space •Enable a sustainable presence in the solar system 3 Rocketplane XP Suborbital Passenger and Payload Services XP Offers Microgravity Time and Responsive Space Access •3-4 min µg, 330kft, Mach 3.5 •Payload: 1000lb+ •Horizontal Take off & Landing •Aircraft Like Operations •Rapid Turnaround – <24 hours 5 Potential XP Support Services • Microgravity Research Flights • Materials, sensors, crystals • Exploration systems development •ECLSS, • resource extraction systems, • radiation protection systems, •etc. • External Payloads • TPS, sensors, experiments All of these development programs can be “passed along” to the K-1 when they reach that point in development.
    [Show full text]
  • Commercial Orbital Transportation Services
    National Aeronautics and Space Administration Commercial Orbital Transportation Services A New Era in Spaceflight NASA/SP-2014-617 Commercial Orbital Transportation Services A New Era in Spaceflight On the cover: Background photo: The terminator—the line separating the sunlit side of Earth from the side in darkness—marks the changeover between day and night on the ground. By establishing government-industry partnerships, the Commercial Orbital Transportation Services (COTS) program marked a change from the traditional way NASA had worked. Inset photos, right: The COTS program supported two U.S. companies in their efforts to design and build transportation systems to carry cargo to low-Earth orbit. (Top photo—Credit: SpaceX) SpaceX launched its Falcon 9 rocket on May 22, 2012, from Cape Canaveral, Florida. (Second photo) Three days later, the company successfully completed the mission that sent its Dragon spacecraft to the Station. (Third photo—Credit: NASA/Bill Ingalls) Orbital Sciences Corp. sent its Antares rocket on its test flight on April 21, 2013, from a new launchpad on Virginia’s eastern shore. Later that year, the second Antares lifted off with Orbital’s cargo capsule, (Fourth photo) the Cygnus, that berthed with the ISS on September 29, 2013. Both companies successfully proved the capability to deliver cargo to the International Space Station by U.S. commercial companies and began a new era of spaceflight. ISS photo, center left: Benefiting from the success of the partnerships is the International Space Station, pictured as seen by the last Space Shuttle crew that visited the orbiting laboratory (July 19, 2011). More photos of the ISS are featured on the first pages of each chapter.
    [Show full text]
  • Space Planes and Space Tourism: the Industry and the Regulation of Its Safety
    Space Planes and Space Tourism: The Industry and the Regulation of its Safety A Research Study Prepared by Dr. Joseph N. Pelton Director, Space & Advanced Communications Research Institute George Washington University George Washington University SACRI Research Study 1 Table of Contents Executive Summary…………………………………………………… p 4-14 1.0 Introduction…………………………………………………………………….. p 16-26 2.0 Methodology…………………………………………………………………….. p 26-28 3.0 Background and History……………………………………………………….. p 28-34 4.0 US Regulations and Government Programs………………………………….. p 34-35 4.1 NASA’s Legislative Mandate and the New Space Vision………….……. p 35-36 4.2 NASA Safety Practices in Comparison to the FAA……….…………….. p 36-37 4.3 New US Legislation to Regulate and Control Private Space Ventures… p 37 4.3.1 Status of Legislation and Pending FAA Draft Regulations……….. p 37-38 4.3.2 The New Role of Prizes in Space Development…………………….. p 38-40 4.3.3 Implications of Private Space Ventures…………………………….. p 41-42 4.4 International Efforts to Regulate Private Space Systems………………… p 42 4.4.1 International Association for the Advancement of Space Safety… p 42-43 4.4.2 The International Telecommunications Union (ITU)…………….. p 43-44 4.4.3 The Committee on the Peaceful Uses of Outer Space (COPUOS).. p 44 4.4.4 The European Aviation Safety Agency…………………………….. p 44-45 4.4.5 Review of International Treaties Involving Space………………… p 45 4.4.6 The ICAO -The Best Way Forward for International Regulation.. p 45-47 5.0 Key Efforts to Estimate the Size of a Private Space Tourism Business……… p 47 5.1.
    [Show full text]
  • Author's Instructions For
    Feasibility Analysis for a Manned Mars Free-Return Mission in 2018 Dennis A. Tito Grant Anderson John P. Carrico, Jr. Wilshire Associates Incorporated Paragon Space Development Applied Defense Solutions, Inc. 1800 Alta Mura Road Corporation 10440 Little Patuxent Pkwy Pacific Palisades, CA 90272 3481 East Michigan Street Ste 600 310-260-6600 Tucson, AZ 85714 Columbia, MD 21044 [email protected] 520-382-4812 410-715-0005 [email protected] [email protected] Jonathan Clark, MD Barry Finger Gary A Lantz Center for Space Medicine Paragon Space Development Paragon Space Development Baylor College Of Medicine Corporation Corporation 6500 Main Street, Suite 910 1120 NASA Parkway, Ste 505 1120 NASA Parkway, Ste 505 Houston, TX 77030-1402 Houston, TX 77058 Houston, TX 77058 [email protected] 281-702-6768 281-957-9173 ext #4618 [email protected] [email protected] Michel E. Loucks Taber MacCallum Jane Poynter Space Exploration Engineering Co. Paragon Space Development Paragon Space Development 687 Chinook Way Corporation Corporation Friday Harbor, WA 98250 3481 East Michigan Street 3481 East Michigan Street 360-378-7168 Tucson, AZ 85714 Tucson, AZ 85714 [email protected] 520-382-4815 520-382-4811 [email protected] [email protected] Thomas H. Squire S. Pete Worden Thermal Protection Materials Brig. Gen., USAF, Ret. NASA Ames Research Center NASA AMES Research Center Mail Stop 234-1 MS 200-1A Moffett Field, CA 94035-0001 Moffett Field, CA 94035 (650) 604-1113 650-604-5111 [email protected] [email protected] Abstract—In 1998 Patel et al searched for Earth-Mars free- To size the Environmental Control and Life Support System return trajectories that leave Earth, fly by Mars, and return to (ECLSS) we set the initial mission assumption to two crew Earth without any deterministic maneuvers after Trans-Mars members for 500 days in a modified SpaceX Dragon class of Injection.
    [Show full text]
  • A New British Space Age
    A New British Space Age A Response to the Royal Astronomical Society Report on Human Spaceflight Dr J. Duncan Law-Green Department of Physics & Astronomy University of Leicester T: 0116 252 2589 [email protected] 3 Jan 2007 Artist’s impression of the Virgin Galactic SpaceShipTwo suborbital spaceplane and WhiteKnightTwo carrier aircraft in flight. Image © Virgin Galactic. Summary: The recent Royal Astronomical Society report on human spaceflight (“Report of the Commission on the Scientific Case for Human Space Exploration”, Close et al. 2005) highlighted the scientific and cultural value of human spaceflight, and noted that this is a field of endeavour that has historically been neglected in the United Kingdom. It recommended that the UK Government invest sufficient additional funds in the European Space Agency to allow the training of a small number of UK astronauts. Total additional expenditures in the range of £50 million to £120 million over five years have been quoted. This author agrees with the positive assessment of Close et al. of the value of human spaceflight to the United Kingdom, but disagrees with the emphasis of the policy recommendations made so far. A number of relatively modest investments in UK commercial spaceflight would potentially deliver the same or greater scientific, cultural and economic returns, more promptly and at less overall expense than the proposed ESA funding. This document outlines a number of potential projects to: enhance the UK's space technology base, improve cooperation with allied nations on commercial spaceflight, increase outreach and public involvement with UK space projects, preserve and protect the UK's space history, benefit UK science education and enhance the UK's international reputation in innovation and engineering excellence.
    [Show full text]
  • Failure to Launch: Why Nasa¶S Unchecked Use of Ota Power May
    )$,/85(72/$81&+ :+<1$6$¶681&+(&.('86(2)27$32:(5 0$<21('$<'2207+($*(1&< Andrew Strauss ,,1752'8&7,21 ,,1$6$¶6&5($7,21$1'+2:7+($*(1&<+$686(',7627$ 32:(5 A. The National Aeronautics and Space Act of 1958 ..................... B. An Overview of the Scope and Use of NASA’s OTA Power ....... 27$DQGWKH&2763URJUDP C. SAAs and Government Procurement Contracts: A Comparison .............................................................................. )HGHUDO$FTXLVLWLRQ5HJXODWLRQ :KHQDQ$JHQF\0XVW)ROORZWKH)$5 1$6$)HGHUDO$FTXLVLWLRQ5HJXODWLRQ6XSSOHPHQW 7KH&2763URJUDP D. The GAO’s Decision and Chevron Deference ........................... E. When Does Chevron Deference Apply? ..................................... F. Energy Conversion Devices: The GAO’s First OTA Question .. G. The GAO and Exploration Partners .......................................... H. The GAO and Rocketplane Kistler ............................................ I. The GAO and Competitiveness Concerns: The Case of Blue Origin ....................................................................................... ,,,1$6$¶6,17(535(7$7,212),7627$32:(5$1'7+(*$2¶6 $87+25,7<725(9,(: A. A Look at NASA’s OTA Power Through the Lens of Statutory Construction and Legislative History ...................................... B. Should NASA’s Interpretation of “Other Transaction Authority” Be Given Chevron Deference? .............................. $SSO\LQJWKHChevron7ZR6WHSWR1$6$ 7KH6SDFH$FWDQG7H[WXDO&DQRQV 7KH7H[WRIWKH6SDFH$FW,WVHOI C. The GAO’s Decision not to Review SAAs: Why NASA
    [Show full text]
  • Cecil Spaceport Master Plan 2012
    March 2012 Jacksonville Aviation Authority Cecil Spaceport Master Plan Table of Contents CHAPTER 1 Executive Summary ................................................................................................. 1-1 1.1 Project Background ........................................................................................................ 1-1 1.2 History of Spaceport Activities ........................................................................................ 1-3 1.3 Purpose of the Master Plan ............................................................................................ 1-3 1.4 Strategic Vision .............................................................................................................. 1-4 1.5 Market Analysis .............................................................................................................. 1-4 1.6 Competitor Analysis ....................................................................................................... 1-6 1.7 Operating and Development Plan................................................................................... 1-8 1.8 Implementation Plan .................................................................................................... 1-10 1.8.1 Phasing Plan ......................................................................................................... 1-10 1.8.2 Funding Alternatives ............................................................................................. 1-11 CHAPTER 2 Introduction .............................................................................................................
    [Show full text]
  • The Ultimate High Ground—U.S. Intersector Cooperation in Outer Space C
    Journal of Air Law and Commerce Volume 81 | Issue 4 Article 2 2016 The Ultimate High Ground—U.S. Intersector Cooperation in Outer Space C. Brandon Halstead Follow this and additional works at: https://scholar.smu.edu/jalc Recommended Citation C. Brandon Halstead, The Ultimate High Ground—U.S. Intersector Cooperation in Outer Space, 81 J. Air L. & Com. 595 (2016) https://scholar.smu.edu/jalc/vol81/iss4/2 This Article is brought to you for free and open access by the Law Journals at SMU Scholar. It has been accepted for inclusion in Journal of Air Law and Commerce by an authorized administrator of SMU Scholar. For more information, please visit http://digitalrepository.smu.edu. THE ULTIMATE HIGH GROUND—U.S. INTERSECTOR COOPERATION IN OUTER SPACE C. BRANDON HALSTEAD* I. INTRODUCTION PACE, THE FINAL FRONTIER.” Those words opened “Seach episode of the original 1960s’ television series Star Trek.1 In a seemingly relentless effort to dominate this final fron- tier, the second half of the 20th century was marked by a space race of United States and Soviet Union competition to attain superior space capabilities. Those few States2 able to achieve or- bit comprised an exclusive club, with the technology and fi- nances necessary to successfully launch, orbit, and recover space vehicles embodying State prestige and power. Yet as the campy science fiction films and television series of the 1950s and 1960s gave way to blockbuster space movies and television dramas from the 1970s onward, so too has science fiction and space ca- pabilities transformed from the silver screen to reality.
    [Show full text]
  • (COTS) Project
    Overv iew o f NASA’s C ommerci al Orbital Transportation Services (COTS) Project 2nd SpaceOps Workshop RAL Oxford, UK June 14, 2011 Bruce Manners Project Executive Commercial Crew & Cargo Program Exploration Systems Mission Directorate NASA Johnson Space Center Outline Background – Genesis of the COTS Program PjtObjtiProject Objectives “Immediate” NASA Need COTS Project O ver v iew Unique aspects of COTS Status of COTS Conclusions 2 Genesis of Program Creation High cost of space transportation biggest obstacle to space exploration and utilization Low cost, commercially viable space transportation will transform human society as much as the invention of the airplane After 50 years of spaceflight, little progress made on lowering costs ViVarious op iiinions wh y... Minimal progress in propulsion technology Government focus on highly reliable systems – National defense – Human spaceflight Government contracting practices – cost plus Small space market LkfLack of rea lfl free marktfket forces Etc... Government’s role to explore, push boundaries of space frontier – private sector to handle “routine” space flight 3 Program Objectives The Commercial Crew & Cargo Program Office established at the Johnson Space Center in November 2005 to accomplish the following objectives: Implement U.S. Space Exploration policy with investments to stimulate the commercial space industry Fac ilitat e U .S . pri vat e i nd ust ry d emonst rati on of cargo and crew space transportation capabilities with the goal of achieving safe, reliable, cost effective access to low-Earth orbit Create a market environment in which commercial space transportation services are available to Government and private sector customers Extendinggp human presence in sp pygpgace by enabling an expanding and robust U.S.
    [Show full text]
  • Completing Public/Private Human Earth-Orbit Access Programs in a Timely Manner an AIAA Information Paper ABSTRACT Since the Reti
    Completing Public/Private Human Earth-Orbit Access Programs in a Timely Manner An AIAA Information Paper ABSTRACT Since the retirement of the Space Shuttle, there has been no U.S.-operated means for human access to Earth orbit. Currently, all U.S. crew members for the International Space Station must use the Russian Soyuz at a cost approaching $70 million per seat. Public/Private Partnerships (PPPs) involving commercially conceived concepts for reestablishing U.S. means for human access to space are being pursued by NASA following the successful PPP model that has provided cargo resupply capability for the International Space Station (ISS). However, initial operational availability of commercial crew access to Earth orbit is not expected until at least 2017 due to NASA funding contribution constraints. Also, the process for human safety certification of vehicles developed using PPPs still need formulation. ISSUE BACKGROUND For 30 years the Space Shuttle transported humans to and from Earth orbit. In 2011, after 135 launches, the Space Shuttle was retired from service. This was the result of policy decisions made after the 2003 loss of the Columbia that directed an end to Shuttle flights after completing orbital delivery of the then-planned International Space Station (ISS) elements. With the Shuttle’s retirement, the U.S. has no operational means of its own to enable human access to Earth orbit, so that access to the ISS is currently only possible using Russian Soyuz vehicles. The cost for U.S. astronauts to use the Soyuz to get to and from the ISS has risen substantially with each new service procurement contract, currently approaching $70 million per seat.
    [Show full text]
  • Rocketplane Kistler, Inc. Document No
    Rocketplane Kistler, Inc. Document No. K1M-001 Rev. A 4300 Amelia Earhart Ln March 2007 Oklahoma City, OK 73159 K-1 Vehicle User’s Guide Volume 1– The K-1 Vehicle Rocketplane Kistler, Inc. MODEL NO: K-1 REPORT NO: K1M-001 Rev. A DATE: March 30, 2007 K-1 Vehicle User’s Guide Volume 1 The K-1 Vehicle Page i Rocketplane Kistler, Inc. Document No. K1M-001 Rev. A 4300 Amelia Earhart Ln March 2007 Oklahoma City, OK 73159 K-1 Vehicle User’s Guide Volume 1– The K-1 Vehicle REVISION HISTORY REV DATE CHANGE CHANGE AFFECTED PAGE(S) AUTHORITY A 03-30-07 Initial Release MD27-001 Page ii Rocketplane Kistler, Inc. Document No. K1M-001 Rev. A 4300 Amelia Earhart Ln March 2007 Oklahoma City, OK 73159 K-1 Vehicle User’s Guide Volume 1– The K-1 Vehicle FOREWORD Rocketplane Kistler, Inc. (RpK) is preparing to initiate commercial launch services using its fully reusable K-1 launch vehicle. This K-1 Payload User’s Guide provides information to potential customers regarding the K-1 Fully Reusable Space Transportation System, K-1 vehicle performance, mission planning and integration, and launch operations and facilities. This update includes additional detail on RpK’s Woomera launch site and launch operations. Modifications made to RpK’s launch facilities design to improve the efficiency of vehicle processing have also been incorporated. This user’s guide will be periodically updated. Additional volumes to this user’s guide, detail the capabilities of the K-1 vehicle utilizing different payload modules to serve customers of various markets.
    [Show full text]
  • Reptes I Oportunitats De La Indústria Turística Espacial a Espanya
    Estudis d'Economia i Empresa Grau en Administració i Direcció d’Empreses Reptes i oportunitats de la indústria turística espacial a Espanya César Llorente-López [email protected] 25 de maig de 2021 Treball Final de Grau Àmbit d’especialització: Anàlisi Econòmica Tutor: Albert Aniceto Martínez Memòria final Curs 2021, 2n semestre Reptes I oportunitats del turisme especial a Espanya ÍNDEX Resum: ......................................................................................................................... 4 1. INTRODUCCIÓ, MOTIVACIÓ PERSONAL, JUSTIFICACIÓ I HIPÒTESIS D’INVESTIGACIÓ: ........................................................................................................ 5 1.1.Introducció: .......................................................................................................... 5 1.2. Motivació personal. ............................................................................................. 6 1.3. Justificació: ......................................................................................................... 6 1.4. Objectiu de la recerca: ........................................................................................ 7 1.5. Hipòtesis a contrastar. ........................................................................................ 7 2. MARC TEÒRIC ......................................................................................................... 8 2.1. Concepte de TE .................................................................................................
    [Show full text]