Recombinant and Chimeric Viruses

Total Page:16

File Type:pdf, Size:1020Kb

Recombinant and Chimeric Viruses Recombinant and chimeric viruses: Evaluation of risks associated with changes in tropism Ben P.H. Peeters Animal Sciences Group, Wageningen University and Research Centre, Division of Infectious Diseases, P.O. Box 65, 8200 AB Lelystad, The Netherlands. May 2005 This report represents the personal opinion of the author. The interpretation of the data presented in this report is the sole responsibility of the author and does not necessarily represent the opinion of COGEM or the Animal Sciences Group. Dit rapport is op persoonlijke titel door de auteur samengesteld. De interpretatie van de gepresenteerde gegevens komt geheel voor rekening van de auteur en representeert niet de mening van de COGEM, noch die van de Animal Sciences Group. Advisory Committee Prof. dr. R.C. Hoeben (Chairman) Leiden University Medical Centre Dr. D. van Zaane Wageningen University and Research Centre Dr. C. van Maanen Animal Health Service Drs. D. Louz Bureau Genetically Modified Organisms Ing. A.M.P van Beurden Commission on Genetic Modification Recombinant and chimeric viruses 2 INHOUDSOPGAVE RECOMBINANT AND CHIMERIC VIRUSES: EVALUATION OF RISKS ASSOCIATED WITH CHANGES IN TROPISM Executive summary............................................................................................................................... 5 Introduction............................................................................................................................................ 7 1. Genetic modification of viruses .................................................................................................9 2. Recombinant and chimeric viruses ......................................................................................... 11 3. Applications of recombinant and chimeric viruses ............................................................... 13 3.1. Fundamental studies of host-pathogen interactions ........................................................... 13 3.2. Gene therapy....................................................................................................................... 13 3.3. Cancer gene therapy........................................................................................................... 14 3.4. Vaccination .......................................................................................................................... 15 3.5. Immune modulation ............................................................................................................. 15 4. Recent developments in virus retargeting.............................................................................. 17 4.1. Adenovirus........................................................................................................................... 17 4.2. Adeno-associated virus ....................................................................................................... 22 4.3. Retrovirus en lentivirus ........................................................................................................ 24 4.4. Hybrid virus vectors ............................................................................................................. 27 4.5. Herpesvirus.......................................................................................................................... 28 4.6. Negative-stranded RNA viruses .......................................................................................... 29 4.7. Other viruses ....................................................................................................................... 31 5. Chimeric viruses containing foreign viral surface proteins.................................................. 35 5.1. Chimeric poxviruses ............................................................................................................ 35 5.2. Chimeric herpesviruses....................................................................................................... 36 5.3. Chimeric negative-stranded RNA viruses ........................................................................... 38 5.4. Chimeric flaviviruses............................................................................................................ 42 5.5. Other chimeric viruses......................................................................................................... 44 6. Viral factors and host factors that determine host-range and tropsim ............................... 49 6.1. Receptor and co-receptor usage......................................................................................... 49 6.2. Entry and transport .............................................................................................................. 50 3 Recombinant and chimeric viruses 6.3. Nuclear import ..................................................................................................................... 51 6.4. Interference with interferon responses ................................................................................ 52 6.5. Interference with general immune responses ..................................................................... 54 6.6. Host restriction factors......................................................................................................... 57 6.7. Viral host range genes......................................................................................................... 58 6.8. Host proteases required for processing of viral proteins..................................................... 59 6.9. Host transcription factors..................................................................................................... 61 6.10. Other factors........................................................................................................................ 63 7. Potential risks associated with the use of recombinant and chimeric viruses .................. 65 7.1 Increase in pathogenicity and virulence .............................................................................. 65 7.2. Changes in host tropism...................................................................................................... 68 7.3. Immunopathology ................................................................................................................ 70 7.4. Conclusions ......................................................................................................................... 71 8. References ................................................................................................................................. 75 RECOMBINANT EN CHIMAERE VIRUSSEN: EVALUATIE VAN RISICO’S TEN GEVOLGE VAN VERANDERINGEN IN TROPISME Opdracht............................................................................................................................................... 99 Verantwoording ................................................................................................................................... 99 Leeswijzer .......................................................................................................................................... 100 Management samenvatting .............................................................................................................. 101 Nederlandse samenvatting............................................................................................................... 103 Inleiding...................................................................................................................................... 103 1. Genetische modificatie van virussen .................................................................................... 103 2. Recombinant en chimaere virussen...................................................................................... 103 3. Toepassingen van recombinant en chimaere virussen ........................................................ 104 4. Recente ontwikkelingen op het gebied van de sturing van het tropisme van virussen ........ 105 5. Chimaere virussen met heterologe oppervlakte eiwitten...................................................... 107 6. Virale factoren en gastheer factoren die tropisme bepalen .................................................. 108 7. Evaluatie van risico’s ten gevolge van veranderingen in tropisme....................................... 112 Bijlage 1: Beschrijving van het project ........................................................................................... 117 Recombinant and chimeric viruses 4 EXECUTIVE SUMMARY With molecular biological techniques the genetic make-up of virtually any (micro-)organism can be modified. This process is know as ‘genetic modification’. The availability of cloned copies of viral genomes facilitates the generation of genetically-modified recombinant and chimeric viruses. A chimeric virus is a recombinant virus that contains at least one functional gene from another virus. Such viruses become increasingly important for vaccine development, experimental gene therapy and for scientific research purposes. Virus particles bind and enter living cells via specific receptors at the cell surface. These and other host factors determine whether the host is permissive for this virus. Rare spontaneous mutations in the viral genome can alter the cell-, tissue-, and host-specificity of a virus. Hardly ever this leads to an extension of the host range of a virus. However, in rare cases this may lead to new viral diseases. HIV, influenza virus,
Recommended publications
  • Direct Agroinoculation of Maize Seedlings by Injection with Recombinant Foxtail Mosaic Virus and Sugarcane Mosaic Virus Infectious Clones
    Direct Agroinoculation of Maize Seedlings by Injection with Recombinant Foxtail Mosaic Virus and Sugarcane Mosaic Virus Infectious Clones Bliss M. Beernink*,1, Katerina L. Holan*,1, Ryan R. Lappe1, Steven A. Whitham1 1 Department of Plant Pathology and Microbiology, Iowa State University * These authors contributed equally Corresponding Author Abstract Steven A. Whitham [email protected] Agrobacterium-based inoculation approaches are widely used for introducing viral vectors into plant tissues. This study details a protocol for the injection of maize Citation seedlings near meristematic tissue with Agrobacterium carrying a viral vector. Beernink, B.M., Holan, K.L., Lappe, R.R., Recombinant foxtail mosaic virus (FoMV) clones engineered for gene silencing and Whitham, S.A. Direct Agroinoculation of Maize Seedlings by Injection with gene expression were used to optimize this method, and its use was expanded Recombinant Foxtail Mosaic Virus and to include a recombinant sugarcane mosaic virus (SCMV) engineered for gene Sugarcane Mosaic Virus Infectious Clones. J. Vis. Exp. (168), e62277, expression. Gene fragments or coding sequences of interest are inserted into a doi:10.3791/62277 (2021). modified, infectious viral genome that has been cloned into the binary T-DNA plasmid vector pCAMBIA1380. The resulting plasmid constructs are transformed into Date Published Agrobacterium tumefaciens strain GV3101. Maize seedlings as young as 4 days February 27, 2021 old can be injected near the coleoptilar node with bacteria resuspended in MgSO4 DOI
    [Show full text]
  • 25 May 7, 2014
    Joint Pathology Center Veterinary Pathology Services Wednesday Slide Conference 2013-2014 Conference 25 May 7, 2014 ______________________________________________________________________________ CASE I: 3121206023 (JPC 4035610). Signalment: 5-week-old mixed breed piglet, (Sus domesticus). History: Two piglets from the faculty farm were found dead, and another piglet was weak and ataxic and, therefore, euthanized. Gross Pathology: The submitted piglet was in good body condition. It was icteric and had a diffusely pale liver. Additionally, petechial hemorrhages were found on the kidneys, and some fibrin was present covering the abdominal organs. Laboratory Results: The intestine was PCR positive for porcine circovirus (>9170000). Histopathologic Description: Mesenteric lymph node: Diffusely, there is severe lymphoid depletion with scattered karyorrhectic debris (necrosis). Also scattered throughout the section are large numbers of macrophages and eosinophils. The macrophages often contain botryoid basophilic glassy intracytoplasmic inclusion bodies. In fewer macrophages, intranuclear basophilic inclusions can be found. Liver: There is massive loss of hepatocytes, leaving disrupted liver lobules and dilated sinusoids engorged with erythrocytes. The remaining hepatocytes show severe swelling, with micro- and macrovesiculation of the cytoplasm and karyomegaly. Some swollen hepatocytes have basophilic intranuclear, irregular inclusions (degeneration). Throughout all parts of the liver there are scattered moderate to large numbers of macrophages (without inclusions). Within portal areas there is multifocally mild to moderate fibrosis and bile duct hyperplasia. Some bile duct epithelial cells show degeneration and necrosis, and there is infiltration of neutrophils within the lumen. The limiting plate is often obscured mainly by infiltrating macrophages and eosinophils, and fewer neutrophils, extending into the adjacent parenchyma. Scattered are small areas with extra medullary hematopoiesis.
    [Show full text]
  • A Scoping Review of Viral Diseases in African Ungulates
    veterinary sciences Review A Scoping Review of Viral Diseases in African Ungulates Hendrik Swanepoel 1,2, Jan Crafford 1 and Melvyn Quan 1,* 1 Vectors and Vector-Borne Diseases Research Programme, Department of Veterinary Tropical Disease, Faculty of Veterinary Science, University of Pretoria, Pretoria 0110, South Africa; [email protected] (H.S.); [email protected] (J.C.) 2 Department of Biomedical Sciences, Institute of Tropical Medicine, 2000 Antwerp, Belgium * Correspondence: [email protected]; Tel.: +27-12-529-8142 Abstract: (1) Background: Viral diseases are important as they can cause significant clinical disease in both wild and domestic animals, as well as in humans. They also make up a large proportion of emerging infectious diseases. (2) Methods: A scoping review of peer-reviewed publications was performed and based on the guidelines set out in the Preferred Reporting Items for Systematic Reviews and Meta-Analyses (PRISMA) extension for scoping reviews. (3) Results: The final set of publications consisted of 145 publications. Thirty-two viruses were identified in the publications and 50 African ungulates were reported/diagnosed with viral infections. Eighteen countries had viruses diagnosed in wild ungulates reported in the literature. (4) Conclusions: A comprehensive review identified several areas where little information was available and recommendations were made. It is recommended that governments and research institutions offer more funding to investigate and report viral diseases of greater clinical and zoonotic significance. A further recommendation is for appropriate One Health approaches to be adopted for investigating, controlling, managing and preventing diseases. Diseases which may threaten the conservation of certain wildlife species also require focused attention.
    [Show full text]
  • Whole-Proteome Phylogeny of Large Dsdna Virus Families by an Alignment-Free Method
    Whole-proteome phylogeny of large dsDNA virus families by an alignment-free method Guohong Albert Wua,b, Se-Ran Juna, Gregory E. Simsa,b, and Sung-Hou Kima,b,1 aDepartment of Chemistry, University of California, Berkeley, CA 94720; and bPhysical Biosciences Division, Lawrence Berkeley National Laboratory, 1 Cyclotron Road, Berkeley, CA 94720 Contributed by Sung-Hou Kim, May 15, 2009 (sent for review February 22, 2009) The vast sequence divergence among different virus groups has self-organizing maps (18) have also been used to understand the presented a great challenge to alignment-based sequence com- grouping of viruses. parison among different virus families. Using an alignment-free In the previous alignment-free phylogenomic studies using l-mer comparison method, we construct the whole-proteome phylogeny profiles, 3 important issues were not properly addressed: (i) the for a population of viruses from 11 viral families comprising 142 selection of the feature length, l, appears to be without logical basis; large dsDNA eukaryote viruses. The method is based on the feature (ii) no statistical assessment of the tree branching support was frequency profiles (FFP), where the length of the feature (l-mer) is provided; and (iii) the effect of HGT on phylogenomic relationship selected to be optimal for phylogenomic inference. We observe was not considered. HGT in LDVs has been documented by that (i) the FFP phylogeny segregates the population into clades, alignment-based methods (19–22), but these studies have mostly the membership of each has remarkable agreement with current searched for HGT from host to a single family of viruses, and there classification by the International Committee on the Taxonomy of has not been a study of interviral family HGT among LDVs.
    [Show full text]
  • Western Equine Encephalitis Virus Is a Recombinant Virus (RNA Recombination/Alphavirus/Evolution of RNA Viruses) CHANG S
    Proc. Natl. Acad. Sci. USA Vol. 85, pp. 5997-6001, August 1988 Evolution Western equine encephalitis virus is a recombinant virus (RNA recombination/Alphavirus/evolution of RNA viruses) CHANG S. HAHN, SHLOMO LUSTIG*, ELLEN G. STRAUSS, AND JAMES H. STRAUSSt Division of Biology, 156-29, California Institute of Technology, Pasadena, CA 91125 Communicated by James Bonner, April 14, 1988 ABSTRACT The alphaviruses are a group of 26 mosquito- virus; O'Nyong-nyong virus; and Ross River virus. Sindbis borne viruses that cause a variety of human diseases. Many of and Semliki Forest viruses have been intensively studied as the New World alphaviruses cause encephalitis, whereas the models for alphavirus replication (7). Sindbis virus is widely Old World viruses more typically cause fever, rash, and distributed, being found in Europe, India, southeast Asia, arthralgia. The genome is a single-stranded nonsegmented Australia, and Africa. Close relatives of this virus, such as RNA molecule of + polarity; it is about 11,700 nucleotides in Ockelbo virus in Europe (8) and Babanki virus in Africa, length. Several alphavirus genomes have been sequenced in cause disease in humans characterized by fever, rash, and whole or in part, and these sequences demonstrate that alpha- arthritis. Chikungunya and O'Nyong-nyong viruses have viruses have descended from a common ancestor by divergent caused large epidemics in Africa of a dengue-like disease also evolution. We have now obtained the sequence of the 3'- characterized by fever, rash, and arthralgia. Ross River virus terminal 4288 nucleotides of the RNA of the New World is the causative agent of epidemic polyarthritis in Australia Alphavirus western equine encephalitis virus (WEEV).
    [Show full text]
  • Recombinant Influenza H9N2 Virus with a Substitution of H3
    www.nature.com/scientificreports OPEN Recombinant infuenza H9N2 virus with a substitution of H3 hemagglutinin transmembrane Received: 4 September 2017 Accepted: 30 November 2017 domain showed enhanced Published: xx xx xxxx immunogenicity in mice and chicken Yun Zhang , Ying Wei, Kang Liu, Mengjiao Huang, Ran Li, Yang Wang, Qiliang Liu, Jing Zheng, Chunyi Xue & Yongchang Cao In recent years, avian infuenza virus H9N2 undergoing antigenic drift represents a threat to poultry farming as well as public health. Current vaccines are restricted to inactivated vaccine strains and their related variants. In this study, a recombinant H9N2 (H9N2-TM) strain with a replaced H3 hemagglutinin (HA) transmembrane (TM) domain was generated. Virus assembly and viral protein composition were not afected by the transmembrane domain replacement. Further, the recombinant TM-replaced H9N2-TM virus could provide better inter-clade protection in both mice and chickens against H9N2, suggesting that the H3-TM-replacement could be considered as a strategy to develop efcient subtype- specifc H9N2 infuenza vaccines. H9N2 avian infuenza virus was frst isolated in turkeys in 19661. Since then, it became prevalent in poultry farming worldwide, resulting in egg production reduction and high mortality when co-infected with other path- ogens2,3. Also, it could cross host-species barrier and cause human infections as reported in China4,5. Tough it is not highly pathogenic as H5N1, researches revealed that it could re-assort with multiple other infuenza subtypes and thus be “gene donor” for H5N1 and H7N9 viruses6–8. Terefore, control of the H9N2 infuenza virus is of great concern. Vaccination utilizing vaccine strains and their relevant variants is the main strategy to control H9N2 pan- demics in the poultry industry of China.
    [Show full text]
  • JOURNAL of VIROLOGY VOLUME 63 * DECEMBER 1989 NUMBER 12 Arnold J
    JOURNAL OF VIROLOGY VOLUME 63 * DECEMBER 1989 NUMBER 12 Arnold J. Levine, Editor in Chief Robert A. Lamb Editor (1992) (1994) Northwestern University Princeton University Stephen P. Goff, Editor (1994) Evanston, Ill. Princeton, N.J. Columbia University Michael B. A. Oldstone, Editor (1993) Joan S. Brugge, Editor (1994) New York, N. Y. Scripps Clinic & Research University ofPennsylvania Peter M. Howley, Editor (1993) Foundation Philadelphia, Pa. National Cancer Institute La Jolla, Calif. Bernard N. Fields, Editor (1993) Bethesda, Md. Thomas E. Shenk, Editor (1994) Harvard Medical School Princeton University Boston, Mass. Princeton, N.J. EDITORIAL BOARD Rafi Ahmed (1991) Emanuel A. Faust (1990) Robert A. Lazzarini (1990) William S. Robinson (1989) James Alwine (1991) S. Jane Flint (1990) Jonathan Leis (1991) Bernard Roizman (1991) David Baltimore (1990) William R. Folk (1991) Myron Levine (1991) John K. Rose (1991) Amiya K. Banerjee (1990) Donald Ganem (1991) Arthur D. Levinson (1991) Naomi Rosenberg (1989) Tamar Ben-Porat (1990) Costa Georgopolous (1989) Maxine Linial (1991) Roland R. Rueckert (1991) Kenneth I. Berns (1991) Walter Gerhard (1989) David M. Livingston (1991) Norman P. Salzman (1990) Joseph B. Bolen (1991) Mary-Jane Gething (1990) Douglas R. Lowy (1989) Charles E. Samuel (1989) Michael Botchan (1989) Joseph C. Glorioso (1989) Malcohm Martin (1989) Priscilla A. Schaffer (1990) Thomas J. Braciale (1991) Larry M. Gold (1991) Robert Martin (1990) Sondra Schlesinger (1989) Dalius J. Briedis (1991) Hidesaburo Hanafusa (1989) Warren Masker (1990) Robert J. Schneider (1991) Michael J. Buchmeier (1989) John Hassell (1989) James McDougall (1990) Bart Sefton (1991) Robert Callahan (1991) William S. Hayward (1990) Thomas Merigan (1989) Bert L.
    [Show full text]
  • Sheep and Goats
    Sheep Pox and Importance Sheep pox and goat pox are contagious viral diseases of small ruminants. These Goat Pox diseases may be mild in indigenous breeds living in endemic areas, but they are often fatal in newly introduced animals. Economic losses result from decreased milk Capripoxvirus Infections, production, damage to the quality of hides and wool, and other production losses. Sheep Capripox pox and goat pox can limit trade, inhibit the development of intensive livestock production, and prevent new breeds of sheep or goats from being imported into endemic regions. Last Updated: August 2017 Etiology Sheep pox and goat pox result from infection by sheeppox virus (SPPV) or goatpox virus (GTPV), closely related members of the genus Capripoxvirus in the family Poxviridae. SPPV is mainly thought to affect sheep and GTPV primarily to affect goats, but some isolates can cause mild to serious disease in both species. SPPV and GTPV can be distinguished by a few specialized genetic tests. These tests are not widely available, and isolates are typically assigned to SPPV or GTPV based on the animal species affected during an outbreak. However, some studies suggest that this assumption is not always valid. SPPV and GTPV are closely related to lumpy skin disease virus (LSDV), a capripoxvirus that affects cattle. These three viruses cannot be distinguished by many diagnostic tests, including all tests that detect antibodies or viral antigens. Species Affected SPPV and GTPV only appear to affect sheep and goats. It seems plausible that these viruses could cause disease in wild relatives of small ruminants, but there are no reports of any infections in free-living or captive wild species.
    [Show full text]
  • Evidence to Support Safe Return to Clinical Practice by Oral Health Professionals in Canada During the COVID-19 Pandemic: a Repo
    Evidence to support safe return to clinical practice by oral health professionals in Canada during the COVID-19 pandemic: A report prepared for the Office of the Chief Dental Officer of Canada. November 2020 update This evidence synthesis was prepared for the Office of the Chief Dental Officer, based on a comprehensive review under contract by the following: Paul Allison, Faculty of Dentistry, McGill University Raphael Freitas de Souza, Faculty of Dentistry, McGill University Lilian Aboud, Faculty of Dentistry, McGill University Martin Morris, Library, McGill University November 30th, 2020 1 Contents Page Introduction 3 Project goal and specific objectives 3 Methods used to identify and include relevant literature 4 Report structure 5 Summary of update report 5 Report results a) Which patients are at greater risk of the consequences of COVID-19 and so 7 consideration should be given to delaying elective in-person oral health care? b) What are the signs and symptoms of COVID-19 that oral health professionals 9 should screen for prior to providing in-person health care? c) What evidence exists to support patient scheduling, waiting and other non- treatment management measures for in-person oral health care? 10 d) What evidence exists to support the use of various forms of personal protective equipment (PPE) while providing in-person oral health care? 13 e) What evidence exists to support the decontamination and re-use of PPE? 15 f) What evidence exists concerning the provision of aerosol-generating 16 procedures (AGP) as part of in-person
    [Show full text]
  • HIV Virology and Pathogenetic Mechanisms of Infection: a Brief Overview I Ence Exper
    ANN IST SUPER SANITÀ 2010 | VOL. 46, NO. 1: 5-14 5 DOI: 10.4415/ANN_10_01_02 HIV virology and pathogenetic mechanisms ENCE of infection: a brief overview I EXPER (a) (b) (b) (a) L Emanuele Fanales-Belasio , Mariangela Raimondo , Barbara Suligoi and Stefano Buttò A C (a)Centro Nazionale AIDS, Istituto Superiore di Sanità, Rome, Italy I N (b)Centro Operativo AIDS, Dipartimento di Malattie Infettive, Parassitarie ed Immunomediate, I CL Istituto Superiore di Sanità, Rome, Italy TO NG I Summary. Studies on HIV virology and pathogenesis address the complex mechanisms that result TEST in the HIV infection of the cell and destruction of the immune system. These studies are focused L on both the structure and the replication characteristics of HIV and on the interaction of the A M virus with the host. Continuous updating of knowledge on structure, variability and replication I N of HIV, as well as the characteristics of the host immune response, are essential to refine virologi- A cal and immunological mechanisms associated with the viral infection and allow us to identify key molecules in the virus life cycle that can be important for the design of new diagnostic assays FROM and specific antiviral drugs and vaccines. In this article we review the characteristics of molecular structure, replication and pathogenesis of HIV, with a particular focus on those aspects that are RCH important for the design of diagnostic assays. A Key words: HIV, virus replication, antigenic variation, virulence. ESE R Riassunto (La virologia dell’HIV e i meccanismi patogenetici dell’infezione: una breve panoramica). Gli studi sulla virologia e la patogenesi dell’HIV sono importanti per comprendere i complessi meccanismi che regolano l’infezione della cellula da parte del virus e la distruzione del sistema immunitario.
    [Show full text]
  • View of the Manuscript
    Virology Journal BioMed Central Research Open Access Vaccinia virus lacking the deoxyuridine triphosphatase gene (F2L) replicates well in vitro and in vivo, but is hypersensitive to the antiviral drug (N)-methanocarbathymidine Mark N Prichard*1, Earl R Kern1, Debra C Quenelle1, Kathy A Keith1, Richard W Moyer2 and Peter C Turner2 Address: 1Department of Pediatrics, University of Alabama School of Medicine, Birmingham, AL 35233, USA and 2Department of Molecular Genetics and Microbiology, University of Florida College of Medicine, Gainesville, FL 32610, USA Email: Mark N Prichard* - [email protected]; Earl R Kern - [email protected]; Debra C Quenelle - [email protected]; Kathy A Keith - [email protected]; Richard W Moyer - [email protected]; Peter C Turner - [email protected] * Corresponding author Published: 5 March 2008 Received: 24 January 2008 Accepted: 5 March 2008 Virology Journal 2008, 5:39 doi:10.1186/1743-422X-5-39 This article is available from: http://www.virologyj.com/content/5/1/39 © 2008 Prichard et al; licensee BioMed Central Ltd. This is an Open Access article distributed under the terms of the Creative Commons Attribution License (http://creativecommons.org/licenses/by/2.0), which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited. Abstract Background: The vaccinia virus (VV) F2L gene encodes a functional deoxyuridine triphosphatase (dUTPase) that catalyzes the conversion of dUTP to dUMP and is thought to minimize the incorporation of deoxyuridine residues into the viral genome. Previous studies with with a complex, multigene deletion in this virus suggested that the gene was not required for viral replication, but the impact of deleting this gene alone has not been determined in vitro or in vivo.
    [Show full text]
  • REVIEW Viral Vectors for Gene Delivery and Gene Therapy Within the Endocrine System
    103 REVIEW Viral vectors for gene delivery and gene therapy within the endocrine system D Stone, A David, F Bolognani, P R Lowenstein and M G Castro Molecular Medicine and Gene Therapy Unit, Room 1.302, Stopford Building, School of Medicine, University of Manchester, Oxford Road, Manchester M13 9PT, UK (Requests for offprints should be addressed to M G Castro; Email: [email protected]) (F Bolognani is now at INIBIOLP-Histology B, Faculty of Medicine, National University of La Plata, Argentina) Abstract The transfer of genetic material into endocrine cells and use in gene transfer and gene therapy applications. As differ- tissues, both in vitro and in vivo, has been identified as critical ent viral vector systems have their own unique advantages for the study of endocrine mechanisms and the future treat- and disadvantages, they each have applications for which ment of endocrine disorders. Classical methods of gene they are best suited. This review will discuss viral vector transfer, such as transfection, are inefficient and limited systems that have been used for gene transfer into the mainly to delivery into actively proliferating cells in vitro. endocrine system, and recent developments in viral vector The development of viral vector gene delivery systems is technology that may improve their use for endocrine beginning to circumvent these initial setbacks. Several kinds applications – chimeric vectors, viral vector targeting and of viruses, including retrovirus, adenovirus, adeno-associated transcriptional regulation of transgene expression. virus, and herpes simplex virus, have been manipulated for Journal of Endocrinology (2000) 164, 103–118 Introduction ing of transgenes within mammalian cells is an area of rapid development.
    [Show full text]