View of the Manuscript
Total Page:16
File Type:pdf, Size:1020Kb
Load more
Recommended publications
-
Direct Agroinoculation of Maize Seedlings by Injection with Recombinant Foxtail Mosaic Virus and Sugarcane Mosaic Virus Infectious Clones
Direct Agroinoculation of Maize Seedlings by Injection with Recombinant Foxtail Mosaic Virus and Sugarcane Mosaic Virus Infectious Clones Bliss M. Beernink*,1, Katerina L. Holan*,1, Ryan R. Lappe1, Steven A. Whitham1 1 Department of Plant Pathology and Microbiology, Iowa State University * These authors contributed equally Corresponding Author Abstract Steven A. Whitham [email protected] Agrobacterium-based inoculation approaches are widely used for introducing viral vectors into plant tissues. This study details a protocol for the injection of maize Citation seedlings near meristematic tissue with Agrobacterium carrying a viral vector. Beernink, B.M., Holan, K.L., Lappe, R.R., Recombinant foxtail mosaic virus (FoMV) clones engineered for gene silencing and Whitham, S.A. Direct Agroinoculation of Maize Seedlings by Injection with gene expression were used to optimize this method, and its use was expanded Recombinant Foxtail Mosaic Virus and to include a recombinant sugarcane mosaic virus (SCMV) engineered for gene Sugarcane Mosaic Virus Infectious Clones. J. Vis. Exp. (168), e62277, expression. Gene fragments or coding sequences of interest are inserted into a doi:10.3791/62277 (2021). modified, infectious viral genome that has been cloned into the binary T-DNA plasmid vector pCAMBIA1380. The resulting plasmid constructs are transformed into Date Published Agrobacterium tumefaciens strain GV3101. Maize seedlings as young as 4 days February 27, 2021 old can be injected near the coleoptilar node with bacteria resuspended in MgSO4 DOI -
Recombinant and Chimeric Viruses
Recombinant and chimeric viruses: Evaluation of risks associated with changes in tropism Ben P.H. Peeters Animal Sciences Group, Wageningen University and Research Centre, Division of Infectious Diseases, P.O. Box 65, 8200 AB Lelystad, The Netherlands. May 2005 This report represents the personal opinion of the author. The interpretation of the data presented in this report is the sole responsibility of the author and does not necessarily represent the opinion of COGEM or the Animal Sciences Group. Dit rapport is op persoonlijke titel door de auteur samengesteld. De interpretatie van de gepresenteerde gegevens komt geheel voor rekening van de auteur en representeert niet de mening van de COGEM, noch die van de Animal Sciences Group. Advisory Committee Prof. dr. R.C. Hoeben (Chairman) Leiden University Medical Centre Dr. D. van Zaane Wageningen University and Research Centre Dr. C. van Maanen Animal Health Service Drs. D. Louz Bureau Genetically Modified Organisms Ing. A.M.P van Beurden Commission on Genetic Modification Recombinant and chimeric viruses 2 INHOUDSOPGAVE RECOMBINANT AND CHIMERIC VIRUSES: EVALUATION OF RISKS ASSOCIATED WITH CHANGES IN TROPISM Executive summary............................................................................................................................... 5 Introduction............................................................................................................................................ 7 1. Genetic modification of viruses .................................................................................................9 -
Virus Goes Viral: an Educational Kit for Virology Classes
Souza et al. Virology Journal (2020) 17:13 https://doi.org/10.1186/s12985-020-1291-9 RESEARCH Open Access Virus goes viral: an educational kit for virology classes Gabriel Augusto Pires de Souza1†, Victória Fulgêncio Queiroz1†, Maurício Teixeira Lima1†, Erik Vinicius de Sousa Reis1, Luiz Felipe Leomil Coelho2 and Jônatas Santos Abrahão1* Abstract Background: Viruses are the most numerous entities on Earth and have also been central to many episodes in the history of humankind. As the study of viruses progresses further and further, there are several limitations in transferring this knowledge to undergraduate and high school students. This deficiency is due to the difficulty in designing hands-on lessons that allow students to better absorb content, given limited financial resources and facilities, as well as the difficulty of exploiting viral particles, due to their small dimensions. The development of tools for teaching virology is important to encourage educators to expand on the covered topics and connect them to recent findings. Discoveries, such as giant DNA viruses, have provided an opportunity to explore aspects of viral particles in ways never seen before. Coupling these novel findings with techniques already explored by classical virology, including visualization of cytopathic effects on permissive cells, may represent a new way for teaching virology. This work aimed to develop a slide microscope kit that explores giant virus particles and some aspects of animal virus interaction with cell lines, with the goal of providing an innovative approach to virology teaching. Methods: Slides were produced by staining, with crystal violet, purified giant viruses and BSC-40 and Vero cells infected with viruses of the genera Orthopoxvirus, Flavivirus, and Alphavirus. -
Virology Journal Biomed Central
Virology Journal BioMed Central Research Open Access Inhibition of Henipavirus fusion and infection by heptad-derived peptides of the Nipah virus fusion glycoprotein Katharine N Bossart†2, Bruce A Mungall†1, Gary Crameri1, Lin-Fa Wang1, Bryan T Eaton1 and Christopher C Broder*2 Address: 1CSIRO Livestock Industries, Australian Animal Health Laboratory, Geelong, Victoria 3220, Australia and 2Department of Microbiology and Immunology, Uniformed Services University, Bethesda, MD 20814, USA Email: Katharine N Bossart - [email protected]; Bruce A Mungall - [email protected]; Gary Crameri - [email protected]; Lin-Fa Wang - [email protected]; Bryan T Eaton - [email protected]; Christopher C Broder* - [email protected] * Corresponding author †Equal contributors Published: 18 July 2005 Received: 24 May 2005 Accepted: 18 July 2005 Virology Journal 2005, 2:57 doi:10.1186/1743-422X-2-57 This article is available from: http://www.virologyj.com/content/2/1/57 © 2005 Bossart et al; licensee BioMed Central Ltd. This is an Open Access article distributed under the terms of the Creative Commons Attribution License (http://creativecommons.org/licenses/by/2.0), which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited. ParamyxovirusHendra virusNipah virusenvelope glycoproteinfusioninfectioninhibitionantiviral therapies Abstract Background: The recent emergence of four new members of the paramyxovirus family has heightened the awareness of and re-energized research on new and emerging diseases. In particular, the high mortality and person to person transmission associated with the most recent Nipah virus outbreaks, as well as the very recent re-emergence of Hendra virus, has confirmed the importance of developing effective therapeutic interventions. -
View Curriculum Vitae
Curriculum Vitae Lu, Yuanan YUANAN LU Curriculum Vitae Addresses University of Hawaii Environmental Health Laboratory Office of Public Health Studies 1960 East West Road, Biomed D104J Honolulu, Hawaii 96822 Telephone (808) 956-2702 /(808) 384-8160 (cell) Fax (808) 956-5818 E-Mail [email protected] Education University of California at Los Angeles Post doc. 1995-96 Molecular Virology University of Hawaii at Manoa (UHM) Post doc. 1993-94 Animal Virology University of Hawaii at Manoa Ph.D. 1992 Microbiology Oregon State University M.S. 1988 Microbiology Huazhong Agricultural University B.S. 1982 Fisheries Positions 2010- Chair of International Exchange Program, Office of Public Health Studies, UHM 2010- Graduate Faculty Member of Departments of Molecular Biosciences and Bioengineering, UHM 2008- Professor and Director, Environmental Health Laboratory, Office of Public Health Studies, UHM 05-07 Associate Professor and Director, Environmental Health Laboratory, Department of Public Health Sciences, UHM 03-05 Associate Researcher, Pacific Biomedical Research Center, University of Hawaii 2003- Graduate Faculty Member of Departments of Cell and Molecular Biology, John A. Burns School of Medicine, UHM 2003- Graduate Faculty Member of Departments of Tropic Medicine, Medical Microbiology and Pharmacology, John A. Burns School of Medicine, UHM 2002- Founding Member of the Division of Neurosciences, John A. Burns School of Medicine, UHM 1999- Graduate Faculty Member of Department of Microbiology, UHM 98-03 Assistant Researcher, Pacific Biomedical Research -
View Policy Viral Infectivity
Virology Journal BioMed Central Editorial Open Access Virology on the Internet: the time is right for a new journal Robert F Garry* Address: Department of Microbiology and Immunology Tulane University School of Medicine New Orleans, Louisiana USA Email: Robert F Garry* - [email protected] * Corresponding author Published: 26 August 2004 Received: 31 July 2004 Accepted: 26 August 2004 Virology Journal 2004, 1:1 doi:10.1186/1743-422X-1-1 This article is available from: http://www.virologyj.com/content/1/1/1 © 2004 Garry; licensee BioMed Central Ltd. This is an open-access article distributed under the terms of the Creative Commons Attribution License (http://creativecommons.org/licenses/by/2.0), which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited. Abstract Virology Journal is an exclusively on-line, Open Access journal devoted to the presentation of high- quality original research concerning human, animal, plant, insect bacterial, and fungal viruses. Virology Journal will establish a strategic alternative to the traditional virology communication process. The outbreaks of SARS coronavirus and West Nile virus Open Access (WNV), and the troubling increase of poliovirus infec- Virology Journal's Open Access policy changes the way in tions in Africa, are but a few recent examples of the unpre- which articles in virology can be published [1]. First, all dictable and ever-changing topography of the field of articles are freely and universally accessible online as soon virology. Previously unknown viruses, such as the SARS as they are published, so an author's work can be read by coronavirus, may emerge at anytime, anywhere in the anyone at no cost. -
Western Equine Encephalitis Virus Is a Recombinant Virus (RNA Recombination/Alphavirus/Evolution of RNA Viruses) CHANG S
Proc. Natl. Acad. Sci. USA Vol. 85, pp. 5997-6001, August 1988 Evolution Western equine encephalitis virus is a recombinant virus (RNA recombination/Alphavirus/evolution of RNA viruses) CHANG S. HAHN, SHLOMO LUSTIG*, ELLEN G. STRAUSS, AND JAMES H. STRAUSSt Division of Biology, 156-29, California Institute of Technology, Pasadena, CA 91125 Communicated by James Bonner, April 14, 1988 ABSTRACT The alphaviruses are a group of 26 mosquito- virus; O'Nyong-nyong virus; and Ross River virus. Sindbis borne viruses that cause a variety of human diseases. Many of and Semliki Forest viruses have been intensively studied as the New World alphaviruses cause encephalitis, whereas the models for alphavirus replication (7). Sindbis virus is widely Old World viruses more typically cause fever, rash, and distributed, being found in Europe, India, southeast Asia, arthralgia. The genome is a single-stranded nonsegmented Australia, and Africa. Close relatives of this virus, such as RNA molecule of + polarity; it is about 11,700 nucleotides in Ockelbo virus in Europe (8) and Babanki virus in Africa, length. Several alphavirus genomes have been sequenced in cause disease in humans characterized by fever, rash, and whole or in part, and these sequences demonstrate that alpha- arthritis. Chikungunya and O'Nyong-nyong viruses have viruses have descended from a common ancestor by divergent caused large epidemics in Africa of a dengue-like disease also evolution. We have now obtained the sequence of the 3'- characterized by fever, rash, and arthralgia. Ross River virus terminal 4288 nucleotides of the RNA of the New World is the causative agent of epidemic polyarthritis in Australia Alphavirus western equine encephalitis virus (WEEV). -
View of "Bird Flu: a Virus of Our Own Hatching" by Michael Greger Chengfeng Qin* and Ede Qin
Virology Journal BioMed Central Book report Open Access Review of "Bird Flu: A Virus of Our Own Hatching" by Michael Greger Chengfeng Qin* and Ede Qin Address: State Key Laboratory of Pathogen and Biosecurity, Institute of Microbiology and Epidemiology, Beijing 100071, China Email: Chengfeng Qin* - [email protected]; Ede Qin - [email protected] * Corresponding author Published: 30 April 2007 Received: 2 February 2007 Accepted: 30 April 2007 Virology Journal 2007, 4:38 doi:10.1186/1743-422X-4-38 This article is available from: http://www.virologyj.com/content/4/1/38 © 2007 Qin and Qin; licensee BioMed Central Ltd. This is an Open Access article distributed under the terms of the Creative Commons Attribution License (http://creativecommons.org/licenses/by/2.0), which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited. Book details behavior can cause new plagues, changes in human Michael Greger: Bird Flu: A Virus of Our Own Hatching USA: behavior may prevent them in the future". Lantern Books; 2006:465. ISBN 1590560981 Review Yes, we can change. In the last sections of the book, Greger Due to my responsibility as member of advisory commit- carefully details how to protect ourselves in the very likely tee on pandemic influenza, I regard any new publication event that a bird flu pandemic begins to sweep the world on bird flu with special enthusiasm. A book that recently and how to prevent future pandemics. Dr. Greger's simple caught my eye was one by Michael Greger titled Bird Flu: and practical suggestions are invaluable for both nation A Virus of Our Own Hatching. -
Isolation and Complete Genomic Characterization of H1N1 Subtype
Liu et al. Virology Journal 2011, 8:129 http://www.virologyj.com/content/8/1/129 RESEARCH Open Access Isolation and complete genomic characterization of H1N1 subtype swine influenza viruses in southern China through the 2009 pandemic Yizhi Liu1†, Jun Ji1†, Qingmei Xie1*, Jing Wang1, Huiqin Shang1, Cuiying Chen1, Feng Chen1,2, Chunyi Xue3, Yongchang Cao3, Jingyun Ma1, Yingzuo Bi1 Abstract Background: The swine influenza (SI) is an infectious disease of swine and human. The novel swine-origin influenza A (H1N1) that emerged from April 2009 in Mexico spread rapidly and caused a human pandemic globally. To determine whether the tremendous virus had existed in or transmitted to pigs in southern China, eight H1N1 influenza strains were identified from pigs of Guangdong province during 2008-2009. Results: Based on the homology and phylogenetic analyses of the nucleotide sequences of each gene segments, the isolates were confirmed to belong to the classical SI group, with HA, NP and NS most similar to 2009 human- like H1N1 influenza virus lineages. All of the eight strains were low pathogenic influenza viruses, had the same host range, and not sensitive to class of antiviral drugs. Conclusions: This study provides the evidence that there is no 2009 H1N1-like virus emerged in southern China, but the importance of swine influenza virus surveillance in China should be given a high priority. Background circulating in the swine population throughout the Swine influenza (SI) is an acute respiratory disease world currently [4,5]. caused by influenza A virus, a member of the Orthomyx- Pigs have the susceptibility of infecting avian and oviridae family. -
Recombinant Influenza H9N2 Virus with a Substitution of H3
www.nature.com/scientificreports OPEN Recombinant infuenza H9N2 virus with a substitution of H3 hemagglutinin transmembrane Received: 4 September 2017 Accepted: 30 November 2017 domain showed enhanced Published: xx xx xxxx immunogenicity in mice and chicken Yun Zhang , Ying Wei, Kang Liu, Mengjiao Huang, Ran Li, Yang Wang, Qiliang Liu, Jing Zheng, Chunyi Xue & Yongchang Cao In recent years, avian infuenza virus H9N2 undergoing antigenic drift represents a threat to poultry farming as well as public health. Current vaccines are restricted to inactivated vaccine strains and their related variants. In this study, a recombinant H9N2 (H9N2-TM) strain with a replaced H3 hemagglutinin (HA) transmembrane (TM) domain was generated. Virus assembly and viral protein composition were not afected by the transmembrane domain replacement. Further, the recombinant TM-replaced H9N2-TM virus could provide better inter-clade protection in both mice and chickens against H9N2, suggesting that the H3-TM-replacement could be considered as a strategy to develop efcient subtype- specifc H9N2 infuenza vaccines. H9N2 avian infuenza virus was frst isolated in turkeys in 19661. Since then, it became prevalent in poultry farming worldwide, resulting in egg production reduction and high mortality when co-infected with other path- ogens2,3. Also, it could cross host-species barrier and cause human infections as reported in China4,5. Tough it is not highly pathogenic as H5N1, researches revealed that it could re-assort with multiple other infuenza subtypes and thus be “gene donor” for H5N1 and H7N9 viruses6–8. Terefore, control of the H9N2 infuenza virus is of great concern. Vaccination utilizing vaccine strains and their relevant variants is the main strategy to control H9N2 pan- demics in the poultry industry of China. -
Virology Journal Biomed Central
Virology Journal BioMed Central Short report Open Access Genomic presence of recombinant porcine endogenous retrovirus in transmitting miniature swine Stanley I Martin, Robert Wilkinson and Jay A Fishman* Address: Infectious Disease Division, Massachusetts General Hospital, Boston, MA 02114, USA Email: Stanley I Martin - [email protected]; Robert Wilkinson - [email protected]; Jay A Fishman* - [email protected] * Corresponding author Published: 02 November 2006 Received: 22 June 2006 Accepted: 02 November 2006 Virology Journal 2006, 3:91 doi:10.1186/1743-422X-3-91 This article is available from: http://www.virologyj.com/content/3/1/91 © 2006 Martin et al; licensee BioMed Central Ltd. This is an Open Access article distributed under the terms of the Creative Commons Attribution License (http://creativecommons.org/licenses/by/2.0), which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited. Abstract The replication of porcine endogenous retrovirus (PERV) in human cell lines suggests a potential infectious risk in xenotransplantation. PERV isolated from human cells following cocultivation with porcine peripheral blood mononuclear cells is a recombinant of PERV-A and PERV-C. We describe two different recombinant PERV-AC sequences in the cellular DNA of some transmitting miniature swine. This is the first evidence of PERV-AC recombinant virus in porcine genomic DNA that may have resulted from autoinfection following exogenous viral recombination. Infectious risk in xenotransplantation will be defined by the activity of PERV loci in vivo. Background been detected previously in the genomes of transmitting Xenotransplantation using inbred miniature swine is a swine [5,10]. -
Journal of General and Molecular Virology
OPEN ACCESS Journal of General and Molecular Virology December 2018 ISSN 2141-6648 DOI: 10.5897/JGMV www.academicjournals.org About JGMV Journal of General and Molecular Virology (JGMV) is a peer reviewed journal. The journal is published per article and covers all areas of the subject such as: Isolation of chikungunya virus from non-human primates, Functional analysis of Lassa virus glycoprotein from a newly identified Lassa virus strain for possible use as vaccine using computational methods, as well as Molecular approaches towards analyzing the viruses infecting maize. JGMV welcomes the submission of manuscripts. Manuscripts should be submitted online via the Academic Journals Manuscript Management System. Indexing The Journal of General and Molecular Virology is indexed in Chemical Abstracts (CAS Source Index) and Dimensions Database Open Access Policy Open Access is a publication model that enables the dissemination of research articles to the global community without restriction through the internet. All articles published under open access can be accessed by anyone with internet connection. The Journal of General and Molecular Virology is an Open Access journal. Abstracts and full texts of all articles published in this journal are freely accessible to everyone immediately after publication without any form of restriction. Article License All articles published by Journal of General and Molecular Virology are licensed under the Creative Commons Attribution 4.0 International License. This permits anyone to copy, redistribute, remix,