Western Equine Encephalitis Virus Is a Recombinant Virus (RNA Recombination/Alphavirus/Evolution of RNA Viruses) CHANG S

Total Page:16

File Type:pdf, Size:1020Kb

Western Equine Encephalitis Virus Is a Recombinant Virus (RNA Recombination/Alphavirus/Evolution of RNA Viruses) CHANG S Proc. Natl. Acad. Sci. USA Vol. 85, pp. 5997-6001, August 1988 Evolution Western equine encephalitis virus is a recombinant virus (RNA recombination/Alphavirus/evolution of RNA viruses) CHANG S. HAHN, SHLOMO LUSTIG*, ELLEN G. STRAUSS, AND JAMES H. STRAUSSt Division of Biology, 156-29, California Institute of Technology, Pasadena, CA 91125 Communicated by James Bonner, April 14, 1988 ABSTRACT The alphaviruses are a group of 26 mosquito- virus; O'Nyong-nyong virus; and Ross River virus. Sindbis borne viruses that cause a variety of human diseases. Many of and Semliki Forest viruses have been intensively studied as the New World alphaviruses cause encephalitis, whereas the models for alphavirus replication (7). Sindbis virus is widely Old World viruses more typically cause fever, rash, and distributed, being found in Europe, India, southeast Asia, arthralgia. The genome is a single-stranded nonsegmented Australia, and Africa. Close relatives of this virus, such as RNA molecule of + polarity; it is about 11,700 nucleotides in Ockelbo virus in Europe (8) and Babanki virus in Africa, length. Several alphavirus genomes have been sequenced in cause disease in humans characterized by fever, rash, and whole or in part, and these sequences demonstrate that alpha- arthritis. Chikungunya and O'Nyong-nyong viruses have viruses have descended from a common ancestor by divergent caused large epidemics in Africa of a dengue-like disease also evolution. We have now obtained the sequence of the 3'- characterized by fever, rash, and arthralgia. Ross River virus terminal 4288 nucleotides of the RNA of the New World is the causative agent of epidemic polyarthritis in Australia Alphavirus western equine encephalitis virus (WEEV). Com- and the South Pacific. parisons of the nucleotide and amino acid sequences of WEEV Complete or partial RNA sequences have been obtained for with those of other alphaviruses clearly show that WEEV is Sindbis virus (9), Semliki Forest virus (10-12), Ross River recombinant. The sequences of the capsid protein and of the virus (13), EEEV (14), and VEEV (15). Comparison of these (untranslated) 3'-terminal 80 nucleotides of WEEV are closely nucleotide sequences and their encoded amino acid sequences related to the corresponding sequences of the New World has demonstrated that the alphaviruses are related by linear Alphavirus eastern equine encephalitis virus (EEEV), whereas descent from a common ancestor (7). The relationships found the sequences of glycoproteins E2 and El of WEEV are more are compatible, for the most part, with those derived from closely related to those of an Old World virus, Sindbis virus. studies of serological cross-reactivity, which depends only Thus, WEEV appears to have arisen by recombination between upon antigenic epitopes in the structural proteins. In serolog- an EEEV-like virus and a Sindbis-like virus to give rise to a new ical studies, however, WEEV has always been something of a virus with the encephalogenic properties of EEEV but the puzzle. It is a New World virus that often causes encephalitis, antigenic specificity of Sindbis virus. There has been specula- but serologically it is most closely related to Sindbis virus, an tion that recombination might play an important role in the Old World alphavirus not normally associated with encepha- evolution of RNA viruses. The current finding that a wide- litis. To explore the relationship of WEEV to other alphavi- spread and successful RNA virus is recombinant provides ruses, we have obtained the sequence of the 3'-terminal 4288 support for such an hypothesis. nucleotides of the WEEV genomet and found that WEEV appears to have arisen by recombination between an EEEV- The 26 members of the Alphavirus genus of the family like virus and a Sindbis-like virus. Togaviridae are mosquito-borne viruses that form an impor- tant group of disease agents (1-3). The New World alphavi- MATERIALS AND METHODS ruses include western equine encephalitis virus (WEEV) and Virus RNA Preparation. WEEV RNA [strain BFS1703, eastern equine encephalitis virus (EEEV), both of which are isolated from Cx. tarsalis in July 1953 in Kern County, capable ofcausing encephalitis in humans and causing severe California (16)] was obtained from Mark Stanley and James disease in horses. WEEV has a wide geographic distribution, Hardy (University of California, Berkeley). The virus had being found from western Canada to Mexico and, discontin- been passed twice by i.c. inoculation of suckling mice and uously, to Argentina. WEEV is transmitted in the western four times (including three plaque isolations) in VERO cells. United States by the mosquito Culex tarsalis; birds serve as For RNA preparation, virus grown in VERO cells was an important vertebrate reservoir. In the eastern United purified by pelleting onto a 30o sucrose cushion followed by States, WEEV is replaced by Highlands J virus (HJV), whose isopycnic banding in Nycodenz (Nyegaard, Oslo). After primary vector is Culiseta melanura. From serological stud- pelleting and dissociation in NaDodSO4, the RNA was ies (3, 4) and from limited sequencing studies (5, 6), WEEV extracted by phenol/chloroform treatment, precipitated with and HJV are known to be very closely related, and HJV can ethanol, purified on a discontinuous sucrose gradient, and be considered to be a strain of WEEV (2). In the eastern concentrated by ethanol precipitation. United States, the range of HJV overlaps that of EEEV, Cloning and Sequencing. Clones containing the 3'-terminal whose primary vector is also Cs. melanura. Other New 4288 nucleotides of WEEV RNA were obtained by using an World alphaviruses include Venezuelan equine encephalitis oligo(dT)-tailed vector as a primer as described (17). Clones virus (VEEV), found in Central and South America; Fort Morgan virus, found in Colorado; and Aura virus, found in Abbreviations: WEEV, western encephalitis virus; EEEV, eastern South America. encephalitis virus; VEEV, Venezuelan equine encephalitis virus; The Old World alphaviruses include Sindbis virus, the HJV, Highlands J virus. prototype alphavirus; Semliki Forest virus; Chikungunya *Present address: Israel Institute for Biological Research, P.O. Box 19, Ness-Ziona, 70450, Israel. tTo whom reprint requests should be addressed. The publication costs of this article were defrayed in part by page charge MThe sequence reported in this paper is being deposited in the payment. This article must therefore be hereby marked "advertisement" EMBL/GenBank data base (IntelliGenetics, Mountain View, CA, in accordance with 18 U.S.C. §1734 solely to indicate this fact. and Eur. Mol. Biol. Lab., Heidelberg) (accession no. J03854). 5997 Downloaded by guest on October 1, 2021 5998 Evolution: Hahn et al. Proc. Natl. Acad. Sci. USA 85 (1988) were sequenced by using the chemical sequencing method through the 3'-terminal untranslated sequence, which ends in (18, 19). a poly(A) tract. We have previously sequenced the amino termini of the RESULTS three structural proteins of the McMillan strain of WEEV (isolated in 1941 in Canada from the brain of a fatal human Partial Sequence of WEEV RNA. The translated sequence case) and thus established the start points of the structural of the 3-terminal 4170 nucleotides of the WEEV genome is proteins (21). Comparison of the amino acid sequence of the shown in Fig. 1. This sequence begins in the region encoding McMillan strain with that deduced here for the BFS1703 the carboxyl terminus of nonstructural protein 4, continues strain (isolated from mosquitos in 1953 in California) reveals through the junction region between the nonstructural and four amino acid differences in 142 amino acids for which structural proteins containing the start of the subgenomic comparison is possible (one in C, one in E2, and two in El). mRNA that is translated to give the structural proteins (20), However, reevaluation of the original data for the McMillan and progresses through the coding sequence of the three strain suggests that the apparent difference in the capsid structural proteins of the virus (a nucleocapsid protein, C, proteins may result from a misscall in the McMillan sequence and two envelope glycoproteins, E2 and El) and finally and that there are no differences between the capsid proteins I S R Y E I I L A G L I I T S L S T L A E S V K N F K S I R G N P I T L Y G * 39 UCCAGAUACGAGAUCAUACUGGCAGGCCUGAUCAUCACGUCCCUGUCCACGUUAGCCGAFAGCGUUAFGAACUUCAVGAGCAUAPGAGGGAACCCAVUCACCCUCUACGGCUGACCUAA 119 __ __. P -lF P Y _P O _L _N F P_ P_ V MY _P T N P M A Y R D P N P P R 27 120 AUAGGUGACGUAGUAGACACGCACCUACCCACCGCCAA*UG-UUU-CCA-UAC-CCUC-AG-CUG-AAC'UUU-CCA-CCA-GUU-UAC-CCUA-CA-AAU-CCG-AUG-GCUUACCGAGAUCCAAACCCUCCUAGG 239 28 C R W R P F R P P L A A O I E D L R R S I A N L T F K G R S PN P P P G P PP K 87 240 UGCCGCUGGAGGCCGUUUCGGCCCCCGCUGGCUGCUCAAAUCGAAGAUCUUAGGAGGUCGAUAGCCAACUUAACUUUCAAACAACGAUCACCUAAUCCGCCGCCAGGUCCACCGCCAAAG 359 a8 K K K S A P K P K P T O P K KK K OG A K K T K R K PK P G K R 0 R M C M K L E 107 380 AAGAAGAAGAGUGCUCCUAAGCCAAAACCUACUCAGCCUA^AAAGAAGAAGCAGCAAGCCAAGAAGACGAAACGCAAGCCUAAACCAGGGAAACGACAGCGUAUGUGUAUGAAGUUGGAG 479 108 S D K T F P I M L N G O V N G Y A C V V G G R L M K P L H V E G K I D N E 0 L A 147 480 UCGGACAAGACAUUUCCGAUCAUGCUGAACGGCCAAGUGAAUGGAUACGCUUGCGUUGUCGGAGGAAGGCUGAUGAAACCACUCCACGUUGAAGGAAAAAUCGAUAAUGAGCAAUUAGCG 599 148 A V K L K K A S M Y D L E Y G D V P 0 N M K S D T L 0 Y T S D K P P G F Y N W H 187 600 GCCGUG^AAUUGAAGAAGGCUAGCAUGUACGACUUGGAGUAUGGCGACGUUCCCCAGAAUAUGAAAUCAGACACGCUGCAGUACACCAGCGACAAACCACCGGGCUUUUACAACUGGCAC 719 188
Recommended publications
  • Direct Agroinoculation of Maize Seedlings by Injection with Recombinant Foxtail Mosaic Virus and Sugarcane Mosaic Virus Infectious Clones
    Direct Agroinoculation of Maize Seedlings by Injection with Recombinant Foxtail Mosaic Virus and Sugarcane Mosaic Virus Infectious Clones Bliss M. Beernink*,1, Katerina L. Holan*,1, Ryan R. Lappe1, Steven A. Whitham1 1 Department of Plant Pathology and Microbiology, Iowa State University * These authors contributed equally Corresponding Author Abstract Steven A. Whitham [email protected] Agrobacterium-based inoculation approaches are widely used for introducing viral vectors into plant tissues. This study details a protocol for the injection of maize Citation seedlings near meristematic tissue with Agrobacterium carrying a viral vector. Beernink, B.M., Holan, K.L., Lappe, R.R., Recombinant foxtail mosaic virus (FoMV) clones engineered for gene silencing and Whitham, S.A. Direct Agroinoculation of Maize Seedlings by Injection with gene expression were used to optimize this method, and its use was expanded Recombinant Foxtail Mosaic Virus and to include a recombinant sugarcane mosaic virus (SCMV) engineered for gene Sugarcane Mosaic Virus Infectious Clones. J. Vis. Exp. (168), e62277, expression. Gene fragments or coding sequences of interest are inserted into a doi:10.3791/62277 (2021). modified, infectious viral genome that has been cloned into the binary T-DNA plasmid vector pCAMBIA1380. The resulting plasmid constructs are transformed into Date Published Agrobacterium tumefaciens strain GV3101. Maize seedlings as young as 4 days February 27, 2021 old can be injected near the coleoptilar node with bacteria resuspended in MgSO4 DOI
    [Show full text]
  • Recombinant and Chimeric Viruses
    Recombinant and chimeric viruses: Evaluation of risks associated with changes in tropism Ben P.H. Peeters Animal Sciences Group, Wageningen University and Research Centre, Division of Infectious Diseases, P.O. Box 65, 8200 AB Lelystad, The Netherlands. May 2005 This report represents the personal opinion of the author. The interpretation of the data presented in this report is the sole responsibility of the author and does not necessarily represent the opinion of COGEM or the Animal Sciences Group. Dit rapport is op persoonlijke titel door de auteur samengesteld. De interpretatie van de gepresenteerde gegevens komt geheel voor rekening van de auteur en representeert niet de mening van de COGEM, noch die van de Animal Sciences Group. Advisory Committee Prof. dr. R.C. Hoeben (Chairman) Leiden University Medical Centre Dr. D. van Zaane Wageningen University and Research Centre Dr. C. van Maanen Animal Health Service Drs. D. Louz Bureau Genetically Modified Organisms Ing. A.M.P van Beurden Commission on Genetic Modification Recombinant and chimeric viruses 2 INHOUDSOPGAVE RECOMBINANT AND CHIMERIC VIRUSES: EVALUATION OF RISKS ASSOCIATED WITH CHANGES IN TROPISM Executive summary............................................................................................................................... 5 Introduction............................................................................................................................................ 7 1. Genetic modification of viruses .................................................................................................9
    [Show full text]
  • Investigating the Role of Host TTR-Rbps During SFV4 and MHV-68 Infection
    Investigating the role of host TTR-RBPs during SFV4 and MHV-68 infection Thesis submitted in accordance with the requirements of the University of Liverpool for the degree of Doctor in Philosophy by Jamie Casswell October 2019 Contents Figure Contents Page……………………………………………………………………………………7 Table Contents Page…………………………………………………………………………………….9 Acknowledgements……………………………………………………………………………………10 Abbreviations…………………………………………………………………………………………….11 Abstract……………………………………………………………………………………………………..17 1. Chapter 1 Introduction……………………………………………………………………………19 1.1 DNA and RNA viruses ............................................................................. 20 1.2 Taxonomy of eukaryotic viruses ............................................................. 21 1.3 Arboviruses ............................................................................................ 22 1.4 Togaviridae ............................................................................................ 22 1.4.1 Alphaviruses ............................................................................................................................. 23 1.4.1.1 Semliki Forest Virus ........................................................................................................... 25 1.4.1.2 Alphavirus virion structure and structural proteins ......................................................... 26 1.4.1.3 Alphavirus non-structural proteins ................................................................................... 29 1.4.1.4 Alphavirus genome organisation
    [Show full text]
  • Construção E Aplicação De Hmms De Perfil Para a Detecção E Classificação De Vírus
    UNIVERSIDADE DE SÃO PAULO PROGRAMA INTERUNIDADES DE PÓS-GRADUAÇÃO EM BIOINFORMÁTICA Construção e Aplicação de HMMs de Perfil para a Detecção e Classificação de Vírus Miriã Nunes Guimarães SÃO PAULO 2019 Construção e Aplicação de HMMs de Perfil para a Detecção e Classificação de Vírus Miriã Nunes Guimarães Dissertação apresentada à Universidade de São Paulo, como parte das exigências do Programa de Pós-Graduação Interunidades em Bioinformática, para obtenção do título de Mestre em Ciências. Área de Concentração: Bioinformática Orientador: Prof. Dr. Arthur Gruber SÃO PAULO 2019 “Na vida, não existe nada a temer, mas a entender.” Marie Curie Agradecimentos Ao Professor Arthur Gruber pela oportunidade desde o início como estagiária no laboratório, pela orientação neste período de aprendizado no mestrado e por fornecer um ambiente de trabalho favorável. À aluna de doutorado Liliane Santana Oliveira que aguentou todas as minhas amolações diárias no laboratório pelo Hangouts, por dúvidas que eram erros meus em comandos de execução, pela paciência, pela amizade, pela companhia nos bandejões da faculdade com cardápio glutenfree que nem sempre eram tão bons assim. À aluna de mestrado Irina Yuri Kawashima que estava comigo no laboratório diariamente, pelas várias discussões sobre o mundo dos vírus e de conhecimentos da bioinformática, pelas ferramentas para facilitar o andamento do projeto, por todas guloseimas glutenfree que seria impossível eu não agradecer pois tenho ciência que não vou encontrar outra amiga masterchef assim. À Coordenação de Aperfeiçoamento de Pessoal de Nível Superior - Brasil (CAPES) pelo financiamento durante estes 24 meses de mestrado. Aos meus pais pelo carinho e preocupação comigo durante estes 24 anos, pelo incentivo aos estudos e pelo apoio para eu me manter a uma distância de quase 400km de pura saudade.
    [Show full text]
  • Study of Chikungunya Virus Entry and Host Response to Infection Marie Cresson
    Study of chikungunya virus entry and host response to infection Marie Cresson To cite this version: Marie Cresson. Study of chikungunya virus entry and host response to infection. Virology. Uni- versité de Lyon; Institut Pasteur of Shanghai. Chinese Academy of Sciences, 2019. English. NNT : 2019LYSE1050. tel-03270900 HAL Id: tel-03270900 https://tel.archives-ouvertes.fr/tel-03270900 Submitted on 25 Jun 2021 HAL is a multi-disciplinary open access L’archive ouverte pluridisciplinaire HAL, est archive for the deposit and dissemination of sci- destinée au dépôt et à la diffusion de documents entific research documents, whether they are pub- scientifiques de niveau recherche, publiés ou non, lished or not. The documents may come from émanant des établissements d’enseignement et de teaching and research institutions in France or recherche français ou étrangers, des laboratoires abroad, or from public or private research centers. publics ou privés. N°d’ordre NNT : 2019LYSE1050 THESE de DOCTORAT DE L’UNIVERSITE DE LYON opérée au sein de l’Université Claude Bernard Lyon 1 Ecole Doctorale N° 341 – E2M2 Evolution, Ecosystèmes, Microbiologie, Modélisation Spécialité de doctorat : Biologie Discipline : Virologie Soutenue publiquement le 15/04/2019, par : Marie Cresson Study of chikungunya virus entry and host response to infection Devant le jury composé de : Choumet Valérie - Chargée de recherche - Institut Pasteur Paris Rapporteure Meng Guangxun - Professeur - Institut Pasteur Shanghai Rapporteur Lozach Pierre-Yves - Chargé de recherche - CHU d'Heidelberg Rapporteur Kretz Carole - Professeure - Université Claude Bernard Lyon 1 Examinatrice Roques Pierre - Directeur de recherche - CEA Fontenay-aux-Roses Examinateur Maisse-Paradisi Carine - Chargée de recherche - INRA Directrice de thèse Lavillette Dimitri - Professeur - Institut Pasteur Shanghai Co-directeur de thèse 2 UNIVERSITE CLAUDE BERNARD - LYON 1 Président de l’Université M.
    [Show full text]
  • Recombinant Influenza H9N2 Virus with a Substitution of H3
    www.nature.com/scientificreports OPEN Recombinant infuenza H9N2 virus with a substitution of H3 hemagglutinin transmembrane Received: 4 September 2017 Accepted: 30 November 2017 domain showed enhanced Published: xx xx xxxx immunogenicity in mice and chicken Yun Zhang , Ying Wei, Kang Liu, Mengjiao Huang, Ran Li, Yang Wang, Qiliang Liu, Jing Zheng, Chunyi Xue & Yongchang Cao In recent years, avian infuenza virus H9N2 undergoing antigenic drift represents a threat to poultry farming as well as public health. Current vaccines are restricted to inactivated vaccine strains and their related variants. In this study, a recombinant H9N2 (H9N2-TM) strain with a replaced H3 hemagglutinin (HA) transmembrane (TM) domain was generated. Virus assembly and viral protein composition were not afected by the transmembrane domain replacement. Further, the recombinant TM-replaced H9N2-TM virus could provide better inter-clade protection in both mice and chickens against H9N2, suggesting that the H3-TM-replacement could be considered as a strategy to develop efcient subtype- specifc H9N2 infuenza vaccines. H9N2 avian infuenza virus was frst isolated in turkeys in 19661. Since then, it became prevalent in poultry farming worldwide, resulting in egg production reduction and high mortality when co-infected with other path- ogens2,3. Also, it could cross host-species barrier and cause human infections as reported in China4,5. Tough it is not highly pathogenic as H5N1, researches revealed that it could re-assort with multiple other infuenza subtypes and thus be “gene donor” for H5N1 and H7N9 viruses6–8. Terefore, control of the H9N2 infuenza virus is of great concern. Vaccination utilizing vaccine strains and their relevant variants is the main strategy to control H9N2 pan- demics in the poultry industry of China.
    [Show full text]
  • Medical Aspects of Biological Warfare
    Alphavirus Encephalitides Chapter 20 ALPHAVIRUS ENCEPHALITIDES SHELLEY P. HONNOLD, DVM, PhD*; ERIC C. MOSSEL, PhD†; LESLEY C. DUPUY, PhD‡; ELAINE M. MORAZZANI, PhD§; SHANNON S. MARTIN, PhD¥; MARY KATE HART, PhD¶; GEORGE V. LUDWIG, PhD**; MICHAEL D. PARKER, PhD††; JONATHAN F. SMITH, PhD‡‡; DOUGLAS S. REED, PhD§§; and PAMELA J. GLASS, PhD¥¥ INTRODUCTION HISTORY AND SIGNIFICANCE ANTIGENICITY AND EPIDEMIOLOGY Antigenic and Genetic Relationships Epidemiology and Ecology STRUCTURE AND REPLICATION OF ALPHAVIRUSES Virion Structure PATHOGENESIS CLINICAL DISEASE AND DIAGNOSIS Venezuelan Equine Encephalitis Eastern Equine Encephalitis Western Equine Encephalitis Differential Diagnosis of Alphavirus Encephalitis Medical Management and Prevention IMMUNOPROPHYLAXIS Relevant Immune Effector Mechanisms Passive Immunization Active Immunization THERAPEUTICS SUMMARY 479 244-949 DLA DS.indb 479 6/4/18 11:58 AM Medical Aspects of Biological Warfare *Lieutenant Colonel, Veterinary Corps, US Army; Director, Research Support and Chief, Pathology Division, US Army Medical Research Institute of Infectious Diseases, 1425 Porter Street, Fort Detrick, Maryland 21702; formerly, Biodefense Research Pathologist, Pathology Division, US Army Medical Research Institute of Infectious Diseases, 1425 Porter Street, Fort Detrick, Maryland †Major, Medical Service Corps, US Army Reserve; Microbiologist, Division of Virology, US Army Medical Research Institute of Infectious Diseases, 1425 Porter Street, Fort Detrick, Maryland 21702; formerly, Science and Technology Advisor, Detachment
    [Show full text]
  • Eastern Equine Encephalitis Case Definition
    CASE DEFINITION FOR EASTERN EQUINE ENCEPHALITIS 1. General disease/pathogen information: Eastern equine encephalomyelitis (EEE) is a mosquito-borne viral disease that primarily affects horses. EEE, also known as sleeping sickness, is characterized by central nervous system dysfunction and a moderate to high case fatality rate. The causal virus is maintained in nature in an alternating infection cycle between mosquitoes and birds. Humans and horses serve as dead-end hosts. Although horses and humans are most often affected by the virus, birds may exhibit clinical signs, and infection and disease occasionally occurs in other livestock, deer, dogs, and a variety of mammalian, reptile, and amphibian species. 1.1. Etiologic agent: EEE is caused by the Eastern equine encephalomyelitis virus (EEEV), an Alphavirus of the family Togaviridae. It is closely related to the Western and Venezuelan equine encephalomyelitis viruses and Highlands J virus, all of which cause similar neurological dysfunction disorders in horses. There are two distinct antigenic variants of EEEV. The North American variant is more pathogenic than the South and Central American variant. 1.2. Distribution/frequency of agent or pathogen in U.S.: EEEV is distributed throughout the Western Hemisphere. It has also been reported in the Caribbean Islands, Mexico, Central America, and South America. In North America, it is found in eastern Canada and all States in the United States east of the Mississippi River as well as Arkansas, Iowa, Minnesota, South Dakota, Oklahoma, Louisiana, and Texas. EEEV is endemic in the Gulf of Mexico region of the United States. 1.3. Clinical signs: Horses infected with EEEV will initially develop fever, lethargy, and anorexia.
    [Show full text]
  • Islands As Hotspots for Emerging Mosquito-Borne Viruses: a One-Health Perspective
    viruses Review Islands as Hotspots for Emerging Mosquito-Borne Viruses: A One-Health Perspective Carla Mavian 1,2,*, Melissa Dulcey 2,3,†, Olga Munoz 2,3,4,†, Marco Salemi 1,2, Amy Y. Vittor 2,5,‡ and Ilaria Capua 2,4,‡ 1 Department of Pathology, Immunology and Laboratory Medicine, College of Medicine, University of Florida, Gainesville, FL 32611, USA; [email protected]fl.edu 2 Emerging Pathogens Institute University of Florida, Gainesville, FL 32611, USA; dulceym@ufl.edu (M.D.); omunoz@ufl.edu (O.M.); [email protected]fl.edu (A.Y.V.); icapua@ufl.edu (I.C.) 3 Department of Environmental and Global Health, College of Public Health and Health Professions, University of Florida, Gainesville, FL 32611, USA 4 One Health Center of Excellence, University of Florida, Gainesville, FL 32611, USA 5 Division of Infectious Diseases and Global Medicine, Department of Medicine, College of Medicine, University of Florida, Gainesville, FL 32611, USA * Correspondence: cmavian@ufl.edu † These authors contributed equally to this work. ‡ These authors contributed equally to this work. Received: 8 November 2018; Accepted: 18 December 2018; Published: 25 December 2018 Abstract: During the past ten years, an increasing number of arbovirus outbreaks have affected tropical islands worldwide. We examined the available literature in peer-reviewed journals, from the second half of the 20th century until 2018, with the aim of gathering an overall picture of the emergence of arboviruses in these islands. In addition, we included information on environmental and social drivers specific to island setting that can facilitate the emergence of outbreaks. Within the context of the One Health approach, our review highlights how the emergence of arboviruses in tropical islands is linked to the complex interplay between their unique ecological settings and to the recent changes in local and global sociodemographic patterns.
    [Show full text]
  • HIV Virology and Pathogenetic Mechanisms of Infection: a Brief Overview I Ence Exper
    ANN IST SUPER SANITÀ 2010 | VOL. 46, NO. 1: 5-14 5 DOI: 10.4415/ANN_10_01_02 HIV virology and pathogenetic mechanisms ENCE of infection: a brief overview I EXPER (a) (b) (b) (a) L Emanuele Fanales-Belasio , Mariangela Raimondo , Barbara Suligoi and Stefano Buttò A C (a)Centro Nazionale AIDS, Istituto Superiore di Sanità, Rome, Italy I N (b)Centro Operativo AIDS, Dipartimento di Malattie Infettive, Parassitarie ed Immunomediate, I CL Istituto Superiore di Sanità, Rome, Italy TO NG I Summary. Studies on HIV virology and pathogenesis address the complex mechanisms that result TEST in the HIV infection of the cell and destruction of the immune system. These studies are focused L on both the structure and the replication characteristics of HIV and on the interaction of the A M virus with the host. Continuous updating of knowledge on structure, variability and replication I N of HIV, as well as the characteristics of the host immune response, are essential to refine virologi- A cal and immunological mechanisms associated with the viral infection and allow us to identify key molecules in the virus life cycle that can be important for the design of new diagnostic assays FROM and specific antiviral drugs and vaccines. In this article we review the characteristics of molecular structure, replication and pathogenesis of HIV, with a particular focus on those aspects that are RCH important for the design of diagnostic assays. A Key words: HIV, virus replication, antigenic variation, virulence. ESE R Riassunto (La virologia dell’HIV e i meccanismi patogenetici dell’infezione: una breve panoramica). Gli studi sulla virologia e la patogenesi dell’HIV sono importanti per comprendere i complessi meccanismi che regolano l’infezione della cellula da parte del virus e la distruzione del sistema immunitario.
    [Show full text]
  • Characterization of Unidentified Viruses from Florida
    University of South Florida Digital Commons @ University of South Florida Graduate Theses and Dissertations Graduate School 7-12-2010 Characterization of Unidentified Viruses from Florida Jessie L. Dyer University of South Florida Follow this and additional works at: https://digitalcommons.usf.edu/etd Part of the American Studies Commons Scholar Commons Citation Dyer, Jessie L., "Characterization of Unidentified Viruses from Florida" (2010). Graduate Theses and Dissertations. https://digitalcommons.usf.edu/etd/3556 This Thesis is brought to you for free and open access by the Graduate School at Digital Commons @ University of South Florida. It has been accepted for inclusion in Graduate Theses and Dissertations by an authorized administrator of Digital Commons @ University of South Florida. For more information, please contact [email protected]. Characterization of Unidentified Viruses from Florida by Jessie L. Dyer A thesis submitted in partial fulfillment of the requirements for the degree of Master of Science in Public Health Department of Global Health College of Public Health University of South Florida Major Professor: Thomas Unnasch, Ph.D. Lillian M. Stark, Ph.D. Azliyati Azizan, Ph.D. Date of Approval: July 12, 2010 Keywords: Arbovirus, SISPA, Flanders virus, mosquito surveillance Copyright © 2010, Jessie L. Dyer Dedication To Mary and Steve Dyer, Who’s endless supply of biscuits and Thai food has made everything that much better. Acknowledgements Thank you to my major advisor, Dr. Unnasch, for his guidance, time and advice. Sincere thanks to Dr. Christy Ottendorfer. This thesis would not have been possible without her guidance. Thank you to Gregory White for his technical guidance and endless patience.
    [Show full text]
  • 1.5 Aquatic Plants, Mosquitoes and Public Health
    1.5 Aquatic Plants, Mosquitoes and Public Health James P. Cuda: University of Florida, Gainesville FL; [email protected] Introduction Approximately 200 species of aquatic plants are classified as weeds in North America and nearly 50, or 25%, are considered to be of major importance. Aquatic plants become weedy or invasive when they exhibit rapid growth and produce dense monocultures that displace more desirable native plants, reduce biodiversity, interfere with flood control, impede recreation and navigation and create breeding sites for disease-vectoring mosquitoes. Mosquitoes are insects that belong to the family Culicidae in the order Diptera, or true flies. They are similar in appearance to other flies except they have fragile bodies and their immature stages (eggs, larvae and pupae) develop entirely in aquatic environments. These insects are serious pests that have plagued civilizations throughout human history. In addition to their annoying and often painful bites, they transmit pathogens that cause some of the world’s most devastating diseases, including chikungunya, dengue, West Nile, yellow and Zika fevers, encephalitis, malaria, and dog heartworm. Mosquito-transmitted viruses are commonly referred to as arthropod-borne or arboviruses. According to a recent report from the University of Florida, more than 500 million new cases of malaria are reported worldwide each year, resulting in about 1 million deaths. Most of the deaths that are caused by malaria are in children under 10 years of age. The importance of mosquitoes from a nuisance and public health perspective cannot be overstated. Chikungunya Chikungunya virus (CHIKV) is transmitted to humans by mosquitoes and the illness that occurs following successful transmission of CHIKV is called chikungunya.
    [Show full text]