NASA Strategic Space Technology Investment Plan

Total Page:16

File Type:pdf, Size:1020Kb

NASA Strategic Space Technology Investment Plan This page intentionally left blank. NASA Strategic Space Technology Investment Plan “Future leadership in space requires a foundation of sustained technology advances that can enable the development of more capable, reliable, and lower-cost spacecraft and launch vehicles.” – America’s Future in Space: Aligning the Civil Space Program with National Needs, National Research Council 1 2 Table of Contents OVERVIEW ........................................................................................................... 7 BACKGROUND .................................................................................................... 8 SPACE TECHNOLOGY: STEPPING STONES TO THE FUTURE .................... 8 TECHNOLOGY DEVELOPMENT AS A PRIORITY ........................................... 9 DEVELOPING A STRATEGY........................................................................... 10 NASA’S StratEGY ........................................................................................... 11 INVESTMENT APPROACH ............................................................................. 11 FRAMEWORK ................................................................................................. 13 GOVERNANCE ............................................................................................... 14 PRINCIPLES OF INVESTMENT AND EXECUTION ....................................... 14 1) NASA will balance investments across all 14 Space Technology Areas in the Roadmaps. ................................................................................................... 14 2) NASA will balance investments across all levels of technology readiness. ..................................................................................................... 14 3) NASA will ensure developed technologies are infused into Agency missions. ...................................................................................................... 15 4) NASA will develop technologies through partnerships and ensure developed technologies are infused throughout the domestic space enterprise. .......... 15 5) NASA will use a systems engineering approach when planning technology investments. ................................................................................................. 16 6) NASA will reach out to the public and share information about its technology investments. ................................................................................................. 17 CORE TECHNOLOGY INVESTMENTS ............................................................. 18 LAUNCH AND IN-SPACE PROPULSION ....................................................... 20 Technical Challenges and Approach ............................................................ 20 Impact to NASA ............................................................................................ 20 Impact to Nation and Partners ...................................................................... 22 Potential Future Investments ........................................................................ 22 2012 Investments ......................................................................................... 23 HIGH DATA RATE COMMUNICATIONS ......................................................... 24 Technical Challenges and Approach ............................................................ 24 Impact to NASA ............................................................................................ 24 Impact to Nation and Partners ...................................................................... 25 Potential Future Investments ........................................................................ 25 2012 Investments ......................................................................................... 25 LIGHTWEIGHT SPACE STRUCTURES AND MATERIALS ............................ 25 Technical Challenges and Approach ............................................................ 25 Impact to NASA ............................................................................................ 26 Impact to Nation and Partners ...................................................................... 26 Potential Future Investments ........................................................................ 26 2012 Investments ......................................................................................... 26 3 ROBOTICS AND AUTONOMOUS SYSTEMS ................................................. 27 Technical Challenges and Approach ............................................................ 27 Impact to NASA ............................................................................................ 27 Impact to Nation and Partners ...................................................................... 28 Potential Future Investments ........................................................................ 28 2012 Investments ......................................................................................... 28 ENVIRONMENTAL CONTROL AND LIFE SUPPORT SYSTEM ..................... 29 Technical Challenges and Approach ............................................................ 29 Impact to NASA ............................................................................................ 29 Impact to Nation and Partners ...................................................................... 30 Potential Future Investments ........................................................................ 30 2012 Investments ......................................................................................... 30 SPACE RADIATION MITIGATION ................................................................... 31 Technical Challenges and Approach ............................................................ 31 Impact to NASA ............................................................................................ 31 Impact to Nation and Partners ...................................................................... 31 Potential Future Investments ........................................................................ 32 2012 Investments ......................................................................................... 32 SCIENTIFIC INSTRUMENTS AND SENSORS ............................................... 32 Technical Challenges and Approach ............................................................ 32 Impact to NASA ............................................................................................ 33 Impact to Nation and Partners ...................................................................... 33 Potential Future Investments ........................................................................ 34 2012 Investments ......................................................................................... 34 ENTRY, DESCENT, AND LANDING ................................................................ 35 Technical Challenges and Approach ............................................................ 35 Impact to NASA ............................................................................................ 35 Impact to Nation and Partners ...................................................................... 36 Potential Future Investments ........................................................................ 36 2012 Investments ......................................................................................... 37 ADJACENT TECHNOLOGY INVESTMENTS .................................................... 39 POWER GENERATION ................................................................................... 39 THERMAL CONTROL SYSTEMS ................................................................... 41 LONG-DURATION CREW HEALTH ................................................................ 41 COMPLEMEntarY TECHNOLOGY INVESTMENTS ....................................... 43 PILLAR 1: EXTEND AND SUstain HUMAN PRESENCE AND ACTIVITIES IN spacE ................................................................................................................ 45 GOAL SUMMARY ............................................................................................ 45 CAPABILITY OBJECTIVES ............................................................................. 45 Achieve Improved Spacecraft System Reliability and Performance ............ 46 Enable Transportation To, From, and On Planetary Bodies ......................... 47 Sustain Human Health and Performance ..................................................... 47 Enable Payload Delivery and Human Exploration of Destinations and Planetary Bodies .......................................................................................... 48 PILLAR 2: EXPLORE THE STRUCTURE, ORIGIN, AND EVOLUTION OF THE SOLAR SYSTEM, AND SEARCH FOR LIFE past AND PRESENT ................ 50 GOAL SUMMARY ............................................................................................ 50 CAPABILITY OBJECTIVES ............................................................................. 51 Achieve Improved Spacecraft System Reliability and Performance ............ 51 4 Enable Transportation To, From, and On Planetary Bodies ......................... 52 Enable Advanced In-situ Measurement and Exploration .............................. 53 PILLAR 3: EXpanD UNDErstanDING OF THE EARTH AND THE UNIVERSE (REMOTE MEASUREMENTS) ........................................................................... 54 GOAL SUMMARY ...........................................................................................
Recommended publications
  • A Practical Guide Second Edition
    TOURISTS in SPACE A Practical Guide Second Edition Erik Seedhouse Tourists in Space A Practical Guide Other Springer-Praxis books of related interest by Erik Seedhouse Tourists in Space: A Practical Guide 2008 ISBN: 978-0-387-74643-2 Lunar Outpost: The Challenges of Establishing a Human Settlement on the Moon 2008 ISBN: 978-0-387-09746-6 Martian Outpost: The Challenges of Establishing a Human Settlement on Mars 2009 ISBN: 978-0-387-98190-1 The New Space Race: China vs. the United States 2009 ISBN: 978-1-4419-0879-7 Prepare for Launch: The Astronaut Training Process 2010 ISBN: 978-1-4419-1349-4 Ocean Outpost: The Future of Humans Living Underwater 2010 ISBN: 978-1-4419-6356-7 Trailblazing Medicine: Sustaining Explorers During Interplanetary Missions 2011 ISBN: 978-1-4419-7828-8 Interplanetary Outpost: The Human and Technological Challenges of Exploring the Outer Planets 2012 ISBN: 978-1-4419-9747-0 Astronauts for Hire: The Emergence of a Commercial Astronaut Corps 2012 ISBN: 978-1-4614-0519-1 Pulling G: Human Responses to High and Low Gravity 2013 ISBN: 978-1-4614-3029-2 SpaceX: Making Commercial Spacefl ight a Reality 2013 ISBN: 978-1-4614-5513-4 Suborbital: Industry at the Edge of Space 2014 ISBN: 978-3-319-03484-3 Erik Seedhouse Tourists in Space A Practical Guide Second Edition Dr. Erik Seedhouse, Ph.D., FBIS Sandefjord Norway SPRINGER-PRAXIS BOOKS IN SPACE EXPLORATION ISBN 978-3-319-05037-9 ISBN 978-3-319-05038-6 (eBook) DOI 10.1007/978-3-319-05038-6 Springer Cham Heidelberg New York Dordrecht London Library of Congress Control Number: 2014937810 1st edition: © Praxis Publishing Ltd, Chichester, UK, 2008 © Springer International Publishing Switzerland 2014 This work is subject to copyright.
    [Show full text]
  • A FAILURE of INITIATIVE Final Report of the Select Bipartisan Committee to Investigate the Preparation for and Response to Hurricane Katrina
    A FAILURE OF INITIATIVE Final Report of the Select Bipartisan Committee to Investigate the Preparation for and Response to Hurricane Katrina U.S. House of Representatives 4 A FAILURE OF INITIATIVE A FAILURE OF INITIATIVE Final Report of the Select Bipartisan Committee to Investigate the Preparation for and Response to Hurricane Katrina Union Calendar No. 00 109th Congress Report 2nd Session 000-000 A FAILURE OF INITIATIVE Final Report of the Select Bipartisan Committee to Investigate the Preparation for and Response to Hurricane Katrina Report by the Select Bipartisan Committee to Investigate the Preparation for and Response to Hurricane Katrina Available via the World Wide Web: http://www.gpoacess.gov/congress/index.html February 15, 2006. — Committed to the Committee of the Whole House on the State of the Union and ordered to be printed U. S. GOVERNMEN T PRINTING OFFICE Keeping America Informed I www.gpo.gov WASHINGTON 2 0 0 6 23950 PDF For sale by the Superintendent of Documents, U.S. Government Printing Office Internet: bookstore.gpo.gov Phone: toll free (866) 512-1800; DC area (202) 512-1800 Fax: (202) 512-2250 Mail: Stop SSOP, Washington, DC 20402-0001 COVER PHOTO: FEMA, BACKGROUND PHOTO: NASA SELECT BIPARTISAN COMMITTEE TO INVESTIGATE THE PREPARATION FOR AND RESPONSE TO HURRICANE KATRINA TOM DAVIS, (VA) Chairman HAROLD ROGERS (KY) CHRISTOPHER SHAYS (CT) HENRY BONILLA (TX) STEVE BUYER (IN) SUE MYRICK (NC) MAC THORNBERRY (TX) KAY GRANGER (TX) CHARLES W. “CHIP” PICKERING (MS) BILL SHUSTER (PA) JEFF MILLER (FL) Members who participated at the invitation of the Select Committee CHARLIE MELANCON (LA) GENE TAYLOR (MS) WILLIAM J.
    [Show full text]
  • STENNIS SPACE CENTER HISTORY When President John F
    STENNIS SPACE CENTER HISTORY When President John F. Kennedy issued his 1961 challenge for the United States to send humans to the Moon and back by the end of 27 Saturn V rocket stages that decade, a site was needed to test the powerful rocket engines were tested at Stennis and stages that would propel them on the historic journey. Space Center, including stages that carried For NASA officials, the rough terrain of Hancock County, the first humans to the Mississippi, provided five essentials for testing the large Apollo surface of the Moon Program engines and stages: isolation from large population centers, water and road access for transportation, available public during the Apollo 11 utilities, supporting local communities and a climate conducive mission. to year-round testing. The site was selected – and in May 1963, workers cut the first tree to launch a daunting building project. The effort marked the largest construction effort in the state of 2,307 Space shuttle main Mississippi and one of the largest in the United States at the time. engine tests were conducted at Stennis Despite a pressing schedule, inevitable setbacks and even the Space Center from May disruption of Hurricane Betsy in 1965, construction workers prevailed. 19, 1975 to July 29, On April 23, 1966, a Saturn V second-stage prototype was test-fired 2009, totaling 820,475.68 on the newly completed A-2 Test Stand on the site. With the shake, seconds of hot fire. rattle and roar of the test, south Mississippi was blasted into the space age. 1 million Until 1972, Stennis test-fired first and second stages of the Saturn V Seconds of space shuttle rockets used in the the Apollo Program.
    [Show full text]
  • Stennis Interesting Facts
    STENNIS INTERESTING FACTS For five decades and counting, Stennis Space Center An active Advanced Technology and Technology Transfer in south Mississippi has served as NASA’s primary rocket Branch at Stennis Space Center works to develop and share propulsion test site, providing test services for NASA and the space-related technologies that benefit daily life. The Department of Defense, as well as the commercial sector. branch also partners with schools, libraries and institutions to Stennis is home to NASA’s Rocket Propulsion Test Program, help tell the story of how NASA is benefiting all of life. which manages all of the agency’s propulsion test facilities. Stennis consists of two defined areas – a 13,800-acre area Stennis was established in the 1960s to test first and second that is home to all site facilities and a surrounding 125,000-acre stages of the Saturn V rocket for the Apollo lunar landing buffer zone protecting against the noise and power of large program. Stennis tested 27 Saturn V stages, including ones rocket engine and stage tests. that carried humans to the Moon. Seven-and-one-half miles of canal waterways, featuring a From 1975 to 2009, Stennis tested main engines that powered lock-and-dam system, are used at Stennis to transport large 135 space shuttle missions – 2,307 space shuttle main rocket stages and cryogenic barges to and from the Gulf of engine tests in all for a total firing time of 820,475 seconds. Mexico via the Pearl River. Stennis is testing RS-25 engines and stages that will help power federal, state, academic and private NASA’s new Space Launch System, which will send the first More than 50 organizations and several technology-based companies, woman and next man to the Moon by 2024 as part of NASA’s including the U.S.
    [Show full text]
  • COMPLIANCE IS MANDATORY John C. Stennis Space Center Environmental Resources Document
    SCWI-8500-0026-ENV Rev. C November 2012 National Aeronautics and Space Administration John C. Stennis Space Center Stennis Space Center, MS 39529-6000 COMPLIANCE IS MANDATORY John C. Stennis Space Center Environmental Resources Document RELEASED - Printed documents may be obsolete; validate prior to use. Stennis SCWI-8500-0026-ENV C Common Work Number Rev. Effective Date: November 21, 2012 Instruction Review Date: November 21, 2017 Page 2 of 268 Responsible Office: RA02/Environmental Management – Center Operations Directorate SUBJECT: Environmental Resources Document This document was prepared under the Stennis Space Center (SSC) Facility Operating Services Contract for the NASA/SSC Center Operations and Support Directorate in support of the SSC Environmental Management System (EMS). Approval/Concurrence Original Signed by David K. Lorance 11/21/2012 NASA/SSC Environmental Officer Date Document History Log Change/ Change Date Originator/ Phone Description Revision Basic 12.9.2005 Wendy Robinson Initial release. 8-2752 A 01.31.2006 Wendy Robinson Changed the effective date to January 31, 2006 8-2752 throughout the document. Changed the review date to January 31, 2011 to reflect 5 years from the effective date throughout the document. Changed the word “revise” date to “review” date in the header throughout the document. Page i – Added signature section above Document History Log. Page ii - Changed telephone number of contact agency to 2584. B 10.03.2008 Jenette Gordon Reviewed and redlined all sections to reflect regulatory 8-1416 changes per media. The section for Natural Resources was rewritten to incorporate the SSC Integrated Natural Resource Management Plan requirements. Additionally, the effective date was changed to May 30, 2008 throughout the document along with the review date to May 30, 2013 to reflect 5 years from the effective date throughout the document.
    [Show full text]
  • Themes of the Presidentʼs FY11 NASA Budget Request
    Themes of the Presidentʼs FY11 NASA Budget Request • Technology Development is a strong theme across the President’s FY11 NASA budget request – Central principle of new Human Exploration strategy – Reverse of past decline and modest increase for Aeronautics (~15% or $75M/yr) – Mission-focused technology investments maintained within the Science Mission Directorate – Utilization of ISS for technology development by the Space Operations Mission Directorate – New ARPA-like Space Technology Program ($5B over 5 years) • This renewed emphasis balances the long-standing NASA core competencies of R&T, spaceflight hardware development, and mission operations. • Increased emphasis on partnerships and STEM education – Other government agencies, academia, industry and international – Theme of National Space Policy • Overarching goal is to reposition NASA on the cutting-edge 1 External Input Has Driven Formulation of the NASA Space Technology Program • NASA Authorization Act of 2008: “A robust program of long-term exploration-related research and development will be essential for the success and sustainability of any enduring initiative of human and robotic exploration of the solar system.” • NRC report, A Constrained Space Exploration Technology Program: A Review of NASAʼs ETDP, 2008: “NASA has created a supporting technology program very closely coupled to the near-term needs of the Constellation Program. This program contains only incremental gains in capability and two programmatic gaps. NASA has effectively suspended research in a number of technology
    [Show full text]
  • National Aeronautics and Space Administration NASA
    National Aeronautics and Space Administration spinoff NASA T ECH N OLOGIE S B E N EFI T S OCIE T Y 2011 NASA TECH N OLOGIE S BE N EFI T SOCIE T Y On the Cover: 2011 Front: Left Panels: (Top) NASA’s Global Hawk UAV, one of the Agency’s new climate research platforms; (Middle) The first Aerojet AJ26 flight engine is unloaded at Stennis Space Office of the Center; (Bottom) Building NASA’s newest Mars rover, the Mars Science Laboratory Center Panels: (Top) An artist’s concept of NASA’s MESSENGER spacecraft Chief Technologist approaching Mercury; (Bottom) NASA’s Robonaut 2, which joined the crew of the International Space Station (ISS) in 2011 Right Panel: (Top) Building NASA’s next generation of manned spacecraft, the Multipurpose Crew Vehicle; (Bottom) NASA spinoff technologies Back: Left to Right: The Sun as imaged by NASA’s Solar Dynamics Observatory; Abby Spinoff Program Office Sunderland, rescued with the help of a NASA spinoff technology after being stranded NASA Center for AeroSpace Information at sea, tours Goddard Space Flight Center; NASA’s solar sail experiment, NanoSail-D; Heavyweight stars in Nebula NGC 6357, imaged by the Hubble Space Telescope; Bo Schwerin, Editor-in-Chief astronaut Alvin Drew reenters the ISS after an STS-133 spacewalk Lisa Rademakers, Senior Writer Daniel Coleman, Writer John Jones, Art Director Table of Contents 5 Foreword S 7 Introduction OFF 8 Space Shuttle Spinoffs 18 International Space Station Spinoffs SPIN 82 26 50 70 Executive Summary HEALTH AND MEDICINE TRANSPORTATION PUBLIC SAFETY 46 50 66 80 DEPARTMENTS
    [Show full text]
  • GRAIL Reveals Secrets of the Lunar Interior
    GRAIL Reveals Secrets of the Lunar Interior — Dr. Patrick J. McGovern, Lunar and Planetary Institute A mini-flotilla of spacecraft sent to the Moon in the past few years by several nations has revealed much about the characteristics of the lunar surface via techniques such as imaging, spectroscopy, and laser ranging. While the achievements of these missions have been impressive, only GRAIL has seen deeply enough to reveal inner secrets that the Moon holds. LRecent Lunar Missions Country Name Launch Date Status ESA Small Missions for Advanced September 27, 2003 Ended with lunar surface impact on Research in Technology-1 (SMART-1) September 3, 2006 USA Acceleration, Reconnection, February 27, 2007 Extension of the THEMIS mission; ended Turbulence and Electrodynamics of in 2012 the Moon’s Interaction with the Sun (ARTEMIS) Japan SELENE (Kaguya) September 14, 2007 Ended with lunar surface impact on June 10, 2009 PChina Chang’e-1 October 24, 2007 Taken out of orbit on March 1, 2009 India Chandrayaan-1 October 22, 2008 Two-year mission; ended after 315 days due to malfunction and loss of contact USA Lunar Reconnaissance Orbiter (LRO) June 18, 2009 Completed one-year primary mission; now in five-year extended mission USA Lunar Crater Observation and June 18, 2009 Ended with lunar surface impact on Sensing Satellite (LCROSS) October 9, 2009 China Chang’e-2 October 1, 2010 Primary mission lasted for six months; extended mission completed flyby of asteroid 4179 Toutatis in December 2012 USA Gravity Recovery and Interior September 10, 2011 Ended with lunar surface impact on I Laboratory (GRAIL) December 17, 2012 To probe deeper, NASA launched the Gravity Recovery and Interior Laboratory (GRAIL) mission: twin spacecraft (named “Ebb” and “Flow” by elementary school students from Montana) flying in formation over the lunar surface, tracking each other to within a sensitivity of 50 nanometers per second, or one- twenty-thousandth of the velocity that a snail moves [1], according to GRAIL Principal Investigator Maria Zuber of the Massachusetts Institute of Technology.
    [Show full text]
  • Virgin Galactic at a Glance
    Oct. 17, 2011 Virgin Galactic at a Glance Who: Virgin Galactic, the world’s first commercial spaceline. Vision: Virgin Galactic will provide space access to paying tourism passengers and scientists for research with a smaller environmental impact, lower cost and greater flexibility than any other spaceflight organization, past or present. Once operational, Virgin Galactic aims to fly 500 people in the first year and 30,000 individuals within 10 years. Suborbital Tourism Experience: Through the Virgin Galactic space experience, passengers will be able to leave their seats for several minutes and float in zero-gravity, while enjoying astounding views of space and the Earth stretching approximately 1,000 miles in every direction. Prior to the flight, passengers will go through three days of preparation, medical checks, bonding and G-force acclimatization, all of which is included in the price of the flight. Science/Research/ Education Experience: Virgin Galactic will also host flights dedicated to science, education and research. The vehicles are being built to carry six customers, or the equivalent scientific research payload. The trip into suborbital space offers a unique microgravity platform for researchers. Owners: Sir Richard Branson’s Virgin Group and Aabar Investments PJS History: The 2004 Ansari X Prize called for private sector innovations in the field of manned space exploration. Specifically, participants had to privately fund, design and manufacture a vehicle that could deliver the weight of three people (including one actual person) to suborbital space (altitude of 100 kms). The vehicle had to be 80 percent reusable and fly twice within a two-week period.
    [Show full text]
  • Technology, Innovation & Engineering Committee Report NASA Advisory
    National Aeronautics and Space Administration Technology, Innovation & Engineering Committee Report NASA Advisory Council Presented by: Dr. Bill Ballhaus, Chair April 1, 2016 www.nasa.gov/spacetech TI&E Committee Meeting Attendees March 29, 2016 • Dr. William Ballhaus, Chair • Mr. Michael Johns, Southern Research Institute • Mr. David Neyland, Consultant • Mr. Jim Oschmann, Ball Aerospace & Technologies Corp. • Dr. Mary Ellen Weber, Stellar Strategies, LLC 2 TI&E Committee Meeting Presentations March 29, 2016 • Space Technology Mission Directorate Update – Mr. Stephen Jurczyk, Associate Administrator, STMD • FY16-17 Technology Plans for HEO and SMD and Discussion – Mr. Chris Moore, Deputy Director, Advanced Exploration Systems, HEOMD – Mr. Michael Seablom, Chief Technologist, SMD • Chief Technologist Update – Dr. David Miller, NASA Chief Technologist • Annual Ethics Briefing – Rebecca Gilchrist, Ethics Attorney, OGC • Technology Demonstration Missions (TDM) Update – Ms. Trudy Kortes, Program Executive, TDM, STMD • Restore-L Mission Overview and Discussion – Mr. Ben Reed, Deputy Program Manager, Satellite Servicing Capabilities Office 3 National Aeronautics and Space Administration Space Technology Mission Directorate Update NAC TI&E Committee Presented by: Stephen Jurczyk Associate Administrator, STMD March 29, 2016 www.nasa.gov/spacetech 4 STMD Public-Private Partnerships STMD continues to foster partnerships with the commercial space sector for expanding capabilities and opportunities in space. Objective: Deliver critical space technologies
    [Show full text]
  • Oklahoma Epscor Committee Review Panel Will Select the Two Projects to Be Submitted to NASA
    NASA Call for Proposals FY 2011 Introduction NASA has released the Cooperative Agreement Notice (CAN) for the 2011 EPSCoR Competition. Oklahoma is eligible to submit up to two proposals with the possibility of having two awards. It is anticipated that 6-10 awards of up to $750,000 each to be expended over a three-year period of performance may be made under this Notice pursuant to the authority of the NASA Grant and Cooperative Agreement Handbook. Within this competition, twenty eight jurisdictions are eligible to submit up to two proposals. Jurisdictions are strongly encouraged to submit proposals that demonstrate partnerships or cooperative arrangements among academia, government agencies, business and industry, private research foundations, jurisdiction agencies, and local agencies. Partnerships with minority-serving institutions are strongly encouraged. Inclusion of faculty and students from underrepresented/underserved groups is also strongly encouraged. NASA Research Areas of Interest NASA EPSCoR research priorities are defined by the Mission Directorates (Aeronautics Research, Exploration Systems, Science, and Space Operations) and the Office of the Chief Technologist. Each Mission Directorate and the Office of the Chief Technologist covers a major area of the Agency’s research and technology development efforts. Information about current NASA research solicitations can be found on NSPIRES at http://nspires.nasaprs.com (select “Solicitations” and then “Open Solicitations”). Research priorities for each of the Mission Directorates and the Office of the Chief Technologist are summarized below and can be found at the following locations: Aeronautics Research Mission Directorate (ARMD) Researchers responding to the ARMD should propose research that is aligned with one or more of the ARMD programs.
    [Show full text]
  • NASA Aims to Improve Aviation Safety Star Can Be Calculated by Measuring the Time Between Successive Dips As the Planet Orbits the Star
    September 2010 - A Quarterly Publication NASA’s Kepler Mission discovers two planets transiting same star BY MICHAEL MEWHINNEY servatory in Hawaii. The observations 19 days, while Kepler-9c has an orbit NASA's Kepler spacecraft has show Kepler-9b is the larger of the two of about 38 days. By observing several discovered the first confirmed planetary planets, and both have masses similar transits by each planet over the seven system with more than one planet cross- to but less than Saturn. Kepler-9b lies months of data, the time between suc- ing in front of, or transiting, the same closest to the star with an orbit of about continued on page 15 star. The transit signatures of two distinct planets were seen in the data for the sun-like star designated Kepler-9. The planets were named Kepler-9b and 9c. Worlds on the Edge - This artist’s con- The discovery incorporates cept illustrates the two Saturn-sized seven months of observa- planets discovered by NASA’s Kepler tions of more than 156,000 Mission. The star system is oriented stars as part of an ongo- edge-on, as seen by Kepler, such that both planets cross in front, or transit, ing search for Earth-sized their star, named Kepler-9. This is the planets outside our solar first star system found to have multiple system. The findings will transiting planets. be published in the journal Science. Kepler's ultra-precise camera measures tiny decreases in the stars' brightness that occur when a planet transits them. The NASA image credit: NASA/Ames/JPL-Caltech size of the planet can be derived from these temporary dips.
    [Show full text]