COMPLIANCE IS MANDATORY John C. Stennis Space Center Environmental Resources Document

Total Page:16

File Type:pdf, Size:1020Kb

COMPLIANCE IS MANDATORY John C. Stennis Space Center Environmental Resources Document SCWI-8500-0026-ENV Rev. C November 2012 National Aeronautics and Space Administration John C. Stennis Space Center Stennis Space Center, MS 39529-6000 COMPLIANCE IS MANDATORY John C. Stennis Space Center Environmental Resources Document RELEASED - Printed documents may be obsolete; validate prior to use. Stennis SCWI-8500-0026-ENV C Common Work Number Rev. Effective Date: November 21, 2012 Instruction Review Date: November 21, 2017 Page 2 of 268 Responsible Office: RA02/Environmental Management – Center Operations Directorate SUBJECT: Environmental Resources Document This document was prepared under the Stennis Space Center (SSC) Facility Operating Services Contract for the NASA/SSC Center Operations and Support Directorate in support of the SSC Environmental Management System (EMS). Approval/Concurrence Original Signed by David K. Lorance 11/21/2012 NASA/SSC Environmental Officer Date Document History Log Change/ Change Date Originator/ Phone Description Revision Basic 12.9.2005 Wendy Robinson Initial release. 8-2752 A 01.31.2006 Wendy Robinson Changed the effective date to January 31, 2006 8-2752 throughout the document. Changed the review date to January 31, 2011 to reflect 5 years from the effective date throughout the document. Changed the word “revise” date to “review” date in the header throughout the document. Page i – Added signature section above Document History Log. Page ii - Changed telephone number of contact agency to 2584. B 10.03.2008 Jenette Gordon Reviewed and redlined all sections to reflect regulatory 8-1416 changes per media. The section for Natural Resources was rewritten to incorporate the SSC Integrated Natural Resource Management Plan requirements. Additionally, the effective date was changed to May 30, 2008 throughout the document along with the review date to May 30, 2013 to reflect 5 years from the effective date throughout the document. C 11.21.2012 Wendy Robinson Incorporation of Area 9 information, added section 2.4.4 8-2752 for Climate Change and section 13.12 for Encroachment plus required updated information throughout the document. RELEASED - Printed documents may be obsolete; validate prior to use. Stennis SCWI-8500-0026-ENV C Common Work Number Rev. Effective Date: November 21, 2012 Instruction Review Date: November 21, 2017 Page 3 of 268 Responsible Office: RA02/Environmental Management – Center Operations Directorate SUBJECT: Environmental Resources Document ENVIRONMENTAL RESOURCES DOCUMENT FOR THE NATIONAL AERONAUTICS AND SPACE ADMINISTRATION JOHN C. STENNIS SPACE CENTER HANCOCK COUNTY, MISSISSIPPI November 2012 Prepared by: Jacobs Technology Safety and Mission Assurance Office Contact: John C. Stennis Space Center Environmental Officer, RA02 228-688-2004 RELEASED - Printed documents may be obsolete; validate prior to use. Stennis SCWI-8500-0026-ENV C Common Work Number Rev. Effective Date: November 21, 2012 Instruction Review Date: November 21, 2017 Page 4 of 268 Responsible Office: RA02/Environmental Management – Center Operations Directorate SUBJECT: Environmental Resources Document Table of Contents 1.0 Description of Center ....................................................................................................................................... 9 1.1 Location ....................................................................................................................................................... 9 1.2 History .......................................................................................................................................................... 9 1.3 Organizations within the Fee Area ............................................................................................................. 11 1.3.1 NASA ....................................................................................................................................................... 12 1.3.2 Naval Meteorological and Oceanography Command ............................................................................... 16 1.3.3 Naval Research Laboratory ...................................................................................................................... 16 1.3.4 Area 9 (formerly Mississippi Army Ammunition Plant Industrial Complex) .......................................... 16 1.3.5 National Data Buoy Center ....................................................................................................................... 16 1.3.6 Mississippi Laboratories of the Southeast Fisheries Center...................................................................... 16 1.3.7 United States Geological Survey .............................................................................................................. 17 1.3.8 Environmental Protection Agency ............................................................................................................ 18 1.3.9 Technology Transfer Offices .................................................................................................................... 18 1.3.10 Mississippi Space Commerce Initiative ................................................................................................... 18 1.3.11 Naval Special Warfare Group 4: NAVSCIATTS, SBT22, and Detachment SSC ................................... 18 1.3.12 Rolls-Royce ............................................................................................................................................ 19 1.3.13 NASA Shared Services Center ................................................................................................................ 19 1.3.14 Navy Exchange Service Command (NEXCOM) ..................................................................................... 19 1.3.15 DOE Strategic Petroleum Reserve ........................................................................................................... 19 1.3.16 Entech (Power Dynamics) ....................................................................................................................... 20 1.3.17 Government Printing Office .................................................................................................................... 20 1.3.18 Pratt & Whitney Rocketdyne ................................................................................................................... 20 1.3.19 National Center for Critical Information Processing and Storage (NCCIPS) .......................................... 20 1.3.20 Navy Human Resources Service Center, Southeast ................................................................................. 20 1.4 References .................................................................................................................................................. 21 2.0 Air Resources ................................................................................................................................................. 22 2.1 Regulatory Framework ............................................................................................................................... 22 2.2 Meteorology ............................................................................................................................................... 23 2.3 SSC Air Quality ......................................................................................................................................... 25 2.4 SSC Air Pollution Sources ......................................................................................................................... 26 2.4.1 Criteria Pollutants ...................................................................................................................................... 26 2.4.2 Toxic Air Pollutants ................................................................................................................................... 26 2.4.3 Ozone-Depleting Substances ..................................................................................................................... 26 2.4.4 Climate Change and Greenhouse Gas (GHG) Emissions ........................................................................... 27 2.5 Major Environmental Considerations for Proposed Actions ...................................................................... 28 2.6 References .................................................................................................................................................. 29 3.0 Water Resources ............................................................................................................................................. 30 3.1 Water Supplies ........................................................................................................................................... 30 3.1.1 Surface Waters ........................................................................................................................................... 30 3.1.2 Groundwater .............................................................................................................................................. 32 3.1.3. Storm Water .............................................................................................................................................. 33 3.2 Water Quality ............................................................................................................................................. 33 3.2.1 Programs to Preserve Water Quality.........................................................................................................
Recommended publications
  • An Intergeneric Hybrid Between Franklinia Alatamaha and Gordonia
    HORTSCIENCE 41(6):1386–1388. 2006. hybrids using F. alatamaha. Ackerman and Williams (1982) conducted extensive crosses · between F. alatamaha and Camellia L. spp. Gordlinia grandiflora (Theaceae): and produced two intergeneric hybrids, but their growth was weak and extremely slow. An Intergeneric Hybrid Between Ranney and colleagues (2003) reported suc- cessful hybridization between F. alatamaha Franklinia alatamaha and and Schima argentea Pritz. In 1974, Dr. Elwin Orton, Jr. successfully crossed G. lasianthus with F. alatamaha and produced 33 hybrids Gordonia lasianthus (Orton, 1977). Orton (1977) further reported Thomas G. Ranney1,2 that the seedlings grew vigorously during the Department of Horticultural Science, Mountain Horticultural Crops first growing season and that a number of them flowered the following year; however, Research and Extension Center, North Carolina State University, 455 all the plants eventually died, possibly be- Research Dr., Fletcher, NC 28732-9244 cause of some type of genetic incompatibility 1 or a pathogen (e.g., Phytophthora). Although Paul R. Fantz Orton’s report was somewhat discouraging, Department of Horticultural Science, Box 7603, North Carolina State hybridization between F. alatamaha and University, Raleigh, NC 27695-7609 G. lasianthus could potentially combine the cold hardiness of F. alatamaha with the ever- Additional index words. Gordonia alatamaha, Gordonia pubescens, distant hybridization, green foliage of G. lasianthus and broaden intergeneric hybridization, plant breeding, wide hybridization the genetic base for further breeding among Abstract. Franklinia alatamaha Bartr. ex Marshall represents a monotypic genus that was these genera. The objective of this report is originally discovered in Georgia, USA, but is now considered extinct in the wild and is to describe the history of and to validate new maintained only in cultivation.
    [Show full text]
  • 4. the Plant Diversity of Singapore
    FLORA OF SINGAPORE (Vol. 1: 37–46, 2019) 4. THE PLANT DIVERSITY OF SINGAPORE K.M. Wong & S.K. Ganesan The position of Singapore on the Sunda continental shelf is a special one, with the principal island originally about 540 km2 in extent, together with some 60 smaller islands at the southern exit to the Malacca Strait and near the confluence of the South China Sea and Karimata Strait just west of Borneo. Geographically at the equatorial extremity of the Malay Peninsula, Singapore is separated from the Riau islands to its south (principally the Karimun Islands, Batam and Bintan) by the Singapore Strait which includes the deeply scoured 204-m ‘Singapore Deeps’, a likely subsidence basin resulting from tectonic movements (Bird et al., 2006). While this Strait may seem able to restrict the dispersal of some organisms with interglacial and post- Pleistocene high sea levels, it probably was not an effective dispersal barrier during episodes of lowest sea levels, such as during the Last Glacial Maximum (LGM) at 18 ka. Then, it must have been in the path of a key land bridge between mainland Southeast Asia farther north and likewise exposed links to Java and other areas to the south (Ho, 1960; Morley & Flenley, 1987; Heaney, 1991; Voris, 2000; Bird et al., 2005). By contrast, the Johor Strait that separates Singapore from south Peninsular Malaysia is just about 10 m deep and 600 m wide at its narrowest. The Sundaland region on the Sunda continental shelf has seen climate shifts since even before the Pleistocene, sometimes associated with tectonic events.
    [Show full text]
  • A FAILURE of INITIATIVE Final Report of the Select Bipartisan Committee to Investigate the Preparation for and Response to Hurricane Katrina
    A FAILURE OF INITIATIVE Final Report of the Select Bipartisan Committee to Investigate the Preparation for and Response to Hurricane Katrina U.S. House of Representatives 4 A FAILURE OF INITIATIVE A FAILURE OF INITIATIVE Final Report of the Select Bipartisan Committee to Investigate the Preparation for and Response to Hurricane Katrina Union Calendar No. 00 109th Congress Report 2nd Session 000-000 A FAILURE OF INITIATIVE Final Report of the Select Bipartisan Committee to Investigate the Preparation for and Response to Hurricane Katrina Report by the Select Bipartisan Committee to Investigate the Preparation for and Response to Hurricane Katrina Available via the World Wide Web: http://www.gpoacess.gov/congress/index.html February 15, 2006. — Committed to the Committee of the Whole House on the State of the Union and ordered to be printed U. S. GOVERNMEN T PRINTING OFFICE Keeping America Informed I www.gpo.gov WASHINGTON 2 0 0 6 23950 PDF For sale by the Superintendent of Documents, U.S. Government Printing Office Internet: bookstore.gpo.gov Phone: toll free (866) 512-1800; DC area (202) 512-1800 Fax: (202) 512-2250 Mail: Stop SSOP, Washington, DC 20402-0001 COVER PHOTO: FEMA, BACKGROUND PHOTO: NASA SELECT BIPARTISAN COMMITTEE TO INVESTIGATE THE PREPARATION FOR AND RESPONSE TO HURRICANE KATRINA TOM DAVIS, (VA) Chairman HAROLD ROGERS (KY) CHRISTOPHER SHAYS (CT) HENRY BONILLA (TX) STEVE BUYER (IN) SUE MYRICK (NC) MAC THORNBERRY (TX) KAY GRANGER (TX) CHARLES W. “CHIP” PICKERING (MS) BILL SHUSTER (PA) JEFF MILLER (FL) Members who participated at the invitation of the Select Committee CHARLIE MELANCON (LA) GENE TAYLOR (MS) WILLIAM J.
    [Show full text]
  • STENNIS SPACE CENTER HISTORY When President John F
    STENNIS SPACE CENTER HISTORY When President John F. Kennedy issued his 1961 challenge for the United States to send humans to the Moon and back by the end of 27 Saturn V rocket stages that decade, a site was needed to test the powerful rocket engines were tested at Stennis and stages that would propel them on the historic journey. Space Center, including stages that carried For NASA officials, the rough terrain of Hancock County, the first humans to the Mississippi, provided five essentials for testing the large Apollo surface of the Moon Program engines and stages: isolation from large population centers, water and road access for transportation, available public during the Apollo 11 utilities, supporting local communities and a climate conducive mission. to year-round testing. The site was selected – and in May 1963, workers cut the first tree to launch a daunting building project. The effort marked the largest construction effort in the state of 2,307 Space shuttle main Mississippi and one of the largest in the United States at the time. engine tests were conducted at Stennis Despite a pressing schedule, inevitable setbacks and even the Space Center from May disruption of Hurricane Betsy in 1965, construction workers prevailed. 19, 1975 to July 29, On April 23, 1966, a Saturn V second-stage prototype was test-fired 2009, totaling 820,475.68 on the newly completed A-2 Test Stand on the site. With the shake, seconds of hot fire. rattle and roar of the test, south Mississippi was blasted into the space age. 1 million Until 1972, Stennis test-fired first and second stages of the Saturn V Seconds of space shuttle rockets used in the the Apollo Program.
    [Show full text]
  • ISB: Atlas of Florida Vascular Plants
    Longleaf Pine Preserve Plant List Acanthaceae Asteraceae Wild Petunia Ruellia caroliniensis White Aster Aster sp. Saltbush Baccharis halimifolia Adoxaceae Begger-ticks Bidens mitis Walter's Viburnum Viburnum obovatum Deer Tongue Carphephorus paniculatus Pineland Daisy Chaptalia tomentosa Alismataceae Goldenaster Chrysopsis gossypina Duck Potato Sagittaria latifolia Cow Thistle Cirsium horridulum Tickseed Coreopsis leavenworthii Altingiaceae Elephant's foot Elephantopus elatus Sweetgum Liquidambar styraciflua Oakleaf Fleabane Erigeron foliosus var. foliosus Fleabane Erigeron sp. Amaryllidaceae Prairie Fleabane Erigeron strigosus Simpson's rain lily Zephyranthes simpsonii Fleabane Erigeron vernus Dog Fennel Eupatorium capillifolium Anacardiaceae Dog Fennel Eupatorium compositifolium Winged Sumac Rhus copallinum Dog Fennel Eupatorium spp. Poison Ivy Toxicodendron radicans Slender Flattop Goldenrod Euthamia caroliniana Flat-topped goldenrod Euthamia minor Annonaceae Cudweed Gamochaeta antillana Flag Pawpaw Asimina obovata Sneezeweed Helenium pinnatifidum Dwarf Pawpaw Asimina pygmea Blazing Star Liatris sp. Pawpaw Asimina reticulata Roserush Lygodesmia aphylla Rugel's pawpaw Deeringothamnus rugelii Hempweed Mikania cordifolia White Topped Aster Oclemena reticulata Apiaceae Goldenaster Pityopsis graminifolia Button Rattlesnake Master Eryngium yuccifolium Rosy Camphorweed Pluchea rosea Dollarweed Hydrocotyle sp. Pluchea Pluchea spp. Mock Bishopweed Ptilimnium capillaceum Rabbit Tobacco Pseudognaphalium obtusifolium Blackroot Pterocaulon virgatum
    [Show full text]
  • Florida Honey Bee Plants1 Mary Christine Bammer, William H Kern, and Jamie D
    ENY-171 Florida Honey Bee Plants1 Mary Christine Bammer, William H Kern, and Jamie D. Ellis2 Several factors influence the flora throughout Florida, While many plants are acceptable pollen producers for including annual freezes, average temperature, annual honey bees, fewer yield enough nectar to produce a surplus rainfall, and soil composition. Because of these variations, honey crop. The tables in this document list the nectar- plants that grow well in one region may not grow well bearing plants that are present to some degree in each in another. Climate, plant communities, and timing of region and the plants’ respective bloom times. Please note, floral resources differ significantly between the three main any nectar plants that are considered invasive in Florida regions in Florida: north Florida, central Florida, and south have been excluded from this list. Florida (north Florida encompasses the panhandle region south through Alachua, Levy, Putnam, and Flagler counties. Central Florida includes Marion County south through Sarasota County. South Florida encompasses the remaining counties including the Keys) (Figure 1). Figure 2. Honey bee on wild mustard. Figure 1. 1. This document is ENY-171, one of a series of the Entomology and Nematology Department, UF/IFAS Extension. Original publication date September 2018. Visit the EDIS website at http://edis.ifas.ufl.edu. 2. Mary Christine Bammer, Extension coordinator, Department of Entomology and Nematology; William H Kern, associate professor of urban entomology, Department of Entomology and Nematology, UF/IFAS Ft. Lauderdale Research & Education Center; and Jamie D. Ellis, associate professor, Department of Entomology and Nematology, UF/IFAS Extension, Gainesville, FL 32611.
    [Show full text]
  • Stennis Interesting Facts
    STENNIS INTERESTING FACTS For five decades and counting, Stennis Space Center An active Advanced Technology and Technology Transfer in south Mississippi has served as NASA’s primary rocket Branch at Stennis Space Center works to develop and share propulsion test site, providing test services for NASA and the space-related technologies that benefit daily life. The Department of Defense, as well as the commercial sector. branch also partners with schools, libraries and institutions to Stennis is home to NASA’s Rocket Propulsion Test Program, help tell the story of how NASA is benefiting all of life. which manages all of the agency’s propulsion test facilities. Stennis consists of two defined areas – a 13,800-acre area Stennis was established in the 1960s to test first and second that is home to all site facilities and a surrounding 125,000-acre stages of the Saturn V rocket for the Apollo lunar landing buffer zone protecting against the noise and power of large program. Stennis tested 27 Saturn V stages, including ones rocket engine and stage tests. that carried humans to the Moon. Seven-and-one-half miles of canal waterways, featuring a From 1975 to 2009, Stennis tested main engines that powered lock-and-dam system, are used at Stennis to transport large 135 space shuttle missions – 2,307 space shuttle main rocket stages and cryogenic barges to and from the Gulf of engine tests in all for a total firing time of 820,475 seconds. Mexico via the Pearl River. Stennis is testing RS-25 engines and stages that will help power federal, state, academic and private NASA’s new Space Launch System, which will send the first More than 50 organizations and several technology-based companies, woman and next man to the Moon by 2024 as part of NASA’s including the U.S.
    [Show full text]
  • A Taxonomic Revision of the Malesian Species of <I>Lasianthus</I>
    Blumea 57, 2012: 1–102 www.ingentaconnect.com/content/nhn/blumea RESEARCH ARTICLE http://dx.doi.org/10.3767/000651912X652012 A taxonomic revision of the Malesian species of Lasianthus (Rubiaceae) H. Zhu1, M.C. Roos2, C.E. Ridsdale2 Key words Abstract Based on herbarium collections, the Malesian species of the genus Lasianthus are revised. A total of 131 species including 5 subspecies and 6 varieties are recognized from the Malesian region, of which 41 species, Lasiantheae 3 subspecies and 3 varieties are described as new, and 3 new combinations are made for varieties. 22 species Lasianthus names and 15 variety names are reduced to synonyms. Ten species names and 2 varieties are treated as dubious Malesia mainly because their types cannot be traced. Additionally, 11 species are further excluded from Lasianthus. All revision species are described and a key to Malesian Lasianthus is given. Rubiaceae Published on 29 May 2012 INTRODUCTION 1938. Since 1950, many more specimens from the Malesian region have been collected, but a synopsis on the genus for Lasianthus Jack is a large genus of the Rubiaceae with more Malesia has not been made so far, except for two regional flora than 180 species, predominantly in the Old World. The great- treatments, i.e. Bakhuizen van den Brink (1965) for Java (treat- est species diversity is found in tropical Asia (Robbrecht 1988), ing 29 species including 2 provisional names) and Wong (1989) where some 160 species occur, only one extending into Aus- for the Peninsular Malaysia (dealing with 54 species including 8 tralia. The species of the genus occur almost exclusively in the unnamed ones).
    [Show full text]
  • Spacewalk Database
    Purchaser First Inscribed First ID Name Purchaser Last Name Name Inscribed Last Name Biographic_Infomation 01558 Beth / Forrest Goodwin Ron & Margo Borrup In 1957 CURTISS S. (ARMY) ARMSTRONG became a member of America's Space Team. His career began with the launch of Explorer I and Apollo programs. His tireless dedication has contributed to America's future. He is truly 00022 Cheryl Ann Armstrong Curtiss S. Armstrong an American Space Pioneer. Science teacher and aerospace educator since 00023 Thomas J. Sarko Thomas J. Sarko 1975. McDonnell Douglas 25 Years, AMF Board of 00024 Lowell Grissom Lowell Grissom Directors Joined KSC in 1962 in the Director's Protocol Office. Responsible for the meticulous details for the arrival, lodging, and banquets for Kings, Queens and other VIP worldwide and their comprehensive tours of KSC with top KSC 00025 Major Jay M. Viehman Jay Merle Viehman Personnel briefing at each poi WWII US Army Air Force 1st Lt. 1943-1946. US Civil Service 1946-1972 Engineer. US Army Ballistic Missile Launch Operations. Redstone, Jupiter, Pershing. 1st Satellite (US), Mercury 1st Flight Saturn, Lunar Landing. Retired 1972 from 00026 Robert F. Heiser Robert F. Heiser NASA John F. Kennedy S Involved in Air Force, NASA, National and Commercial Space Programs since 1959. Commander Air Force Space Division 1983 to 1986. Director Kennedy Space Center - 1986 to 1 Jan 1992. Vice President, Lockheed Martin 00027 Gen. Forrest S. McCartney Forrest S. McCartney Launch Operations. Involved in the operations of the first 41 manned missions. Twenty years with NASA. Ten years 00028 Paul C. Donnelly Paul C.
    [Show full text]
  • NASA's John C. Stennis Space Center Mission Brochure
    National Aeronautics and Space Administration NASA’s John C. Stennis Space Center Mission Brochure National Aeronautics and Space Administration John C. Stennis Space Center Office of External Affairs Stennis Space Center, MS 39529-6000 800-237-1821 or 228-688-3333 www.nasa.gov/centers/stennis www.nasa.gov National Aeronautics and Space Administration John C. Stennis Space Center Office of External Affairs Stennis Space Center, MS 39529-6000 800-237-1821 or 228-688-3333 www.nasa.gov/centers/stennis www.nasa.gov Stennis Space Center 1961-2013 contentsstennis space center 4 .... Overview 18 ... Test Complex Panorama 6 .... History 20 ... INFINITY Science Center 8 .... Propulsion Testing 22 ... Stennis History 10 ... Applied Science 24 ... Stennis Facts 12 ... Outreach 26 ... Timeline 14 ... Education 31 ... Spinoffs 16 ... Economic Impact 32 ... Helpful Websites 33 ... Resident Agencies overviewstennis space center For more than four decades, John C. Stennis Space the AJ26 Aerojet rocket engines that will be used to development of new technologies, as well as the Instruction and Technical Training School and Naval Center in south Mississippi has served as NASA’s power the Taurus II on commercial cargo transport assessment, certification and acquisition of new and Oceanography Mine Warfare Center. In addition, it is primary rocket propulsion testing ground. Today, flights to the International Space Station. useful technologies from the commercial, academic home to the Lockheed Martin Mississippi Space and the center provides propulsion test services for and government sectors that improve the safety, Technology Center, the Rolls-Royce North America NASA and the Department of Defense, as well Stennis’ state-of-the-art test facilities include the efficiency and effectiveness of propulsion testing, Outdoor Jet Engine Testing Facility and the Pratt & as the private sector.
    [Show full text]
  • Loblolly Bay (Gordonia Lasianthus)
    Loblolly bay (Gordonia lasianthus) For definitions of botanical terms, visit en.wikipedia.org/wiki/Glossary_of_botanical_terms. Loblolly bay is an attractive evergreen tree found in swamps, bayheads and cypress domes throughout much of Florida. Its fragrant showy flowers bloom spring through summer and attract a variety of pollinators, including bees, flies and even the occasional hummingbird. Birds and other small animals find cover in the dense foliage. The tree is often confused with Sweetbay magnolia (Magnolia virginiana), which also has large white flowers and occurs in the same habitat. Photo by Mary Keim One of only two camellias native to Florida, Loblolly bay flowers are similar in appearance to those of the popular non-native ornamentals Camellia japonica and C. sasanqua. The creamy white flowers have five waxy petals with lightly fringed margins. They surround a center of bright yellow stamens. The blooms may be 4–5 inches in diameter. They are pedicellate, solitary and axillary. The simple leaves are glossy, dark green and leathery with bluntly toothed margins. They may be up to 5 inches long. Older leaves turn red in the fall. The trunk is straight with grayish- to reddish-brown bark that becomes furrowed with age. The crown is narrow and conical or cylindrical. Fruit is a woody, ovoid capsule that splits open when ripe. The genus name Gordonia honors James Gordon (1728–1791), a British nurseryman who specialized in camellias. The species epithet lasianthus is from the Greek lasios, meaning “shaggy, velvety or hairy,” and anthos, meaning “flower.” Family: Theaceae (Camellia or tea family) Native range: Panhandle, peninsula south to Sarasota and Palm Beach counties To see where natural populations of Loblolly bay have been vouchered, visit www.florida.plantatlas.usf.edu.
    [Show full text]
  • (Rubiaceae), a New Genus from Southeast Asia
    Phytotaxa 202 (4): 273–278 ISSN 1179-3155 (print edition) www.mapress.com/phytotaxa/ PHYTOTAXA Copyright © 2015 Magnolia Press Article ISSN 1179-3163 (online edition) http://dx.doi.org/10.11646/phytotaxa.202.4.5 Paralasianthus (Rubiaceae), a new genus from Southeast Asia HUA ZHU* Xishuangbanna Tropical Botanical Garden, Chinese Academy of Sciences, Kunming 650223, P.R. China *Author for correspondence: [email protected] Abstract The new genus Paralasianthus is described from South-East Asia. Five species are recognised in the genus, four of which required new combinations, P. brevipes, P. dichotomus, P. lowianus and P. hainanensis, and one is described as a new species, P. zhengyianus. A key to the species is presented. Key words: Paralasianthus, new genus, Rubiaceae, South East Asia Introduction The circumscription of Lasianthus Jack (1823: 125) has been modified by different authors, especially with regards to the number of ovary locules or pyrenes (Zhu et al. 2012). Jack (1823) described Lasianthus with a 4-locular ovary and a single, erect, basal ovule in each locule, which normally develops into a drupe with 4 pyrenes. Based on Malesian species Blume (1826) expanded Jack’s delimitation and defined Lasianthus as having 4–9-locular ovaries and drupes with 4–9 pyrenes. Korthals (1851) established Mephitidia subgen. Dysosmia (Korthals 1851: 224) based on a Javan species, M. dichotoma Korthals (1851: 224), which had a 2-locular ovary and a compressed, 2-pyrenate drupe with a thin wall. Miquel (1859) raised it to generic rank as Dysosmia (Korthals 1851: 224 ) Miquel (1859: 314), and returned Lasianthus Jack to Blume’s definition.
    [Show full text]