Exploration of the Universe with Reaction Machines
Total Page:16
File Type:pdf, Size:1020Kb
Load more
Recommended publications
-
History of Rocket Technology
CHAPTER 1 History of Rockets 1. 1. INTRODUCTION Action-Reaction Principle Take any technology and you always find that its practical demonstration had been realized much before the theory was established. However, you may note that the fast and effective refinement of a technology begins only after its theory, explaining the underlying basic principles, has been established. The action-reaction principle that is fundamental to jet propulsion, which includes airbreathing- as well as rocket-propulsion, was theoretically explained only in 1687 by the English scientist Sir Isaac Newton by his famous publication “Philosophiae Naturalis Principia Mathematica (“Mathematical Principles of Natural Philosophy”). But, approximately 2100 years before this, Archytas, a Greek philosopher, mathematician, astronomer, statesman, and strategist, had demonstrated the action-reaction principle by his toy pigeon in the city of Tarentum, Fig. 1. 1. Archytas suspended on a wire his wooden pigeon that contained hot steam at an elevated pressure in its belly cavity. The other end of the wire was hooked on to the top of a tall pole. On releasing a plug, a jet of steam escaped through a hole from the rear of the pigeon to produce a thrust that made the toy pigeon fly in circles around the pole. Thus Archytas mystified and amused the citizens of Tarentum by his flying toy- pigeon and demonstrated the fundamental principle of propulsion: “every force has an equal and opposite reaction”. The second recorded-demonstration of the action-reaction principle was in the first century B.C. Hero of Alexandria, a Greek mathematician 1 and scientist, constructed a device known as aeolipile. -
10. Collisions • Use Conservation of Momentum and Energy and The
10. Collisions • Use conservation of momentum and energy and the center of mass to understand collisions between two objects. • During a collision, two or more objects exert a force on one another for a short time: -F(t) F(t) Before During After • It is not necessary for the objects to touch during a collision, e.g. an asteroid flied by the earth is considered a collision because its path is changed due to the gravitational attraction of the earth. One can still use conservation of momentum and energy to analyze the collision. Impulse: During a collision, the objects exert a force on one another. This force may be complicated and change with time. However, from Newton's 3rd Law, the two objects must exert an equal and opposite force on one another. F(t) t ti tf Dt From Newton'sr 2nd Law: dp r = F (t) dt r r dp = F (t)dt r r r r tf p f - pi = Dp = ò F (t)dt ti The change in the momentum is defined as the impulse of the collision. • Impulse is a vector quantity. Impulse-Linear Momentum Theorem: In a collision, the impulse on an object is equal to the change in momentum: r r J = Dp Conservation of Linear Momentum: In a system of two or more particles that are colliding, the forces that these objects exert on one another are internal forces. These internal forces cannot change the momentum of the system. Only an external force can change the momentum. The linear momentum of a closed isolated system is conserved during a collision of objects within the system. -
The Physics of a Car Collision by Andrew Zimmerman Jones, Thoughtco.Com on 09.10.19 Word Count 947 Level MAX
The physics of a car collision By Andrew Zimmerman Jones, ThoughtCo.com on 09.10.19 Word Count 947 Level MAX Image 1. A crash test dummy sits inside a Toyota Corolla during the 2017 North American International Auto Show in Detroit, Michigan. Crash test dummies are used to predict the injuries that a human might sustain in a car crash. Photo by: Jim Watson/AFP/Getty Images During a car crash, energy is transferred from the vehicle to whatever it hits, be it another vehicle or a stationary object. This transfer of energy, depending on variables that alter states of motion, can cause injuries and damage cars and property. The object that was struck will either absorb the energy thrust upon it or possibly transfer that energy back to the vehicle that struck it. Focusing on the distinction between force and energy can help explain the physics involved. Force: Colliding With A Wall Car crashes are clear examples of how Newton's Laws of Motion work. His first law of motion, also referred to as the law of inertia, asserts that an object in motion will stay in motion unless an external force acts upon it. Conversely, if an object is at rest, it will remain at rest until an unbalanced force acts upon it. Consider a situation in which car A collides with a static, unbreakable wall. The situation begins with car A traveling at a velocity (v) and, upon colliding with the wall, ending with a velocity of 0. The force of this situation is defined by Newton's second law of motion, which uses the equation of This article is available at 5 reading levels at https://newsela.com. -
Appendix Relations with Alien Intelligences – the Scientific Basis of Metalaw1
Appendix Relations with Alien Intelligences – The Scientific Basis of Metalaw1 Ernst Fasan DK 340.114:341.229:2:133 1 The appendix was previously published by Berlin Verlag Arno Spitz in 1970. © Springer International Publishing Switzerland 2016 181 P.M. Sterns, L.I. Tennen (eds.), Private Law, Public Law, Metalaw and Public Policy in Space, Space Regulations Library 8, DOI 10.1007/978-3-319-27087-6 Contents Foreword by Wernher von Braun ����������������������������������������������������������������� 185 Introduction ����������������������������������������������������������������������������������������������������� 187 I: The Possibility of Encountering Nonhuman Intelligent Beings �������������� 189 Opinions in Ancient Literature ��������������������������������������������������������������������� 189 The Results of Modern Science �������������������������������������������������������������� 191 II: The Physical Nature of Extraterrestrial Beings �������������������������������������� 205 The Necessary Characteristics ��������������������������������������������������������������������� 205 Origin and Development of Protoplasmic Life ��������������������������������������� 209 Intelligent Machines – The Question of Robots �������������������������������������� 210 III: The Concept, Term, and Literature of Metalaw ����������������������������������� 213 Selection and Definition of the Term ����������������������������������������������������������� 213 A Survey of Literature ����������������������������������������������������������������������������� -
Carbon Monoxide in Jupiter After Comet Shoemaker-Levy 9
ICARUS 126, 324±335 (1997) ARTICLE NO. IS965655 Carbon Monoxide in Jupiter after Comet Shoemaker±Levy 9 1 1 KEITH S. NOLL AND DIANE GILMORE Space Telescope Science Institute, 3700 San Martin Drive, Baltimore, Maryland 21218 E-mail: [email protected] 1 ROGER F. KNACKE AND MARIA WOMACK Pennsylvania State University, Erie, Pennsylvania 16563 1 CAITLIN A. GRIFFITH Northern Arizona University, Flagstaff, Arizona 86011 AND 1 GLENN ORTON Jet Propulsion Laboratory, Pasadena, California 91109 Received February 5, 1996; revised November 5, 1996 for roughly half the mass. In high-temperature shocks, Observations of the carbon monoxide fundamental vibra- most of the O is converted to CO (Zahnle and MacLow tion±rotation band near 4.7 mm before and after the impacts 1995), making CO one of the more abundant products of of the fragments of Comet Shoemaker±Levy 9 showed no de- a large impact. tectable changes in the R5 and R7 lines, with one possible By contrast, oxygen is a rare element in Jupiter's upper exception. Observations of the G-impact site 21 hr after impact atmosphere. The principal reservoir of oxygen in Jupiter's do not show CO emission, indicating that the heated portions atmosphere is water. The Galileo Probe Mass Spectrome- of the stratosphere had cooled by that time. The large abun- ter found a mixing ratio of H OtoH of X(H O) # 3.7 3 dances of CO detected at the millibar pressure level by millime- 2 2 2 24 P et al. ter wave observations did not extend deeper in Jupiter's atmo- 10 at P 11 bars (Niemann 1996). -
Albert Einstein and Wernher Von Braun – the Two Great German-American
Albert Einstein and Wernher von Braun – the two great German-American Physicists seen in a Historical Perspective FRIEDWARDT WINTERBERG, University of Nevada Reno. Abstract It was Albert Einstein who changed our view of the universe to be a non-Euclidean curved space-time. And it was Wernher von Braun who showed how to make the first step to take us into this universe, leaving the gravitational field of our planet earth, with the landing a man on the moon the greatest event in human history. Both these great physicists did this on the shoulders of giants. Albert Einstein on the shoulders of his German landsman Bernhard Riemann, and Wernher von Braun on the shoulders of Goddard and Oberth. Both Einstein and von Braun made a Faustian pact with the devil, von Braun by accepting research funds from Hitler, and Einstein by urging Roosevelt to build the atom bomb (against Hitler). Both of these great men later regretted the use of their work for the killing of innocent bystanders, even though in the end the invention of nuclear energy and space flight is for the benefit of man. Their example serves as a warning for all of us. It can be formulated as follows: “Can I in good conscience accept research funds from the military to advance scientific knowledge, for weapons developed against an abstract enemy I never have met in person?" Weapons if used do not differentiate between the scientist, who invented these weapons, and the non-scientist. In this short essay I will show that there are many surprising parallels in the life of Albert Einstein and Wernher von Braun, the two great German-American physicists who had a decisive influence on the history of the 20th century. -
Now in English! Hermann Oberth: “The Rocket Into Planetary Space”
Now in English! Formats: HardcoverBook eBook (PDF) eBook (EPUB) Print/eBook Hermann Oberth: “The Rocket into Planetary Space” “Under certain economic conditions, the construction of such machines may even become profitable. Such conditions might arise within a few decades. In the present document I intend to prove this statement.” (“Die Rakete zu den Planetenräumen”, Hermann Oberth 1923). With this revolutionary statement, physicist Hermann Oberth proved to be one of the most visionary and ingenious pioneers of rocketry. Fundamental and scientifically solid, his ideas were not only comprehensive, but he also conducted meticulous investigations about all possible rocket parameters. His proposals included spacecraft instrumentation for scientific missions, and novel ideas for launch and test facilities. Oberth did not limit himself to robotic rockets, but also looked closely at the various technical, physiological, and psychological problems and challenges that would be encountered with sending humans into space. Fundamental and scientific-technically solid were not only his comprehensive, meticulous investigations and optimization trade-offs of all possible rocket parameters, but also his proposals for spacecraft- instrumentation for manned and scientific missions as well as his novel ideas for launch- and test facilities. Oberth’s “Outlook” (§17) provides a prophetic “blue-print” of the many space applications which followed in the years to come and culminated in the implementation of today’s permanent manned space station which followed Hermann Oberth’s conceptual descriptions very closely. The book, thoroughly and expertly translated and now first published in English allows also all non- German readers to go back to the beginning, appreciate the problems associated with space travel and understand the never ending quest for space exploration. -
A Pictorial History of Rockets
he mighty space rockets of today are the result A Pictorial Tof more than 2,000 years of invention, experi- mentation, and discovery. First by observation and inspiration and then by methodical research, the History of foundations for modern rocketry were laid. Rockets Building upon the experience of two millennia, new rockets will expand human presence in space back to the Moon and Mars. These new rockets will be versatile. They will support Earth orbital missions, such as the International Space Station, and off- world missions millions of kilometers from home. Already, travel to the stars is possible. Robotic spacecraft are on their way into interstellar space as you read this. Someday, they will be followed by human explorers. Often lost in the shadows of time, early rocket pioneers “pushed the envelope” by creating rocket- propelled devices for land, sea, air, and space. When the scientific principles governing motion were discovered, rockets graduated from toys and novelties to serious devices for commerce, war, travel, and research. This work led to many of the most amazing discoveries of our time. The vignettes that follow provide a small sampling of stories from the history of rockets. They form a rocket time line that includes critical developments and interesting sidelines. In some cases, one story leads to another, and in others, the stories are inter- esting diversions from the path. They portray the inspirations that ultimately led to us taking our first steps into outer space. NASA’s new Space Launch System (SLS), commercial launch systems, and the rockets that follow owe much of their success to the accomplishments presented here. -
"Ringing" from an Asteroid Collision Event Which Triggered the Flood?
The Proceedings of the International Conference on Creationism Volume 6 Print Reference: Pages 255-261 Article 23 2008 Is the Moon's Orbit "Ringing" from an Asteroid Collision Event which Triggered the Flood? Ronald G. Samec Bob Jones University Follow this and additional works at: https://digitalcommons.cedarville.edu/icc_proceedings DigitalCommons@Cedarville provides a publication platform for fully open access journals, which means that all articles are available on the Internet to all users immediately upon publication. However, the opinions and sentiments expressed by the authors of articles published in our journals do not necessarily indicate the endorsement or reflect the views of DigitalCommons@Cedarville, the Centennial Library, or Cedarville University and its employees. The authors are solely responsible for the content of their work. Please address questions to [email protected]. Browse the contents of this volume of The Proceedings of the International Conference on Creationism. Recommended Citation Samec, Ronald G. (2008) "Is the Moon's Orbit "Ringing" from an Asteroid Collision Event which Triggered the Flood?," The Proceedings of the International Conference on Creationism: Vol. 6 , Article 23. Available at: https://digitalcommons.cedarville.edu/icc_proceedings/vol6/iss1/23 In A. A. Snelling (Ed.) (2008). Proceedings of the Sixth International Conference on Creationism (pp. 255–261). Pittsburgh, PA: Creation Science Fellowship and Dallas, TX: Institute for Creation Research. Is the Moon’s Orbit “Ringing” from an Asteroid Collision Event which Triggered the Flood? Ronald G. Samec, Ph. D., M. A., B. A., Physics Department, Bob Jones University, Greenville, SC 29614 Abstract We use ordinary Newtonian orbital mechanics to explore the possibility that near side lunar maria are giant impact basins left over from a catastrophic impact event that caused the present orbital configuration of the moon. -
Relativistic Kinematics of Particle Interactions Introduction
le kin rel.tex Relativistic Kinematics of Particle Interactions byW von Schlipp e, March2002 1. Notation; 4-vectors, covariant and contravariant comp onents, metric tensor, invariants. 2. Lorentz transformation; frequently used reference frames: Lab frame, centre-of-mass frame; Minkowski metric, rapidity. 3. Two-b o dy decays. 4. Three-b o dy decays. 5. Particle collisions. 6. Elastic collisions. 7. Inelastic collisions: quasi-elastic collisions, particle creation. 8. Deep inelastic scattering. 9. Phase space integrals. Intro duction These notes are intended to provide a summary of the essentials of relativistic kinematics of particle reactions. A basic familiarity with the sp ecial theory of relativity is assumed. Most derivations are omitted: it is assumed that the interested reader will b e able to verify the results, which usually requires no more than elementary algebra. Only the phase space calculations are done in some detail since we recognise that they are frequently a bit of a struggle. For a deep er study of this sub ject the reader should consult the monograph on particle kinematics byByckling and Ka jantie. Section 1 sets the scene with an intro duction of the notation used here. Although other notations and conventions are used elsewhere, I present only one version which I b elieveto b e the one most frequently encountered in the literature on particle physics, notably in such widely used textb o oks as Relativistic Quantum Mechanics by Bjorken and Drell and in the b o oks listed in the bibliography. This is followed in section 2 by a brief discussion of the Lorentz transformation. -
Cosmic Collisions” Planetarium Show
“Cosmic Collisions” Planetarium Show Theme: A Tour of the Universe within the context of “Things Colliding with Other Things” The educational value of NASM Theater programming is that the stunning visual images displayed engage the interest and desire to learn in students of all ages. The programs do not substitute for an in-depth learning experience, but they do facilitate learning and provide a framework for additional study elaborations, both as part of the Museum visit and afterward. See the “Alignment with Standards” table for details regarding how Cosmic Collisions and its associated classroom extensions meet specific national standards of learning (SoL’s). Cosmic Collisions takes its audience on a tour of the Universe, from the very small (nuclear fusion processes powering our Sun) to the very large (galaxies), all in the context of the role “collisions” have in the overall scheme of things. Since the concept of large-scale collisions engages the attention of most learners of any age, Cosmic Collisions can be the starting point of a broader learning experience. What you will see in the Cosmic Collisions program: • Meteors (“shooting stars”) – fragments of a comet colliding with Earth’s atmosphere • The Impact Theory of the formation of the Moon • Collisions between hydrogen atoms in solar interior, resulting in nuclear fusion • Charged particles in the Solar Wind creating an aurora display when they hit Earth’s atmosphere • The very large impact that “killed the dinosaurs” • Future impact risk?!? – Perhaps flying a spaceship alongside would deflect enough… • Stellar collisions within a globular cluster • The Milky Way and Andromeda galaxies collide Learning Elaboration While Visiting the National Air and Space Museum Thousands of books and articles have been written about astronomy, but a good starting point is the many books and related materials available at the Museum Store in each NASM building. -
Celebrating 50 Years of America in Space Fifty Years Ago, a Group of German Rocket Pioneers Led the Team That Put America Into Space
EIR Science & Technology Celebrating 50 Years Of America in Space Fifty years ago, a group of German rocket pioneers led the team that put America into space. Marsha Freeman reports on a celebration held to mark that milestone. For millions of Americans, the successful launch of the Ex- cle, a 36-story, 6.5-million-pound rocket. Its remarkable re- plorer-1 satellite on the evening of Jan. 31, 1958, three months cord includes 13 launches without any failures, a testament after the Soviet Union orbited Sputnik, allowed a sigh of re- not only to the meticulous design, rigorous testing, and ex- lief. For a team of over 100 German space pioneers, it was the traordinary management of this complex project, but also to culmination of nearly two decades of rocket experiments, and the decades of dedication of the German space pioneers to the proved that soon, man himself, could explore space. dream of space flight. The German rocket team that came to the United States That dream was energized in the late 1920s by Hermann after World War II, under the leadership of Wernher von Oberth, who himself took the dreams of Johannes Kepler, Braun, had already carried out many of the tests, and experi- Jules Verne, and others before him, and created the scientific enced the failures, necessary for the technology of space flight and engineering basis to make manned space flight a reality.1 to be born. As teenagers in Germany in the 1930s, some had In 1927, the German Society for Space Travel was orga- participated in amateur rocket clubs to begin the small-scale nized in Breslau, formed by space enthusiasts, with the after- experiments that would eventually take men to the Moon, and school participation of a teenage Wernher von Braun, and to carry out educational campaigns to excite the public about guidance from Professor Oberth.