Relativistic Kinematics of Particle Interactions Introduction

Total Page:16

File Type:pdf, Size:1020Kb

Relativistic Kinematics of Particle Interactions Introduction le kin rel.tex Relativistic Kinematics of Particle Interactions byW von Schlipp e, March2002 1. Notation; 4-vectors, covariant and contravariant comp onents, metric tensor, invariants. 2. Lorentz transformation; frequently used reference frames: Lab frame, centre-of-mass frame; Minkowski metric, rapidity. 3. Two-b o dy decays. 4. Three-b o dy decays. 5. Particle collisions. 6. Elastic collisions. 7. Inelastic collisions: quasi-elastic collisions, particle creation. 8. Deep inelastic scattering. 9. Phase space integrals. Intro duction These notes are intended to provide a summary of the essentials of relativistic kinematics of particle reactions. A basic familiarity with the sp ecial theory of relativity is assumed. Most derivations are omitted: it is assumed that the interested reader will b e able to verify the results, which usually requires no more than elementary algebra. Only the phase space calculations are done in some detail since we recognise that they are frequently a bit of a struggle. For a deep er study of this sub ject the reader should consult the monograph on particle kinematics byByckling and Ka jantie. Section 1 sets the scene with an intro duction of the notation used here. Although other notations and conventions are used elsewhere, I present only one version which I b elieveto b e the one most frequently encountered in the literature on particle physics, notably in such widely used textb o oks as Relativistic Quantum Mechanics by Bjorken and Drell and in the b o oks listed in the bibliography. This is followed in section 2 by a brief discussion of the Lorentz transformation. This can b e dealt with fairly brie y b ecause Lorentz transformations play no ma jor part in the kind of calculations characteristic for the rest of this b o ok: central to most relativistic calculations is the notion of Lorentz invariants. This is so b ecause all observables can b e expressed in terms of invariants. The transformations b etween di erent reference frames are usually straight forward for the invariants of the problem without involving the use of the Lorentz transformation formul. In the following sections the kinematics of particle reactions is develop ed b eginning with the simplest case, that of two-b o dy decays of unstable particles, and culminating in multiparticle kinematics which is of paramount imp ortance for the study of particle reactions at mo dern high energy accelerators and colliders. The notes conclude with a fairly detailed discussion of phase space calculations. The most exhaustive treatment of the sub ject of relativistic kinematics is given in the monograph byByckling and Ka jantie [1 ]. The notation and other conventions used here are 1 those of [2 ]. A summary of formulas of relativistic kinematics can b e found in the Particle Data Tables [3], 1. Notation and units 1 The covariantcomponents of 4-vectors are denoted by sup erscript Greek letters , etc. Thus we write x , =0; 1; 2; 3, such that 0 1 2 3 x = ct; x = x; x = y; x = z The contravariantcomponents of 4-vectors are lab eled by subscripts: 0 x = x ;x = x; x = y; x = z 0 1 2 3 The scalar pro duct of two 4-vectors is given by 0 0 1 1 2 2 3 3 x y = x y = x y x y x y x y where the notation x y implies summation over . The minus signs in the scalar pro duct signify that the 4-vector space is not Euclidian. This is also expressed byintro ducing the metric tensor g with diagonal elements (1; 1; 1; 1) and zero o -diagonal elements: g = diag(1; 1; 1; 1) The contravariantelements of the metric tensor coincide with its covariant elements, i.e. we havealsog = diag(1; 1; 1; 1) Using the summation convention one can checkby explicit calculation that x = g x and x = g x This pro cedure is referred to as the lowering and raising of the indices. Using the metric tensor one can express the scalar pro duct in the following equivalent forms: x y = g x y = g x y The invariant square of a 4-vector is given by 2 x = x x 2 2 2 If x > 0 the 4-vector is said to b e time-like,ifx =0 itis light-like, and if x < 0itis space-like. In the following we shall use units de ned by c = 1, where c is the sp eed of light. This is convenient in the kind of calculations characteristic of relativistic kinematics, b ecause all expressions must then b e homogeneous in energies, momenta and masses, which all havethe same dimension. Velo cities do not o ccur very often in these calculations, but one must remember that particle velo cities are dimensionless and do not exceed 1. Thus the relativistic factor of a particle of velo city v is written as 1=2 2 = 1 v (1) The units of energy, momentum and mass most frequently used in elementary particle 6 9 physics are the Mega-electron Volt(1MeV=10 eV), Giga-electron Volt (1 GeV = 10 eV) 1 c.f. P.A.M. Dirac, The Principles of Quantum Mechanics, 4th edition, OUP, 1958, p. 254 2 12 and Tera-electron Volt (1 TeV = 10 eV). One should rememb er that the electron mass is approximately 0.5 MeV, the proton mass is nearly 1 GeV (a more accurate value is 0.94 GeV), and the highest energy accelerators in op eration accelerate protons to ab out 1 TeV. 2. Lorentz transformation. The Lorentz transformation b etween two inertial frames is of the form 0 x ! x = a x (2) The invariance of the scalar pro duct of two4-vectors implies that a a = (3) where is the Kronecker symb ol. 0 If the axes of the two frames coincide at time t = t = 0 and the frames move with relative velo city ~v ,then 00 0 x = (x + vx ) jj 0 0 x = (x + vx ) (4) jj jj 0 ~x = ~x ? ? 2 where v = j~v j, x is the comp onentof x in the direction of ~v , i.e. the mo dulus of ~x =(~x ~v )~v=v , jj jj 2 1=2 ~x = ~x ~x and =(1 v ) .Thus in this particular case the Lorentz transformation is ? jj de ned by three parameters, namely the three comp onents of the velo city ~v . If in addition the two frames are rotated with resp ect to each other, then the transfor- mation matrix dep ends also on the three Euler angles. Therefore the most general Lorentz transformation dep ends on six parameters. The inverse Lorentz transformation from the primed to the unprimed frame is obtained by replacing in Eq. (4) the primed by the unprimed co ordinates and vice versa, and changing the sign of v , i.e. 0 00 0 0 00 0 x = (x vx ) x = (x vx ) ~x = ~x (5) ? jj jj jj ? Energy-momentum 4-vector. Like time, so also energy is not invariant in relativity, but rather transforms under Lorentz transformation like the zeroth comp onentofa 4-vector, the other three comp onents b eing the ordinary 3-vector momentum. Let us denote the energy-momentum 4-vector of a particle of mass m byp, i.e. 0 p=(p ;~p) (6) 0 Frequently we shall denote the zeroth comp onent p , i.e. the energy,by E .Thus the invariant square of p is 2 2 2 2 p = p p = E p~ = m (7) The velo city ~v of the particle is de ned by ~p = m~v (8) From Eqs. (1), (7) and (8) we nd the useful relations = E=m (9) 3 and ~v = p=E~ (10) The energy-momentum 4-vector p transforms like the space-time 4-vector x (c.f. Eq. (4)): 00 0 p = (p + vp ) jj 0 0 p = (p + vp ) (11) jj jj 0 p~ = p~ ? ? Minkowski metric; rapidity. An alternative description of the Lorentz transformation (4) is based on the Minkowski trickofintro ducing an imaginary time x = it. There is now no need to havetwo kinds of 4 vectors, such as the contravariantandcovariantvectors considered ab ove. Instead we denote the 4-vector comp onents of space-time by x = x; x = y; x = z; x = it: 1 2 3 4 and the Lorentz invariant square b ecomes 2 2 2 2 x + x + x + x =invariant: 1 2 3 4 The transformation, which leaves this expression invariant, is a rotation. Thus, for instance, a rotation in the (x ;x ) plane, leaving x and x unchanged, is of the form 1 4 2 3 0 0 x = x cos x sin ; x = x sin + x cos 1 4 1 4 1 4 Of course, no mathematical trick gets us o the ho ok: nature demands space-time to b e non-Euclidian. Going back from the world of an imaginary time to the real world wemust write our rotation as 0 0 x = x cos it sin ; it = x sin + it cos and using the identities i sin =sinhi ; cos =coshi and setting y = i we recover a completely real form of the Lorentz transformation, viz 0 0 x = x cosh y + t sinh y; t = x sinh y + t cosh y For this to b e equivalent with Eq. (4) wemust demand that y b e real, and hence is imaginary.Thus the price to pay for a familiar Euclidian form of the rotation in the (x ;x ) 1 4 plane is an imaginary angle of rotation.
Recommended publications
  • The Five Common Particles
    The Five Common Particles The world around you consists of only three particles: protons, neutrons, and electrons. Protons and neutrons form the nuclei of atoms, and electrons glue everything together and create chemicals and materials. Along with the photon and the neutrino, these particles are essentially the only ones that exist in our solar system, because all the other subatomic particles have half-lives of typically 10-9 second or less, and vanish almost the instant they are created by nuclear reactions in the Sun, etc. Particles interact via the four fundamental forces of nature. Some basic properties of these forces are summarized below. (Other aspects of the fundamental forces are also discussed in the Summary of Particle Physics document on this web site.) Force Range Common Particles It Affects Conserved Quantity gravity infinite neutron, proton, electron, neutrino, photon mass-energy electromagnetic infinite proton, electron, photon charge -14 strong nuclear force ≈ 10 m neutron, proton baryon number -15 weak nuclear force ≈ 10 m neutron, proton, electron, neutrino lepton number Every particle in nature has specific values of all four of the conserved quantities associated with each force. The values for the five common particles are: Particle Rest Mass1 Charge2 Baryon # Lepton # proton 938.3 MeV/c2 +1 e +1 0 neutron 939.6 MeV/c2 0 +1 0 electron 0.511 MeV/c2 -1 e 0 +1 neutrino ≈ 1 eV/c2 0 0 +1 photon 0 eV/c2 0 0 0 1) MeV = mega-electron-volt = 106 eV. It is customary in particle physics to measure the mass of a particle in terms of how much energy it would represent if it were converted via E = mc2.
    [Show full text]
  • 10. Collisions • Use Conservation of Momentum and Energy and The
    10. Collisions • Use conservation of momentum and energy and the center of mass to understand collisions between two objects. • During a collision, two or more objects exert a force on one another for a short time: -F(t) F(t) Before During After • It is not necessary for the objects to touch during a collision, e.g. an asteroid flied by the earth is considered a collision because its path is changed due to the gravitational attraction of the earth. One can still use conservation of momentum and energy to analyze the collision. Impulse: During a collision, the objects exert a force on one another. This force may be complicated and change with time. However, from Newton's 3rd Law, the two objects must exert an equal and opposite force on one another. F(t) t ti tf Dt From Newton'sr 2nd Law: dp r = F (t) dt r r dp = F (t)dt r r r r tf p f - pi = Dp = ò F (t)dt ti The change in the momentum is defined as the impulse of the collision. • Impulse is a vector quantity. Impulse-Linear Momentum Theorem: In a collision, the impulse on an object is equal to the change in momentum: r r J = Dp Conservation of Linear Momentum: In a system of two or more particles that are colliding, the forces that these objects exert on one another are internal forces. These internal forces cannot change the momentum of the system. Only an external force can change the momentum. The linear momentum of a closed isolated system is conserved during a collision of objects within the system.
    [Show full text]
  • Qcd in Heavy Quark Production and Decay
    QCD IN HEAVY QUARK PRODUCTION AND DECAY Jim Wiss* University of Illinois Urbana, IL 61801 ABSTRACT I discuss how QCD is used to understand the physics of heavy quark production and decay dynamics. My discussion of production dynam- ics primarily concentrates on charm photoproduction data which is compared to perturbative QCD calculations which incorporate frag- mentation effects. We begin our discussion of heavy quark decay by reviewing data on charm and beauty lifetimes. Present data on fully leptonic and semileptonic charm decay is then reviewed. Mea- surements of the hadronic weak current form factors are compared to the nonperturbative QCD-based predictions of Lattice Gauge The- ories. We next discuss polarization phenomena present in charmed baryon decay. Heavy Quark Effective Theory predicts that the daugh- ter baryon will recoil from the charmed parent with nearly 100% left- handed polarization, which is in excellent agreement with present data. We conclude by discussing nonleptonic charm decay which are tradi- tionally analyzed in a factorization framework applicable to two-body and quasi-two-body nonleptonic decays. This discussion emphasizes the important role of final state interactions in influencing both the observed decay width of various two-body final states as well as mod- ifying the interference between Interfering resonance channels which contribute to specific multibody decays. "Supported by DOE Contract DE-FG0201ER40677. © 1996 by Jim Wiss. -251- 1 Introduction the direction of fixed-target experiments. Perhaps they serve as a sort of swan song since the future of fixed-target charm experiments in the United States is A vast amount of important data on heavy quark production and decay exists for very short.
    [Show full text]
  • On the Mass Spectrum of Exotic Protonium Atom in Oscillator Representation Method
    International Journal of Advanced Science and Technology Vol.74 (2015), pp.43-48 http://dx.doi.org/10.14257/ijast.2015.74.05 On the Mass Spectrum of Exotic Protonium Atom in Oscillator Representation Method Arezu Jahanshir Assistant professor and faculty member of Bueinzahra Technical University, Iran [email protected] Abstract In the given paper one determines the constituent mass of the bound state and binding energy of hadronic exotic system, according to the basis investigation of the asymptotically behavior of the loop function of scalar particles in the external electromagnet field are analytically determined exploration of these states through relativistic and non-perturbative corrections. It is shown that, the mass spectrum of a relativistic bound state of protonium consisting from proton and anti-proton is differing from a mass of initial particles. Keywords: protonium, constituent mass, Hamiltonian, Green function, scalar particles 1. Introduction All of theoretical high energy physician by using mathematical methods and new theories try to understand how bound state arise in the formalism of quantum field theory and to work out effective methods to calculate all characteristics of these bound states, especially their masses, binding energy and spin interactions. The analysis of a bound state is difficult when the interaction have to be considered as relativistic, i.e. when they travel at speeds considerably near the "c". The theoretical criterion is that the coupling constant should be strong [1-6] and masses of intermediate particles gluons in quantum chromodynamic should be big in comparison with masses of constituents. New importance to the exotic hadronic bound state physics was given by the development of quantum chromodynamic, the modern theory of strong interactions.
    [Show full text]
  • The Physics of a Car Collision by Andrew Zimmerman Jones, Thoughtco.Com on 09.10.19 Word Count 947 Level MAX
    The physics of a car collision By Andrew Zimmerman Jones, ThoughtCo.com on 09.10.19 Word Count 947 Level MAX Image 1. A crash test dummy sits inside a Toyota Corolla during the 2017 North American International Auto Show in Detroit, Michigan. Crash test dummies are used to predict the injuries that a human might sustain in a car crash. Photo by: Jim Watson/AFP/Getty Images During a car crash, energy is transferred from the vehicle to whatever it hits, be it another vehicle or a stationary object. This transfer of energy, depending on variables that alter states of motion, can cause injuries and damage cars and property. The object that was struck will either absorb the energy thrust upon it or possibly transfer that energy back to the vehicle that struck it. Focusing on the distinction between force and energy can help explain the physics involved. Force: Colliding With A Wall Car crashes are clear examples of how Newton's Laws of Motion work. His first law of motion, also referred to as the law of inertia, asserts that an object in motion will stay in motion unless an external force acts upon it. Conversely, if an object is at rest, it will remain at rest until an unbalanced force acts upon it. Consider a situation in which car A collides with a static, unbreakable wall. The situation begins with car A traveling at a velocity (v) and, upon colliding with the wall, ending with a velocity of 0. The force of this situation is defined by Newton's second law of motion, which uses the equation of This article is available at 5 reading levels at https://newsela.com.
    [Show full text]
  • Physics 9Hb: Special Relativity & Thermal/Statistical Physics
    PHYSICS 9HB: SPECIAL RELATIVITY & THERMAL/STATISTICAL PHYSICS Tom Weideman University of California, Davis UCD: Physics 9HB – Special Relativity and Thermal/Statistical Physics This text is disseminated via the Open Education Resource (OER) LibreTexts Project (https://LibreTexts.org) and like the hundreds of other texts available within this powerful platform, it freely available for reading, printing and "consuming." Most, but not all, pages in the library have licenses that may allow individuals to make changes, save, and print this book. Carefully consult the applicable license(s) before pursuing such effects. Instructors can adopt existing LibreTexts texts or Remix them to quickly build course-specific resources to meet the needs of their students. Unlike traditional textbooks, LibreTexts’ web based origins allow powerful integration of advanced features and new technologies to support learning. The LibreTexts mission is to unite students, faculty and scholars in a cooperative effort to develop an easy-to-use online platform for the construction, customization, and dissemination of OER content to reduce the burdens of unreasonable textbook costs to our students and society. The LibreTexts project is a multi-institutional collaborative venture to develop the next generation of open-access texts to improve postsecondary education at all levels of higher learning by developing an Open Access Resource environment. The project currently consists of 13 independently operating and interconnected libraries that are constantly being optimized by students, faculty, and outside experts to supplant conventional paper-based books. These free textbook alternatives are organized within a central environment that is both vertically (from advance to basic level) and horizontally (across different fields) integrated.
    [Show full text]
  • Physics 200 Problem Set 7 Solution Quick Overview: Although Relativity Can Be a Little Bewildering, This Problem Set Uses Just A
    Physics 200 Problem Set 7 Solution Quick overview: Although relativity can be a little bewildering, this problem set uses just a few ideas over and over again, namely 1. Coordinates (x; t) in one frame are related to coordinates (x0; t0) in another frame by the Lorentz transformation formulas. 2. Similarly, space and time intervals (¢x; ¢t) in one frame are related to inter- vals (¢x0; ¢t0) in another frame by the same Lorentz transformation formu- las. Note that time dilation and length contraction are just special cases: it is time-dilation if ¢x = 0 and length contraction if ¢t = 0. 3. The spacetime interval (¢s)2 = (c¢t)2 ¡ (¢x)2 between two events is the same in every frame. 4. Energy and momentum are always conserved, and we can make e±cient use of this fact by writing them together in an energy-momentum vector P = (E=c; p) with the property P 2 = m2c2. In particular, if the mass is zero then P 2 = 0. 1. The earth and sun are 8.3 light-minutes apart. Ignore their relative motion for this problem and assume they live in a single inertial frame, the Earth-Sun frame. Events A and B occur at t = 0 on the earth and at 2 minutes on the sun respectively. Find the time di®erence between the events according to an observer moving at u = 0:8c from Earth to Sun. Repeat if observer is moving in the opposite direction at u = 0:8c. Answer: According to the formula for a Lorentz transformation, ³ u ´ 1 ¢tobserver = γ ¢tEarth-Sun ¡ ¢xEarth-Sun ; γ = p : c2 1 ¡ (u=c)2 Plugging in the numbers gives (notice that the c implicit in \light-minute" cancels the extra factor of c, which is why it's nice to measure distances in terms of the speed of light) 2 min ¡ 0:8(8:3 min) ¢tobserver = p = ¡7:7 min; 1 ¡ 0:82 which means that according to the observer, event B happened before event A! If we reverse the sign of u then 2 min + 0:8(8:3 min) ¢tobserver 2 = p = 14 min: 1 ¡ 0:82 2.
    [Show full text]
  • Mean Lifetime Part 3: Cosmic Muons
    MEAN LIFETIME PART 3: MINERVA TEACHER NOTES DESCRIPTION Physics students often have experience with the concept of half-life from lessons on nuclear decay. Teachers may introduce the concept using M&M candies as the decaying object. Therefore, when students begin their study of decaying fundamental particles, their understanding of half-life may be at the novice level. The introduction of mean lifetime as used by particle physicists can cause confusion over the difference between half-life and mean lifetime. Students using this activity will develop an understanding of the difference between half-life and mean lifetime and the reason particle physicists prefer mean lifetime. Mean Lifetime Part 3: MINERvA builds on the Mean Lifetime Part 1: Dice which uses dice as a model for decaying particles, and Mean Lifetime Part 2: Cosmic Muons which uses muon data collected with a QuarkNet cosmic ray muon detector (detector); however, these activities are not required prerequisites. In this activity, students access authentic muon data collected by the Fermilab MINERvA detector in order to determine the half-life and mean lifetime of these fundamental particles. This activity is based on the Particle Decay activity from Neutrinos in the Classroom (http://neutrino-classroom.org/particle_decay.html). STANDARDS ADDRESSED Next Generation Science Standards Science and Engineering Practices 4. Analyzing and interpreting data 5. Using mathematics and computational thinking Crosscutting Concepts 1. Patterns 2. Cause and Effect: Mechanism and Explanation 3. Scale, Proportion, and Quantity 4. Systems and System Models 7. Stability and Change Common Core Literacy Standards Reading 9-12.7 Translate quantitative or technical information .
    [Show full text]
  • 8. Special Relativity
    8. Special Relativity Although Newtonian mechanics gives an excellent description of Nature, it is not uni- versally valid. When we reach extreme conditions — the very small, the very heavy or the very fast — the Newtonian Universe that we’re used to needs replacing. You could say that Newtonian mechanics encapsulates our common sense view of the world. One of the major themes of twentieth century physics is that when you look away from our everyday world, common sense is not much use. One such extreme is when particles travel very fast. The theory that replaces New- tonian mechanics is due to Einstein. It is called special relativity. The effects of special relativity become apparent only when the speeds of particles become comparable to the speed of light in the vacuum. Universally denoted as c, the speed of light is c = 299792458 ms−1 This value of c is exact. In fact, it would be more precise to say that this is the definition of what we mean by a meter: it is the distance travelled by light in 1/299792458 seconds. For the purposes of this course, we’ll be quite happy with the approximation c 3 108 ms−1. ≈ × The first thing to say is that the speed of light is fast. Really fast. The speed of sound is around 300 ms−1; escape velocity from the Earth is around 104 ms−1; the orbital speed of our solar system in the Milky Way galaxy is around 105 ms−1. As we shall soon see, nothing travels faster than c.
    [Show full text]
  • Study of the Higgs Boson Decay Into B-Quarks with the ATLAS Experiment - Run 2 Charles Delporte
    Study of the Higgs boson decay into b-quarks with the ATLAS experiment - run 2 Charles Delporte To cite this version: Charles Delporte. Study of the Higgs boson decay into b-quarks with the ATLAS experiment - run 2. High Energy Physics - Experiment [hep-ex]. Université Paris Saclay (COmUE), 2018. English. NNT : 2018SACLS404. tel-02459260 HAL Id: tel-02459260 https://tel.archives-ouvertes.fr/tel-02459260 Submitted on 29 Jan 2020 HAL is a multi-disciplinary open access L’archive ouverte pluridisciplinaire HAL, est archive for the deposit and dissemination of sci- destinée au dépôt et à la diffusion de documents entific research documents, whether they are pub- scientifiques de niveau recherche, publiés ou non, lished or not. The documents may come from émanant des établissements d’enseignement et de teaching and research institutions in France or recherche français ou étrangers, des laboratoires abroad, or from public or private research centers. publics ou privés. Study of the Higgs boson decay into b-quarks with the ATLAS experiment run 2 These` de doctorat de l’Universite´ Paris-Saclay prepar´ ee´ a` Universite´ Paris-Sud Ecole doctorale n◦576 Particules, Hadrons, Energie,´ Noyau, Instrumentation, Imagerie, NNT : 2018SACLS404 Cosmos et Simulation (PHENIICS) Specialit´ e´ de doctorat : Physique des particules These` present´ ee´ et soutenue a` Orsay, le 19 Octobre 2018, par CHARLES DELPORTE Composition du Jury : Achille STOCCHI Universite´ Paris Saclay (LAL) President´ Giovanni MARCHIORI Sorbonne Universite´ (LPNHE) Rapporteur Paolo MERIDIANI Universite´ de Rome (INFN), CERN Rapporteur Matteo CACCIARI Universite´ Paris Diderot (LPTHE) Examinateur Fred´ eric´ DELIOT Universite´ Paris Saclay (CEA) Examinateur Jean-Baptiste DE VIVIE Universite´ Paris Saclay (LAL) Directeur de these` Daniel FOURNIER Universite´ Paris Saclay (LAL) Invite´ ` ese de doctorat Th iii Synthèse Le Modèle Standard fournit un modèle élégant à la description des particules élémentaires, leurs propriétés et leurs interactions.
    [Show full text]
  • (Special) Relativity
    (Special) Relativity With very strong emphasis on electrodynamics and accelerators Better: How can we deal with moving charged particles ? Werner Herr, CERN Reading Material [1 ]R.P. Feynman, Feynman lectures on Physics, Vol. 1 + 2, (Basic Books, 2011). [2 ]A. Einstein, Zur Elektrodynamik bewegter K¨orper, Ann. Phys. 17, (1905). [3 ]L. Landau, E. Lifschitz, The Classical Theory of Fields, Vol2. (Butterworth-Heinemann, 1975) [4 ]J. Freund, Special Relativity, (World Scientific, 2008). [5 ]J.D. Jackson, Classical Electrodynamics (Wiley, 1998 ..) [6 ]J. Hafele and R. Keating, Science 177, (1972) 166. Why Special Relativity ? We have to deal with moving charges in accelerators Electromagnetism and fundamental laws of classical mechanics show inconsistencies Ad hoc introduction of Lorentz force Applied to moving bodies Maxwell’s equations lead to asymmetries [2] not shown in observations of electromagnetic phenomena Classical EM-theory not consistent with Quantum theory Important for beam dynamics and machine design: Longitudinal dynamics (e.g. transition, ...) Collective effects (e.g. space charge, beam-beam, ...) Dynamics and luminosity in colliders Particle lifetime and decay (e.g. µ, π, Z0, Higgs, ...) Synchrotron radiation and light sources ... We need a formalism to get all that ! OUTLINE Principle of Relativity (Newton, Galilei) - Motivation, Ideas and Terminology - Formalism, Examples Principle of Special Relativity (Einstein) - Postulates, Formalism and Consequences - Four-vectors and applications (Electromagnetism and accelerators) § ¤ some slides are for your private study and pleasure and I shall go fast there ¦ ¥ Enjoy yourself .. Setting the scene (terminology) .. To describe an observation and physics laws we use: - Space coordinates: ~x = (x, y, z) (not necessarily Cartesian) - Time: t What is a ”Frame”: - Where we observe physical phenomena and properties as function of their position ~x and time t.
    [Show full text]
  • Basic Four-Momentum Kinematics As
    L4:1 Basic four-momentum kinematics Rindler: Ch5: sec. 25-30, 32 Last time we intruduced the contravariant 4-vector HUB, (II.6-)II.7, p142-146 +part of I.9-1.10, 154-162 vector The world is inconsistent! and the covariant 4-vector component as implicit sum over We also introduced the scalar product For a 4-vector square we have thus spacelike timelike lightlike Today we will introduce some useful 4-vectors, but rst we introduce the proper time, which is simply the time percieved in an intertial frame (i.e. time by a clock moving with observer) If the observer is at rest, then only the time component changes but all observers agree on ✁S, therefore we have for an observer at constant speed L4:2 For a general world line, corresponding to an accelerating observer, we have Using this it makes sense to de ne the 4-velocity As transforms as a contravariant 4-vector and as a scalar indeed transforms as a contravariant 4-vector, so the notation makes sense! We also introduce the 4-acceleration Let's calculate the 4-velocity: and the 4-velocity square Multiplying the 4-velocity with the mass we get the 4-momentum Note: In Rindler m is called m and Rindler's I will always mean with . which transforms as, i.e. is, a contravariant 4-vector. Remark: in some (old) literature the factor is referred to as the relativistic mass or relativistic inertial mass. L4:3 The spatial components of the 4-momentum is the relativistic 3-momentum or simply relativistic momentum and the 0-component turns out to give the energy: Remark: Taylor expanding for small v we get: rest energy nonrelativistic kinetic energy for v=0 nonrelativistic momentum For the 4-momentum square we have: As you may expect we have conservation of 4-momentum, i.e.
    [Show full text]