Generated by SRI International Pathway Tools Version 25.0, Authors S
Total Page:16
File Type:pdf, Size:1020Kb

Load more
Recommended publications
-
| Hai Lui a Un Acutul Luniit Moonhiti
|HAI LUI AUN ACUTULUS010006055B2 LUNIIT MOONHITI (12 ) United States Patent (10 ) Patent No. : US 10 , 006 , 055 B2 Burk et al. (45 ) Date of Patent: Jun . 26 , 2018 ( 54 ) MICROORGANISMS FOR PRODUCING 2002/ 0168654 A1 11/ 2002 Maranas et al. 2003 / 0059792 Al 3 /2003 Palsson et al . BUTADIENE AND METHODS RELATED 2003 /0087381 A1 5 / 2003 Gokarn THERETO 2003 / 0224363 Al 12 /2003 Park et al . 2003 / 0233218 Al 12 /2003 Schilling (71 ) Applicant: Genomatica , Inc. , San Diego , CA (US ) 2004 / 0009466 AL 1 /2004 Maranas et al. 2004 / 0029149 Al 2 /2004 Palsson et al. ( 72 ) Inventors : Mark J . Burk , San Diego , CA (US ) ; 2004 / 0072723 A1 4 /2004 Palsson et al. Anthony P . Burgard , Bellefonte , PA 2004 / 0152159 Al 8 / 2004 Causey et al . 2005 /0042736 A1 2 / 2005 San et al . (US ) ; Robin E . Osterhout , San Diego , 2005 / 0079482 A1 4 / 2005 Maranas et al . CA (US ) ; Jun Sun , San Diego , CA 2006 / 0046288 Al 3 / 2006 Ka - Yiu et al. ( US ) ; Priti Pharkya , San Diego , CA 2006 / 0073577 A1 4 / 2006 Ka - Yiu et al . (US ) 2007 /0184539 Al 8 / 2007 San et al . 2009 / 0047718 Al 2 / 2009 Blaschek et al . 2009 / 0047719 Al 2 / 2009 Burgard et al . (73 ) Assignee : Genomatica , Inc ., San Diego , CA (US ) 2009 /0191593 A1 7 / 2009 Burk et al . 2010 / 0003716 A1 1 / 2010 Cervin et al. ( * ) Notice : Subject to any disclaimer , the term of this 2010 /0184171 Al 7 /2010 Jantama et al. patent is extended or adjusted under 35 2010 /0304453 Al 12 / 2010 Trawick et al . -
(12) Patent Application Publication (10) Pub. No.: US 2014/0155567 A1 Burk Et Al
US 2014O155567A1 (19) United States (12) Patent Application Publication (10) Pub. No.: US 2014/0155567 A1 Burk et al. (43) Pub. Date: Jun. 5, 2014 (54) MICROORGANISMS AND METHODS FOR (60) Provisional application No. 61/331,812, filed on May THE BIOSYNTHESIS OF BUTADENE 5, 2010. (71) Applicant: Genomatica, Inc., San Diego, CA (US) Publication Classification (72) Inventors: Mark J. Burk, San Diego, CA (US); (51) Int. Cl. Anthony P. Burgard, Bellefonte, PA CI2P 5/02 (2006.01) (US); Jun Sun, San Diego, CA (US); CSF 36/06 (2006.01) Robin E. Osterhout, San Diego, CA CD7C II/6 (2006.01) (US); Priti Pharkya, San Diego, CA (52) U.S. Cl. (US) CPC ................. CI2P5/026 (2013.01); C07C II/I6 (2013.01); C08F 136/06 (2013.01) (73) Assignee: Genomatica, Inc., San Diego, CA (US) USPC ... 526/335; 435/252.3:435/167; 435/254.2: (21) Appl. No.: 14/059,131 435/254.11: 435/252.33: 435/254.21:585/16 (22) Filed: Oct. 21, 2013 (57) ABSTRACT O O The invention provides non-naturally occurring microbial Related U.S. Application Data organisms having a butadiene pathway. The invention addi (63) Continuation of application No. 13/101,046, filed on tionally provides methods of using Such organisms to produce May 4, 2011, now Pat. No. 8,580,543. butadiene. Patent Application Publication Jun. 5, 2014 Sheet 1 of 4 US 2014/O155567 A1 ?ueudos!SMS |?un61– Patent Application Publication Jun. 5, 2014 Sheet 2 of 4 US 2014/O155567 A1 VOJ OO O Z?un61– Patent Application Publication US 2014/O155567 A1 {}}} Hººso Patent Application Publication Jun. -
Supplementary Informations SI2. Supplementary Table 1
Supplementary Informations SI2. Supplementary Table 1. M9, soil, and rhizosphere media composition. LB in Compound Name Exchange Reaction LB in soil LBin M9 rhizosphere H2O EX_cpd00001_e0 -15 -15 -10 O2 EX_cpd00007_e0 -15 -15 -10 Phosphate EX_cpd00009_e0 -15 -15 -10 CO2 EX_cpd00011_e0 -15 -15 0 Ammonia EX_cpd00013_e0 -7.5 -7.5 -10 L-glutamate EX_cpd00023_e0 0 -0.0283302 0 D-glucose EX_cpd00027_e0 -0.61972444 -0.04098397 0 Mn2 EX_cpd00030_e0 -15 -15 -10 Glycine EX_cpd00033_e0 -0.0068175 -0.00693094 0 Zn2 EX_cpd00034_e0 -15 -15 -10 L-alanine EX_cpd00035_e0 -0.02780553 -0.00823049 0 Succinate EX_cpd00036_e0 -0.0056245 -0.12240603 0 L-lysine EX_cpd00039_e0 0 -10 0 L-aspartate EX_cpd00041_e0 0 -0.03205557 0 Sulfate EX_cpd00048_e0 -15 -15 -10 L-arginine EX_cpd00051_e0 -0.0068175 -0.00948672 0 L-serine EX_cpd00054_e0 0 -0.01004986 0 Cu2+ EX_cpd00058_e0 -15 -15 -10 Ca2+ EX_cpd00063_e0 -15 -100 -10 L-ornithine EX_cpd00064_e0 -0.0068175 -0.00831712 0 H+ EX_cpd00067_e0 -15 -15 -10 L-tyrosine EX_cpd00069_e0 -0.0068175 -0.00233919 0 Sucrose EX_cpd00076_e0 0 -0.02049199 0 L-cysteine EX_cpd00084_e0 -0.0068175 0 0 Cl- EX_cpd00099_e0 -15 -15 -10 Glycerol EX_cpd00100_e0 0 0 -10 Biotin EX_cpd00104_e0 -15 -15 0 D-ribose EX_cpd00105_e0 -0.01862144 0 0 L-leucine EX_cpd00107_e0 -0.03596182 -0.00303228 0 D-galactose EX_cpd00108_e0 -0.25290619 -0.18317325 0 L-histidine EX_cpd00119_e0 -0.0068175 -0.00506825 0 L-proline EX_cpd00129_e0 -0.01102953 0 0 L-malate EX_cpd00130_e0 -0.03649016 -0.79413596 0 D-mannose EX_cpd00138_e0 -0.2540567 -0.05436649 0 Co2 EX_cpd00149_e0 -
Supplemental Figure S1. Principal Component Analysis (PCA) for the Leaf and Root Transcriptomes
Supplemental Figure S1. Principal component analysis (PCA) for the leaf and root transcriptomes. A ZT12 ZT18 ZT0 ZT6 ZT12 ZT18 ZT0 ZT6 → → → Pattern 1 ↗ ↘ ↗ ↘ ↘ ↘ ↘ → → → Pattern 2 ↗ ↘ ↗ ↘ ↘ ↘ ↘ → → → → Pattern 3 ↗ ↘ ↗ ↘ ↘ ↘ ↘ → → → → Pattern 4 ↘ ↗ ↘ ↘ ↘ ↘ ↘ ↗ → ↗ Pattern 5 ↗ ↘ ↗ ↘ → ↘ → → ↗ → ↗ Pattern 6 ↗ ↘ ↗ ↘ → ↘ → → ↗ → Pattern 7 ↘ ↗ ↘ ↗ ↘ → ↘ ↗ → ↗ → Pattern 8 ↘ ↗ ↘ → ↘ → ↘ ↗ ↗ ↗ ↗ Pattern 9 ↗ ↘ ↗ → → → → ↗ ↗ ↗ Pattern 10 ↘ ↗ ↘ ↗ → → → ↗ ↗ ↗ Pattern 11 ↘ ↗ ↘ ↗ → → → ↗ ↗ ↗ ↗ Pattern 12 ↘ ↗ ↘ → → → → Supplemental Figure S2. The 12 different diurnal patterns set for this study (A) and gene expression variations in the leaves (B) and roots (C). (B, C) The shaded areas show nighttime. The data points indicate the average of expression levels of five replicates. Figure S2 continued B Leaf - Pattern 1 Leaf - Pattern 2 Leaf - Pattern 3 400 2500 1200 350 1000 2000 300 800 250 1500 200 600 1000 150 400 100 Expression Level Level (TPM) Expression Expression Level Level Expression (TPM) 500 Expression Level Level (TPM) Expression 200 50 0 0 0 12 18 0 6 12 18 0 6 12 18 0 6 12 18 0 6 12 18 0 6 12 18 0 6 ZT ZT ZT Leaf - Pattern 4 Leaf - Pattern 5 Leaf - Pattern 6 3000 6000 20000 18000 2500 5000 16000 14000 2000 4000 12000 1500 3000 10000 8000 1000 2000 6000 Expression Level Level (TPM) Expression 4000 Expression Level Level Expression (TPM) 500 Level Expression (TPM) 1000 2000 0 0 0 12 18 0 6 12 18 0 6 12 18 0 6 12 18 0 6 12 18 0 6 12 18 0 6 ZT ZT ZT Leaf - Pattern 7 Leaf - Pattern 8 Leaf - Pattern 9 4500 400 2500 4000 350 2000 3500 300 3000 250 -
R Graphics Output
Figure S1. Multidimensional scaling analysis of the RNA-seq experiments. Samples are projected on the two first dimensions according to their gene expression profiles. Closeness between samples on the grid indicates a strong similarity. Figure S2. Similar tissue type are strongly correlated. Spearman's rho correlation was measured to check biological replicate homogeneity. Higher rho values indicate stronger similarities between pairs of samples. −log10(Pval) ● 5● 10● 15● 20 OL vs AR YL vs OL YL+YS+OL vs AR copper ion transport ● microtubule−based movement ● cyanate catabolic process ● establishment of protein localization ● DNA unwinding involved in DNA replication ● intracellular distribution of mitochondria ● regulation of root development ● DNA methylation on cytosine within a CG sequence ● carbon utilization ● glutamine biosynthetic process ● maintenance of DNA methylation ● photosystem II assembly ● response to singlet oxygen ● DNA replication initiation ● chlorophyll biosynthetic process ● specification of plant organ axis polarity ● mitotic cell cycle ● reductive pentose−phosphate cycle ● cellular response to nitrogen starvation ● double−strand break repair via homologous recombination ● photosynthesis, light harvesting in photosystem I ● cellular manganese ion homeostasis ● mitotic cell cycle phase transition ● protein−chromophore linkage ● cellular zinc ion homeostasis ● regulation of cyclin−dependent protein serine/threonine kinase activity ● response to light stimulus ● recognition of pollen ● cell division ● photosynthesis -
All Enzymes in BRENDA™ the Comprehensive Enzyme Information System
All enzymes in BRENDA™ The Comprehensive Enzyme Information System http://www.brenda-enzymes.org/index.php4?page=information/all_enzymes.php4 1.1.1.1 alcohol dehydrogenase 1.1.1.B1 D-arabitol-phosphate dehydrogenase 1.1.1.2 alcohol dehydrogenase (NADP+) 1.1.1.B3 (S)-specific secondary alcohol dehydrogenase 1.1.1.3 homoserine dehydrogenase 1.1.1.B4 (R)-specific secondary alcohol dehydrogenase 1.1.1.4 (R,R)-butanediol dehydrogenase 1.1.1.5 acetoin dehydrogenase 1.1.1.B5 NADP-retinol dehydrogenase 1.1.1.6 glycerol dehydrogenase 1.1.1.7 propanediol-phosphate dehydrogenase 1.1.1.8 glycerol-3-phosphate dehydrogenase (NAD+) 1.1.1.9 D-xylulose reductase 1.1.1.10 L-xylulose reductase 1.1.1.11 D-arabinitol 4-dehydrogenase 1.1.1.12 L-arabinitol 4-dehydrogenase 1.1.1.13 L-arabinitol 2-dehydrogenase 1.1.1.14 L-iditol 2-dehydrogenase 1.1.1.15 D-iditol 2-dehydrogenase 1.1.1.16 galactitol 2-dehydrogenase 1.1.1.17 mannitol-1-phosphate 5-dehydrogenase 1.1.1.18 inositol 2-dehydrogenase 1.1.1.19 glucuronate reductase 1.1.1.20 glucuronolactone reductase 1.1.1.21 aldehyde reductase 1.1.1.22 UDP-glucose 6-dehydrogenase 1.1.1.23 histidinol dehydrogenase 1.1.1.24 quinate dehydrogenase 1.1.1.25 shikimate dehydrogenase 1.1.1.26 glyoxylate reductase 1.1.1.27 L-lactate dehydrogenase 1.1.1.28 D-lactate dehydrogenase 1.1.1.29 glycerate dehydrogenase 1.1.1.30 3-hydroxybutyrate dehydrogenase 1.1.1.31 3-hydroxyisobutyrate dehydrogenase 1.1.1.32 mevaldate reductase 1.1.1.33 mevaldate reductase (NADPH) 1.1.1.34 hydroxymethylglutaryl-CoA reductase (NADPH) 1.1.1.35 3-hydroxyacyl-CoA -
Non-Natural Microbial Organisms with Improved
(19) *EP003194604B1* (11) EP 3 194 604 B1 (12) EUROPEAN PATENT SPECIFICATION (45) Date of publication and mention (51) Int Cl.: of the grant of the patent: C12P 7/42 (2006.01) C12P 7/16 (2006.01) 26.02.2020 Bulletin 2020/09 (86) International application number: (21) Application number: 15775307.0 PCT/US2015/050923 (22) Date of filing: 18.09.2015 (87) International publication number: WO 2016/044713 (24.03.2016 Gazette 2016/12) (54) NON-NATURAL MICROBIAL ORGANISMS WITH IMPROVED ENERGETIC EFFICIENCY NICHT-NATÜRLICHE MIKROBIELLE ORGANISMEN MIT VERBESSERTER ENERGIEEFFIZIENZ ORGANISMES MICROBIENS NON NATURELS PRÉSENTANT UNE MEILLEURE EFFICACITÉ ÉNERGÉTIQUE (84) Designated Contracting States: • V. Monedero ET AL: "Mutations lowering the AL AT BE BG CH CY CZ DE DK EE ES FI FR GB phosphatase activity of HPr kinase/phosphatase GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO switch off carbon metabolism.", The EMBO PL PT RO RS SE SI SK SM TR journal, vol. 20, no. 15 1 August 2001 (2001-08-01), 1 August 2001 (2001-08-01), pages 3928-3937, (30) Priority: 18.09.2014 US 201462052341 P XP055233568, Retrieved from the Internet: URL:http://emboj.embopress.org/content/20/ (43) Date of publication of application: 15/3928.full.pdf [retrieved on 2015-12-03] 26.07.2017 Bulletin 2017/30 • MARTA PAPINI ET AL: "Physiological characterization of recombinant Saccharomyces (73) Proprietor: Genomatica, Inc. cerevisiae expressing the phosphoketolase San Diego, CA 92121 (US) pathway: validation of activity through 13C-based metabolic flux analysis", APPLIED (72) Inventors: MICROBIOLOGY AND BIOTECHNOLOGY, • PHARKYA, Priti SPRINGER, BERLIN, DE, vol. -
(12) United States Patent (10) Patent No.: US 9,169,486 B2 Burk Et Al
US009 1694.86B2 (12) United States Patent (10) Patent No.: US 9,169,486 B2 Burk et al. (45) Date of Patent: Oct. 27, 2015 (54) MICROORGANISMS FOR PRODUCING 2003, OO87381 A1 5/2003 Gokarn BUTADIENE AND METHODS RELATED 2003,0224363 A1 12/2003 Park et al. THERETO 2003/0233218 A1 12/2003 Schilling 2004/OOO9466 A1 1/2004 Maranas et al. (75) Inventors: Mark J. Burk, San Diego, CA (US); 3.92. !: A. 3.38: Eas al Anthony Burgard Bellefonte, PA 2004/0152159 A1 8/2004 CauseyaSSO etca. al. (US); Robin E. Osterhout, San Diego, 2005/0042736 A1 2/2005 San et al. CA (US); Jun Sun, San Diego, CA (US); 2005, 0079482 A1 4/2005 Maranas et al. Priti Pharkya, San Diego, CA (US) 2006/004.6288 A1 3/2006 Ka-Yiu et al. 2006, OO73577 A1 4/2006 Ka-Yiu et al. (73) Assignee: Genomatica, Inc., San Diego, CA (US) 2009/00477182007/O184539 A1 2/20098, 2007 SanBlaschek et al. et al. (*) Notice: Subject to any disclaimer, the term of this 39887. A. 23. Ewsi al. patent is extended or adjusted under 35 2010.0003716 A1 1/2010 Cervin et al. U.S.C. 154(b) by 0 days. 2010.0184171 A1 7, 2010 Jantama et al. 2010/0304453 A1 12/2010 Trawicket al. 2010/0330635 Al 12/2010 Burgard et al. (21) Appl. No.: 13/527,440 2011/0008861 A1 1/2011 Berry et al. 2011/0300597 A1* 12/2011 Burk et al. .................... 435/167 (22) Filed: Jun. 19, 2012 2012/0225466 A1 9, 2012 Burk et al. -
(12) Patent Application Publication (10) Pub. No.: US 2015/0240226A1 Mathur Et Al
US 20150240226A1 (19) United States (12) Patent Application Publication (10) Pub. No.: US 2015/0240226A1 Mathur et al. (43) Pub. Date: Aug. 27, 2015 (54) NUCLEICACIDS AND PROTEINS AND CI2N 9/16 (2006.01) METHODS FOR MAKING AND USING THEMI CI2N 9/02 (2006.01) CI2N 9/78 (2006.01) (71) Applicant: BP Corporation North America Inc., CI2N 9/12 (2006.01) Naperville, IL (US) CI2N 9/24 (2006.01) CI2O 1/02 (2006.01) (72) Inventors: Eric J. Mathur, San Diego, CA (US); CI2N 9/42 (2006.01) Cathy Chang, San Marcos, CA (US) (52) U.S. Cl. CPC. CI2N 9/88 (2013.01); C12O 1/02 (2013.01); (21) Appl. No.: 14/630,006 CI2O I/04 (2013.01): CI2N 9/80 (2013.01); CI2N 9/241.1 (2013.01); C12N 9/0065 (22) Filed: Feb. 24, 2015 (2013.01); C12N 9/2437 (2013.01); C12N 9/14 Related U.S. Application Data (2013.01); C12N 9/16 (2013.01); C12N 9/0061 (2013.01); C12N 9/78 (2013.01); C12N 9/0071 (62) Division of application No. 13/400,365, filed on Feb. (2013.01); C12N 9/1241 (2013.01): CI2N 20, 2012, now Pat. No. 8,962,800, which is a division 9/2482 (2013.01); C07K 2/00 (2013.01); C12Y of application No. 1 1/817,403, filed on May 7, 2008, 305/01004 (2013.01); C12Y 1 1 1/01016 now Pat. No. 8,119,385, filed as application No. PCT/ (2013.01); C12Y302/01004 (2013.01); C12Y US2006/007642 on Mar. 3, 2006. -
ABBREVIATION NAME ORF 3M2OBLOXRD 3-Methyl-2
ABBREVIATION NAME ORF 3-Methyl-2-oxobutanoate:lipoamide oxidoreductase(decarboxylating and acceptor- 3M2OBLOXRD 2-methylpropanoylating) ( SA1348 and SA1347 ) 3-Methyl-2-oxopentanoate:lipoamide oxidoreductase(decarboxylating and acceptor- 3M2OPLOXRD 2-methylpropanoylating) ( SA1348 and SA1347 ) 4-Methyl-2-oxopentanoate:lipoamide oxidoreductase(decarboxylating and acceptor- 4M2OPLOXRD 2-methylpropanoylating) ( SA1348 and SA1347 ) 6PGALSZ 6-phospho-beta-galactosidase SA1991 6PHBG 6-phospho-beta-glucosidase SA0256 ABTAr 4-aminobutyrate transaminase SA2397 ACACT1r acetyl-CoA C-acetyltransferase ( SA0342 or ( SA0223 or SA0534 ) ) ACACT2r acetyl-CoA C-acyltransferase (butanoyl-CoA) (r) ( SA0342 or ( SA0223 or SA0534 ) ) ACACT3r acetyl-CoA C-acyltransferase (hexanoyl-CoA) (r) ( SA0223 or SA0534 ) ACACT4r acetyl-CoA C-acyltransferase (octanoyl-CoA) (r) ( SA0223 or SA0534 ) ACACT5r acetyl-CoA C-acyltransferase (decanoyl-CoA) (r) ( SA0223 or SA0534 ) ACACT6r acetyl-CoA C-acyltransferase (dodecanoyl-CoA) (r) ( SA0223 or SA0534 ) ACACT7r acetyl-CoA C-acyltransferase (tetradecanoyl-CoA) (r) ( SA0223 or SA0534 ) ACALDi acetaldehyde dehydrogenase (acetylating) SA0143 ACCOAC acetyl-CoA carboxylase ( SA1522 and ( SA1435 or SA1358 ) and ( SA1357 or SA1434 ) and SA1523 ) ACGApts N-Acetyl-D-glucosamine transport via PEP:Pyr PTS SA1547 ACGK acetylglutamate kinase SA0176 ACGS N-acetylglutamate synthase SA0177 ACHBS 2-aceto-2-hydroxybutanoate synthase ( ( SA1859 or SA2008 ) and SA1860 ) ACKr acetate kinase SA1533 ACLDC acetolactate decarboxylase ( SA2394 or SA2007 -
Generate Metabolic Map Poster
Authors: Pallavi Subhraveti Ron Caspi Peter Midford Peter D Karp An online version of this diagram is available at BioCyc.org. Biosynthetic pathways are positioned in the left of the cytoplasm, degradative pathways on the right, and reactions not assigned to any pathway are in the far right of the cytoplasm. Transporters and membrane proteins are shown on the membrane. Ingrid Keseler Periplasmic (where appropriate) and extracellular reactions and proteins may also be shown. Pathways are colored according to their cellular function. Gcf_000091785Cyc: Legionella longbeachae NSW150 Cellular Overview Connections between pathways are omitted for legibility. Anamika Kothari sn-glycerol spermidine 3-phosphate putrescine a sulfonate nitrate hydrogencarbonate predicted predicted ABC ABC transporter transporter RS16610 of sn- of spermidine/ glycerol 3- putrescine phosphate a sulfonate nitrate spermidine hydrogencarbonate putrescine sn-glycerol 3-phosphate Amino Acid Degradation Amine and Polyamine Biosynthesis Hormone Biosynthesis Aldehyde Degradation glutaminyl-tRNA gln Aminoacyl-tRNA Charging N 6 -(3-methylbut- a 1-palmitoyl-2- L-alanyl-γ-D- L-alanyl-γ-D- a [bis(guanylyl a [protein] biosynthesis via transamidation core a peptide with homospermidine homospermidine indole-3-acetate L-leucine degradation I a sulfurated 2-en-1-yl)- acyl-sn-glycerol glutamyl-meso-2,6- glutamyl-meso- UDP-N-acetyl- a [glutamine- γ-L-glutamyl- Polyprenyl Biosynthesis L-proline degradation I L-tyrosine degradation I methylglyoxal degradation I oligosaccharide- ATP molybdopterin) cys a type IV prepilin gly an N-terminal C-terminal glu biosynthesis II L-arginine degradation [sulfur carrier] 37 synthetase]- ATP biosynthesis I biosynthesis TCA cycle TCA cycle I (prokaryotic) adenosine lipid A (E. -
Springer Handbook of Enzymes
Dietmar Schomburg Ida Schomburg (Eds.) Springer Handbook of Enzymes Alphabetical Name Index 1 23 © Springer-Verlag Berlin Heidelberg New York 2010 This work is subject to copyright. All rights reserved, whether in whole or part of the material con- cerned, specifically the right of translation, printing and reprinting, reproduction and storage in data- bases. The publisher cannot assume any legal responsibility for given data. Commercial distribution is only permitted with the publishers written consent. Springer Handbook of Enzymes, Vols. 1–39 + Supplements 1–7, Name Index 2.4.1.60 abequosyltransferase, Vol. 31, p. 468 2.7.1.157 N-acetylgalactosamine kinase, Vol. S2, p. 268 4.2.3.18 abietadiene synthase, Vol. S7,p.276 3.1.6.12 N-acetylgalactosamine-4-sulfatase, Vol. 11, p. 300 1.14.13.93 (+)-abscisic acid 8’-hydroxylase, Vol. S1, p. 602 3.1.6.4 N-acetylgalactosamine-6-sulfatase, Vol. 11, p. 267 1.2.3.14 abscisic-aldehyde oxidase, Vol. S1, p. 176 3.2.1.49 a-N-acetylgalactosaminidase, Vol. 13,p.10 1.2.1.10 acetaldehyde dehydrogenase (acetylating), Vol. 20, 3.2.1.53 b-N-acetylgalactosaminidase, Vol. 13,p.91 p. 115 2.4.99.3 a-N-acetylgalactosaminide a-2,6-sialyltransferase, 3.5.1.63 4-acetamidobutyrate deacetylase, Vol. 14,p.528 Vol. 33,p.335 3.5.1.51 4-acetamidobutyryl-CoA deacetylase, Vol. 14, 2.4.1.147 acetylgalactosaminyl-O-glycosyl-glycoprotein b- p. 482 1,3-N-acetylglucosaminyltransferase, Vol. 32, 3.5.1.29 2-(acetamidomethylene)succinate hydrolase, p. 287 Vol.