Revision 1 1 2 Fluorowardite, Naal3(PO4)2(OH)2F2·2H2O, The

Total Page:16

File Type:pdf, Size:1020Kb

Revision 1 1 2 Fluorowardite, Naal3(PO4)2(OH)2F2·2H2O, The 1 Revision 1 2 3 Fluorowardite, NaAl3(PO4)2(OH)2F2·2H2O, the fluorine analogue of wardite from the Silver Coin 4 mine, Valmy, Nevada. 5 1 2 3 3 6 ANTHONY R. KAMPF *, PAUL M. ADAMS , ROBERT M. HOUSLEY , AND GEORGE R. ROSSMAN 7 8 1Mineral Sciences Department, Natural History Museum of Los Angeles County, 900 Exposition 9 Boulevard, Los Angeles, CA 90007, USA 10 2126 South Helberta Avenue, #2, Redondo Beach, California 90277, USA 11 3Division of Geological and Planetary Sciences, California Institute of Technology, Pasadena, 12 CA 91125, USA 13 *Email: [email protected] 14 15 Abstract 16 Fluorowardite (IMA2012-016), NaAl3(PO4)2(OH)2F2·2H2O, the F analogue of wardite, is 17 a new mineral from the Silver Coin mine, Valmy, Iron Point district, Humboldt County, Nevada, 18 USA, where it occurs as a low-temperature secondary mineral in complex phosphate assemblages 19 rich in Al, Na, and F. Fluorowardite forms colorless to white or cream-colored, tetragonal- 20 pyramidal crystals up to 0.1 mm in diameter. The streak is white. Crystals are transparent to 21 translucent, with vitreous to pearly luster. The Mohs hardness is about 5, the tenacity is brittle, 22 the fracture is irregular, and crystals exhibit one perfect cleavage on {001}. The calculated 23 density is 2.760 g/cm3. Optically, fluorowardite is uniaxial positive, with ω = 1.576(2) and ε = 24 1.584(2) (white light) and is non-pleochroic. Electron microprobe analyses (average of 8) 25 provided: Na2O 6.27, CaO 1.74, MgO 0.42, Al2O3 35.21, Fe2O3 0.72, P2O5 32.49, As2O5 0.64, F 26 6.76, O=F -2.85, H2O 13.35 (structure), total 94.74 wt%. The presence of H2O and OH and the 27 absence of CO3 were confirmed by FTIR spectroscopy. The empirical formula (based on 14 3+ 28 anions) is: (Na0.87Ca0.13Mg0.04)Σ1.04(Al2.96Fe 0.04)Σ3.00(P1.96As0.03)Σ1.99O8.12(OH)2.35F1.53·2H2O. 3 29 Fluorowardite is tetragonal, P41212, a = 7.077(2), c = 19.227(3) Å, V = 962.8(5) Å , and Z = 4. 30 The eight strongest lines in the X-ray powder diffraction pattern are [dobs in Å(I)(hkl)]: 31 4.766(100)(004,103); 3.099(75)(211,203); 3.008(62)(115,212); 2.834(28)(204,213); 32 2.597(56)(205); 1.7628(32)(400,401); 1.6592(29)(multiple); and 1.5228(49)(423,2·2·10). The 33 structure of fluorowardite (R1 = 3.15% for 435 Fo > 4σF) contains layers parallel to {001} 34 consisting of Alφ6 (φ = F, O, OH or H2O) octahedra, PO4 tetrahedra, and NaO6(H2O)2 polyhedra. 35 The two independent Alφ6 octahedra link by corner-sharing to form a square array. Each PO4 36 tetrahedron shares corners with three adjacent octahedra in the same square array and a fourth 37 corner with an octahedron in the next layer. The Na atoms reside in the “cavities” in the square 38 array, forming bonds only to O atoms in the same layer. Of the two nearly identical OH sites in 39 the wardite structure, only one is occupied by F in the fluorowardite structure. This is an 40 interesting example of a structure in which OH and F are selectively incorporated into two 41 different, but similar, sites as the result of rather subtle hydrogen bonding influences. 42 43 Keywords: fluorowardite; new mineral; crystal structure; hydrogen bonding; FTIR spectroscopy; 44 Raman spectroscopy; electron microprobe analysis; Silver Coin mine, Valmy, Nevada. 45 46 Introduction 47 Wardite, NaAl3(PO4)2(OH)4·2H2O, was first described by Davison (1896) from cavities in 48 variscite nodules from Utah. Although not specifically mentioned in that paper, the type locality 49 is the well-known Clay Canyon deposit near Fairfield in Utah County, which is also the type 50 locality for englishite, gordonite, millisite, montgomeryite, and overite. Since that time, wardite 51 has been reported from many other localities world-wide, but has previously not been reported to 52 contain significant amounts of F. The structure of wardite was solved by Fanfani et al. (1970) 53 using a crystal from the type locality. They reported the structure to include two distinct OH sites. 54 The recognition of wardite crystals in an F-rich secondary phosphate assemblage at the 55 Silver Coin mine near Valmy, Nevada, led us to extensively survey wardite crystals for high F 56 contents that could correspond to the F analogue. We found F to be present in most of the wardite 57 crystals in this assemblage, with contents reaching levels sufficient to take the place of nearly 58 half of the OH in the structure. The refinement of the structure of one of these crystals (see 59 below) showed the F to selectively occupy one of the OH sites, where it is strongly dominant 60 over OH. While it is not entirely clear whether it is possible for both OH sites to be dominated by 61 F, its dominance at one of the sites is sufficient to qualify the phase as a new mineral and the F 62 analogue of wardite. 63 The name is based upon the mineral being the F analogue of wardite. Note that “fluoro-“ 64 rather than “fluor-“ is used as the prefix to make pronunciation more straightforward. The new 65 mineral and name have been approved by the Commission on New Minerals, Nomenclature, and 66 Classification of the International Mineralogical Association (IMA2012-016). Two cotype 67 specimens are housed in the collections of the Mineral Sciences Department, Natural History 68 Museum of Los Angeles County, catalogue numbers 57659 and 63810. Specimen 57659 is also a 69 cotype for meurigite-Na (Kampf et al. 2009). 70 71 Occurrence and paragenesis 72 Fluorowardite occurs in the phosphate stope at the Silver Coin mine, Valmy, Iron Point 73 district, Humboldt County, Nevada, USA (40°55'44"N 117°19'26"W). It occurs in association 74 with alunite, barite, cacoxenite, chlorargyrite, fluorapatite, goethite, gorceixite (F-rich), 75 iangreyite, iodargyrite, jarosite, kidwellite, kintoreite/plumbogummite, krásnoite, leucophosphite, 76 lipscombite/zinclipscombite, meurigite-Na, metavariscite, millisite (F-rich), morinite, quartz, 77 rockbridgeite, strengite/variscite, and turquoise/chalcosiderite (minerals separated by slashes 78 exhibit variations in chemistry between the two species). A partial list of mineral species 79 occurring at the Silver Coin mine is given by Thomssen and Wise (2004). The Silver Coin mine 80 is the type locality for zinclipscombite (Chukanov et al. 2006), meurigite-Na (Kampf et al. 2009), 81 iangreyite (Mills et al. 2011), and krásnoite (Mills et al. 2012). Fluorowardite is a low- 82 temperature secondary mineral in complex phosphate assemblages rich in aluminium, sodium, 83 and fluorine. 84 85 Physical and optical properties 86 Fluorowardite occurs as colourless to white or cream-coloured, tetragonal-pyramidal 87 crystals truncated by the basal pinacoid. The forms observed are {001} (prominent and lustrous), 88 {011} and/or {012} (prominent, irregular and striated parallel to [100]), and {100} (common, 89 irregular and striated parallel to [100]); A variety of other minor forms, e.g. {114}, are observed 90 on SEM images, but are uncommon (Figs. 1 to 3). No twinning was observed. Crystals occur as 91 isolated individuals up to 0.1 mm in diameter and as drusy aggregates. 92 The streak is white. Crystals are transparent to translucent with vitreous to pearly luster. 93 Fluorowardite does not fluoresce in long or short wave ultraviolet light. The Mohs hardness is 94 about 5, the tenacity is brittle, the fracture is irregular, and crystals exhibit one perfect cleavage 95 on {001}. Attempts to measure the density by sink-float failed because of the small size of the 96 crystals and their near invisibility in available liquids. The calculated density based on the 97 empirical formula and the unit cell refined from the single-crystal data is 2.760 g/cm3. 98 Fluorowardite is unreactive and insoluble in concentrated HCl, concentrated H2SO4, and 70% 99 HNO3, observed over the course of several hours. Optically, fluorowardite is uniaxial positive, 100 with ω = 1.576(2) and ε = 1.584(2), measured in white light. The mineral is non-pleochroic. 101 102 Infrared spectroscopy 103 An FTIR spectrum (Figure 4) was obtained with a Thermo-Nicolet Model 6700 104 spectrometer equipped with a Continuum microscope. A small amount of material was crushed in 105 a diamond compression cell and analyzed in transmission through one diamond window. Band 106 assignments are according to Breitinger et al. (2004). The main observed bands (in 107 wavenumbers) are: 3615 and 3544 (OH stretching), 3274 and 3153 (H2O stretching), 1659 (H2O 108 bending), 1162 and 1131 [δAl2(OH)] and 1080 (PO4 antisymmetric stretching), and 1008 (PO4 109 symmetric stretching). 110 111 Raman spectroscopy 112 Raman spectroscopic micro-analyses were carried out using a Renishaw M1000 micro- 113 Raman spectrometer system. Light from a 514.5 nm argon laser was focused onto the sample 114 with a 100× objective lens, and at 100% power could provide approximately 5 mw of power at 115 the sample, in a spot size of about 1 μm. Spectral peak positions were periodically calibrated 116 against a silicon standard and rarely varied more than 1 cm-1. All spectra were obtained with a 117 dual-wedge polarization scrambler inserted directly above the objective lens to minimize the 118 effects of polarization. 119 As a reference for the fluorowardite, we first obtained Raman spectra along the a- and c- 120 axes of a Rapid Creek, Yukon Territory, Canada, wardite crystal from the Caltech collection 121 (CIT-15080).
Recommended publications
  • A Raman and Infrared Spectroscopic Analysis of the Phosphate Mineral
    Spectrochimica Acta Part A: Molecular and Biomolecular Spectroscopy 126 (2014) 164–169 Contents lists available at ScienceDirect Spectrochimica Acta Part A: Molecular and Biomolecular Spectroscopy journal homepage: www.elsevier.com/locate/saa A Raman and infrared spectroscopic analysis of the phosphate mineral wardite NaAl3(PO4)2(OH)4Á2(H2O) from Brazil ⇑ Ray L. Frost a, , Ricardo Scholz b, Andrés López a, Cristiano Lana b, Yunfei Xi a a School of Chemistry, Physics and Mechanical Engineering, Science and Engineering Faculty, Queensland University of Technology, GPO Box 2434, Brisbane, Queensland 4001, Australia b Geology Department, School of Mines, Federal University of Ouro Preto, Campus Morro do Cruzeiro, Ouro Preto, MG 35400-00, Brazil highlights graphical abstract A wardite mineral sample from Lavra Da Ilha, Minas Gerais, Brazil was analysed. Using SEM with EDX and vibrational spectroscopy. The calculated formula is (Na0.97Ca0.03)R1.00Al3 (PO4)2(OH)4Á2(H2O). Observation of multiple bands supports the concept of non- equivalent phosphate units in the structure. article info abstract Article history: A wardite mineral sample from Lavra Da Ilha, Minas Gerais, Brazil has been examined by vibrational spec- Received 17 November 2013 troscopy. The mineral is unusual in that it belongs to a unique symmetry class, namely the tetragonal-tra- Received in revised form 7 January 2014 pezohedral group. The structure of wardite contains layers of corner-linked –OH bridged MO6 octahedra Accepted 2 February 2014 stacked along the tetragonal C-axis in a four-layer sequence and linked by PO groups. Consequentially Available online 15 February 2014 4 not all phosphate units are identical.
    [Show full text]
  • A Vibrational Spectroscopic Study of the Phosphate Mineral Vantasselite
    Spectrochimica Acta Part A: Molecular and Biomolecular Spectroscopy 147 (2015) 185–192 Contents lists available at ScienceDirect Spectrochimica Acta Part A: Molecular and Biomolecular Spectroscopy journal homepage: www.elsevier.com/locate/saa A vibrational spectroscopic study of the phosphate mineral vantasselite Al4(PO4)3(OH)3Á9H2O ⇑ Ray L. Frost a, , Ricardo Scholz b, Fernanda Maria Belotti c, Andrés López a, Frederick L. Theiss a a School of Chemistry, Physics and Mechanical Engineering, Science and Engineering Faculty, Queensland University of Technology, GPO Box 2434, Brisbane, Queensland 4001, Australia b Geology Department, School of Mines, Federal University of Ouro Preto, Campus Morro do Cruzeiro, Ouro Preto, MG 35,400-00, Brazil c Federal University of Itajubá, Campus Itabira, Itabira, MG 35,903-087, Brazil highlights graphical abstract We have studied the phosphate mineral vantasselite Al2(PO4)(OH)3Á3H2O. Using a combination of SEM with EDX and Raman and infrared spectroscopy. Chemical analysis shows a mineral containing Al, Fe and P. A comparison is made with other aluminum containing phosphate minerals. Vibrational spectroscopy offers a mechanism for the study of the molecular structure of vantasselite. article info abstract Article history: We have studied the phosphate mineral vantasselite Al4(PO4)3(OH)3Á9H2O using a combination of SEM Received 28 October 2014 with EDX and Raman and infrared spectroscopy. Qualitative chemical analysis shows Al, Fe and P. Received in revised form 15 January 2015 À1 3À Raman bands at 1013 and 1027 cm are assigned to the PO4 m1 symmetric stretching mode. The obser- Accepted 23 March 2015 vation of two bands suggests the non-equivalence of the phosphate units in the vantasselite structure.
    [Show full text]
  • Fluorowardite, Naal3(PO4)2(OH)2F2·2H2O, the Fluorine Analog of Wardite from the Silver Coin Mine, Valmy, Nevada
    American Mineralogist, Volume 99, pages 804–810, 2014 Fluorowardite, NaAl3(PO4)2(OH)2F22 Anthony R. KAmpf1,*, pAul m. AdAms2, RobeRt m. housley3 And GeoRGe R. RossmAn3 1Mineral Sciences Department, Natural History Museum of Los Angeles County, 900 Exposition Boulevard, Los Angeles, California 90007, U.S.A. 2126 South Helberta Avenue, #2, Redondo Beach, California 90277, U.S.A. 3Division of Geological and Planetary Sciences, California Institute of Technology, Pasadena, California 91125, U.S.A. AbstRAct Fluorowardite (IMA2012-016), NaAl3(PO4)2(OH)2F2·2H2O, the F analog of wardite, is a new mineral from the Silver Coin mine, Valmy, Iron Point district, Humboldt County, Nevada, U.S.A., where it oc- curs as a low-temperature secondary mineral in complex phosphate assemblages rich in Al, Na, and F. Fluorowardite forms colorless to white or cream-colored, tetragonal-pyramidal crystals up to 0.1 mm in diameter. The streak is white. Crystals are transparent to translucent, with vitreous to pearly luster. The Mohs hardness is about 5, the tenacity is brittle, the fracture is irregular, and crystals exhibit one perfect cleavage on {001}. The calculated density is 2.760 g/cm3 analyses (average of 8) provided: Na2O 6.27, CaO 1.74, MgO 0.42, Al2O3 35.21, Fe2O3 0.72, P2O5 32.49, As2O52O 13.35 (structure), total 94.74 wt%. The presence of H2O and OH and the absence of CO3 3+ anions) is: (Na0.87Ca0.13Mg0.04)(Al2.96Fe0.04)(P1.96As0.03)O8.12(OH)2.35F1.53·2H2O. Fluorowardite 3 is tetragonal, P41212, acV , and Z lines in the X-ray powder diffraction pattern are [dobsI)(hkl)]: 4.766(100)(004,103); 3.099(75) (211,203); 3.008(62)(115,212); 2.834(28)(204,213); 2.597(56)(205); 1.7628(32)(400,401); 1.6592(29) R1FoF) 62O) octahedra, PO4 tetrahedra, and NaO6(H2O)26 octahedra link by corner-sharing to form a square array.
    [Show full text]
  • Roscherite-Group Minerals from Brazil
    ■ ■ Roscherite-Group Minerals yÜÉÅ UÜté|Ä Daniel Atencio* and José M.V. Coutinho Instituto de Geociências, Universidade de São Paulo, Rua do Lago, 562, 05508-080 – São Paulo, SP, Brazil. *e-mail: [email protected] Luiz A.D. Menezes Filho Rua Esmeralda, 534 – Prado, 30410-080 - Belo Horizonte, MG, Brazil. INTRODUCTION The three currently recognized members of the roscherite group are roscherite (Mn2+ analog), zanazziite (Mg analog), and greifensteinite (Fe2+ analog). These three species are monoclinic but triclinic variations have also been described (Fanfani et al. 1977, Leavens et al. 1990). Previously reported Brazilian occurrences of roscherite-group minerals include the Sapucaia mine, Lavra do Ênio, Alto Serra Branca, the Córrego Frio pegmatite, the Lavra da Ilha pegmatite, and the Pirineus mine. We report here the following three additional occurrences: the Pomarolli farm, Lavra do Telírio, and São Geraldo do Baixio. We also note the existence of a fourth member of the group, an as-yet undescribed monoclinic Fe3+-dominant species with higher refractive indices. The formulas are as follows, including a possible formula for the new species: Roscherite Ca2Mn5Be4(PO4)6(OH)4 • 6H2O Zanazziite Ca2Mg5Be4(PO4)6(OH)4 • 6H2O 2+ Greifensteinite Ca2Fe 5Be4(PO4)6(OH)4 • 6H2O 3+ 3+ Fe -dominant Ca2Fe 3.33Be4(PO4)6(OH)4 • 6H2O ■ 1 ■ Axis, Volume 1, Number 6 (2005) www.MineralogicalRecord.com ■ ■ THE OCCURRENCES Alto Serra Branca, Pedra Lavrada, Paraíba Unanalyzed “roscherite” was reported by Farias and Silva (1986) from the Alto Serra Branca granite pegmatite, 11 km southwest of Pedra Lavrada, Paraíba state, associated with several other phosphates including triphylite, lithiophilite, amblygonite, tavorite, zwieselite, rockbridgeite, huréaulite, phosphosiderite, variscite, cyrilovite and mitridatite.
    [Show full text]
  • Perhamite Ca3al7(Sio4)3(PO4)4(OH)3 ² 16:5H2O C 2001 Mineral Data Publishing, Version 1.2 ° Crystal Data: Hexagonal
    Perhamite Ca3Al7(SiO4)3(PO4)4(OH)3 ² 16:5H2O c 2001 Mineral Data Publishing, version 1.2 ° Crystal Data: Hexagonal. Point Group: 6=m 2=m 2=m (probable). As radial discoidal, platy hexagonal crystals, in rough spherules, to 1 mm. Physical Properties: Cleavage: Imperfect on 0001 . Tenacity: Brittle. Hardness = 5 f g » D(meas.) = 2.64(1) D(calc.) = 2.53 Optical Properties: Translucent to nearly opaque. Color: Brown, white. Streak: White. Luster: Dull, vitreous on cleavage surface. Optical Class: Uniaxial (+). Dispersion: r > v; moderate. ! = 1.564(2) ² = 1.577(4) Cell Data: Space Group: P 6=mmm (probable). a = 7.022(1) c = 20.182(5) Z = 1 X-ray Powder Pattern: Bell Pit, Maine, USA. 2.882 (100), 5.80 (71), 6.08 (50), 3.510 (50), 3.115 (50), 1.757 (50), 6.71 (35) Chemistry: (1) (2) SiO2 13.64 13.72 TiO2 0.09 Al2O3 27.09 27.17 FeO 0.26 MgO 0.02 CaO 12.26 12.81 Na2O 0.02 F 0.10 H2O [24.62] 24.69 P2O5 21.90 21.61 Total [100.00] 100.00 (1) Bell Pit, Maine, USA; by electron microprobe, average of three analyses, H2O by di®erence. (2) Ca3Al7(SiO4)3(PO4)4(OH)3 ² 16:5H2O Occurrence: As rare isolated masses in a vuggy, amblygonite-rich pegmatite (Bell Pit, Maine, USA). Association: Siderite, wardite, amblygonite, eosphorite, sphalerite (Bell Pit, Maine, USA); °uellite, minyulite, wavellite (Tom's quarry, South Australia). Distribution: In the USA, from Oxford Co., Maine, in the Bell Pit and Dunton mines, Newry; the Emmons quarry, Greenwood; and in the Ski Pike quarry, Cobble Hill, West Paris; at the Silver Coin mine, near Valmy, Iron Point district, Humboldt Co., Nevada.
    [Show full text]
  • Fluorowardite Naal3(PO4)2(OH)2F2·2H2O
    Fluorowardite NaAl3(PO4)2(OH)2F2·2H2O Crystal Data: Tetragonal. Point Group: 422. As tetragonal bipyramidal crystals, to 0.1 mm, displaying {001} (prominent and lustrous), {011} and/or {012} (prominent, irregular, and striated parallel to [100]), and {100} (common, irregular, and striated parallel to [100]). Physical Properties: Cleavage: Perfect on {001}. Fracture: Irregular. Tenacity: Brittle. Hardness = 5 D(meas.) = n.d. D(calc.) = 2.706 Optical Properties: Transparent to translucent. Color: Colorless to white or cream-colored. Streak: White. Luster: Vitreous to pearly. Optical Class: Uniaxial (+). ω = 1.576(2) ε = 1.584(2) Cell Data: Space Group: P41212. a = 7.077(2) c = 19.227(3) Z = 4 X-ray Powder Pattern: Silver Coin mine, Valmy, Humboldt County, Nevada, USA. 4.766 (100), 3.099 (75), 3.008 (62), 2.597 (56), 1.5228 (49), 1.7628 (32), 1.6592 (29) Chemistry: (1) (2) Na2O 6.27 7.71 CaO 1.74 MgO 0.42 Al2O3 35.21 38.05 Fe2O3 0.72 P2O5 32.49 35.32 As2O5 0.64 F 6.76 9.45 -O = F2 2.85 3.98 H2O [13.35] 13.45 total 94.74 100.00 (1) Silver Coin mine, Valmy, Humboldt County, Nevada, USA; average of 8 electron microprobe analyses supplemented by FTIR and Raman spectroscopy, H2O calculated from the structure; 3+ corresponds to (Na0.87Ca0.13Mg0.04)Σ=1.04(Al2.96Fe 0.04)Σ=3.00(P1.96As0.03)Σ=1.99O8.12(OH)2.35F1.53·2H2O. (2) NaAl3(PO4)2(OH)2F2·2H2O. Occurrence: A secondary phase, in a F-rich secondary phosphate assemblage.
    [Show full text]
  • A Study of the Phosphate Mineral Kapundaite Naca(Fe3+)4(PO4)4
    Spectrochimica Acta Part A: Molecular and Biomolecular Spectroscopy 122 (2014) 400–404 Contents lists available at ScienceDirect Spectrochimica Acta Part A: Molecular and Biomolecular Spectroscopy journal homepage: www.elsevier.com/locate/saa 3+ A study of the phosphate mineral kapundaite NaCa(Fe )4(PO4)4 (OH)3Á5(H2O) using SEM/EDX and vibrational spectroscopic methods ⇑ Ray L. Frost a, , Andrés López a, Yunfei Xi a, Ricardo Scholz b a School of Chemistry, Physics and Mechanical Engineering, Science and Engineering Faculty, Queensland University of Technology, GPO Box 2434, Brisbane, Queensland 4001, Australia b Geology Department, School of Mines, Federal University of Ouro Preto, Campus Morro do Cruzeiro, Ouro Preto, MG 35 400-00, Brazil highlights graphical abstract The kapundaite sample originated from the Sapucaia mine a lithium- bearing pegmatite. Kapundaite is a hydrated hydroxyl sodium calcium ferric phosphate 3+ NaCa(Fe )4(PO4)4(OH)3Á5(H2O). The molecular structure of kapundaite was assessed by vibrational spectroscopy. Multiple phosphate bands are observed. article info abstract Article history: Vibrational spectroscopy enables subtle details of the molecular structure of kapundaite to be deter- Received 17 September 2013 mined. Single crystals of a pure phase from a Brazilian pegmatite were used. Kapundaite is the Fe3+ mem- Received in revised form 5 November 2013 ber of the wardite group. The infrared and Raman spectroscopy were applied to compare the structure of Accepted 5 November 2013 kapundaite with wardite. The Raman spectrum of kapundaite in the 800–1400 cmÀ1 spectral range shows Available online 21 November 2013 À1 3À two intense bands at 1089 and 1114 cm assigned to the m1 PO4 symmetric stretching vibrations.
    [Show full text]
  • The Crystal Structure of Warditei
    MINERALOGICAL MAGAZINE, MARCH 1970, VOL. 37, NO. 289 The crystal structure of warditeI L. FANFANI, A. NUNZI, AND P. P. ZANAZZI Istituto di Mineralogia, Universita di Perugia, Italy SUMMARY. Wardite, NaAIa(OH).(POJ2. 2HzO, has a = 7.03 A, c = 19"04 A; space group P41212 or P4a212. Its crystal structure was solved by a three-dimensional Patterson function computed using intensity data photographically collected by the Weissenberg method, and refined by successive Fourier maps and least-squares cycles to a R index 0.062 for 3I 6 independent observed reflections. The wardite structure is formed by layers of AI and Na coordination polyhedra sharing vertices and edges. These sheets, parallel to the a axes, are connected to each other in the c direction by PO, tetrahedra and H-bonds. This structural feature accounts for the perfect {OOI} cleavage of wardite and explains the change that occurs in lattice parameters when Al is substituted by Fe in avelinoite. The relationships with the minerals of the trigonal families of crandaIlite, woodhouseite, and jarosite are also discussed. W ARDITE, first found by Davison (1896) in variscite nodules at Fairfield (Utah), occurs associated with millisite and crandallite, and was defined by Larsen and Shannon (1930) as a basic hydrated aluminum, sodium, and calcium phosphate. Pough (1937) described the morphology of the crystals and assigned them to the tetragonal system. Wardite was then discovered in pegmatitic rocks at Beryl Mountain, New Hampshire (Hurlbut, 1952), and assigned the formula NaAI3(OH)4(P04)2.2H20. It is likely that calcium replaces sodium to some extent and this could account for the earlier analyses of the mineral.
    [Show full text]
  • A Vibrational Spectroscopic Study of the Phosphate Mineral Whiteite
    Spectrochimica Acta Part A: Molecular and Biomolecular Spectroscopy 124 (2014) 243–248 Contents lists available at ScienceDirect Spectrochimica Acta Part A: Molecular and Biomolecular Spectroscopy journal homepage: www.elsevier.com/locate/saa A vibrational spectroscopic study of the phosphate mineral ++ whiteite CaMn Mg2Al2(PO4)4(OH)2Á8(H2O) ⇑ Ray L. Frost a, , Ricardo Scholz b, Andrés López a, Yunfei Xi a a School of Chemistry, Physics and Mechanical Engineering, Science and Engineering Faculty, Queensland University of Technology, GPO Box 2434, Brisbane Queensland 4001, Australia b Geology Department, School of Mines, Federal University of Ouro Preto, Campus Morro do Cruzeiro, Ouro Preto, MG, 35,400-00, Brazil highlights graphical abstract Vibrational spectroscopy enables subtle details of the molecular structure of whiteite. Crystals of a pure phase from a Brazilian pegmatite were used. Raman and infrared bands are assigned to the vibrations of 3À PO4 . A comparison is made with the vibrational spectra of wardite. article info abstract Article history: Vibrational spectroscopy enables subtle details of the molecular structure of whiteite to be determined. Received 8 October 2013 Single crystals of a pure phase from a Brazilian pegmatite were used. The infrared and Raman spectros- Received in revised form 17 December 2013 copy were applied to compare the molecular structure of whiteite with that of other phosphate minerals. Accepted 10 January 2014 À1 3À The Raman spectrum of whiteite shows an intense band at 972 cm assigned to the m1 PO4 symmetric Available online 21 January 2014 À1 3À stretching vibrations. The low intensity Raman bands at 1076 and 1173 cm are assigned to the m3 PO4 antisymmetric stretching modes.
    [Show full text]
  • 1 Revision 2 1 Microtexture Investigation of Amblygonite
    1 Revision 2 2 Microtexture investigation of amblygonite–montebrasite series with lacroixite: 3 Characteristics and formation process in pegmatites 4 ,1 5 Yohei Shirose * and Seiichiro Uehara 6 7 Department of Earth and Planetary Sciences, Faculty of Sciences, Kyushu University, 8 Fukuoka 819-0395, Japan 9 10 * E-mail: [email protected] 11 12 Abstract 13 14 Amblygonite–montebrasite series and lacroixite from Nagatare Li–Cs–Ta (LCT) pegmatite, 15 Fukuoka Prefecture, Japan, were investigated by powder X-ray diffraction (XRD), electron 1 Present address: The Kyoto University Museum, Kyoto University, Kyoto 606-8501, Japan 1 16 microprobe analyses, and transmission electron microscope (TEM)/scanning transmission 17 electron microscope (STEM) analyses. Scattered patchy or lamellar lacroixite was 18 contained in montebrasite and amblygonite in all observed specimens. TEM/STEM 19 observations revealed that the patchy and lamellar texture comprised lacroixite and low 20 fluorine montebrasite having same crystal orientations as that of host montebrasite and the 21 boundaries corresponded to well-developed {110} planes. The observed microtexture was 22 newly discovered, and it is an important evidence of the exsolution process. In XRD 23 experiments conducted at high temperature, the unit cell parameters of amblygonite were 24 closer to that of monoclinic structures such as lacroixite with increasing temperature. 25 Results suggested that scattered patches or lamellae of lacroixite were exsolution textures 26 from a high-temperature phase. 27 Montebrasite and amblygonite specimens from other localities involved varying 28 textures corresponding to their occurrence. The amblygonite–montebrasite series from 29 petalite-bearing pegmatite included low to high lacroixite contents and that from 30 lower-temperature pegmatite with spodumene either did not possess or involved low 31 lacroixite contents.
    [Show full text]
  • Wardite Naal3(PO4)2(OH)4 • 2H2O C 2001-2005 Mineral Data Publishing, Version 1
    Wardite NaAl3(PO4)2(OH)4 • 2H2O c 2001-2005 Mineral Data Publishing, version 1 Crystal Data: Tetragonal. Point Group: 422. Dipyramidal pseudo-octahedral crystals, with {010}, {011}, {012}, {100}, rarely {001}, typically striated ⊥ [001], to 4 cm. Physical Properties: Cleavage: On {001}, perfect. Hardness = 5 D(meas.) = 2.81–2.87 D(calc.) = 2.805 Optical Properties: Transparent to opaque. Color: White, colorless, pale green, blue-green, yellow-green, pale yellow, brown; colorless in transmitted light. Luster: Vitreous. Optical Class: Uniaxial (+). ω = 1.586–1.594 = 1.595–1.604 Cell Data: Space Group: P 41212orP 43212. a = 7.03(1) c = 19.04(1) Z = 4 X-ray Powder Pattern: [Palermo #1 mine, New Hampshire, USA]. 4.74 (10), 2.994 (7), 2.591 (7), 3.085 (6), 1.516 (5), 2.825 (4), 2.108 (4) Chemistry: (1) (2) P2O5 35.12 35.67 Al2O3 38.70 38.43 FeO 0.26 MgO 0.21 Na2O 7.51 7.79 K2O 0.16 H2O 17.88 18.11 Total 99.84 100.00 • (1) [Palermo #1 mine, New Hampshire,] USA. (2) NaAl3(PO4)2(OH)4 2H2O. Occurrence: A component of low-temperature phosphatic nodules; an uncommon species in complex zoned pegmatites. Association: Variscite, millisite, crandallite (Little Green Monster mine, Utah, USA); ferrisicklerite, mitridatite, whitlockite, montgomeryite, fairfieldite, hydroxyl-herderite, eosphorite, siderite roscherite (pegmatites). Distribution: In the USA, from the Little Green Monster mine, Clay Canyon, about nine km west of Fairfield, Utah Co., Utah; in Maine, at the Dunton quarry and the Bell Pit, Newry; at the Palermo #1 mine, North Groton, Grafton Co., New Hampshire; in the Hugo pegmatite, near Keystone, Pennington Co., and the Tip Top mine, 8.5 km southwest of Custer, Custer Co., South Dakota.
    [Show full text]
  • Technological Challenges of Phosphorus Removal in High-Phosphorus Ores: Sustainability Implications and Possibilities for Greener Ore Processing
    sustainability Review Technological Challenges of Phosphorus Removal in High-Phosphorus Ores: Sustainability Implications and Possibilities for Greener Ore Processing Stanley Udochukwu Ofoegbu 1,2 1 Centre for Mechanical Technology and Automation (TEMA), Department of Mechanical Engineering, University of Aveiro, Campus Universitário de Santiago, 3810-193 Aveiro, Portugal; [email protected]; Tel.: +351-915-2486-42 2 Department of Materials and Ceramic Engineering, CICECO-Aveiro Institute of Materials, University of Aveiro, Campus Universitário de Santiago, 3810-193 Aveiro, Portugal Received: 28 October 2019; Accepted: 26 November 2019; Published: 29 November 2019 Abstract: With the present rates of iron ore consumption, currently unusable, high-phosphorus iron ore deposits are likely to be the iron ores of the future as higher-grade iron ore reserves are depleted. Consequently, the design and timely development of environmentally-benign processes for the simultaneous beneficiation of high-phosphorus iron ores and phosphorus recovery, currently a technological challenge, might soon become a sustainability challenge. To stimulate interest in this area, phosphorus adsorption and association in iron oxides/hydroxyoxides, and current efforts at its removal, have been reviewed. The important properties of the most relevant crystalline phosphate phases in iron ores are highlighted, and insights provided on plausible routes for the development of sustainable phosphorus recovery solutions from high-phosphorus iron ores. Leveraging literature
    [Show full text]