Rainfall Variations Due to Twin Typhoons Over Northwest Pacific Ocean
Total Page:16
File Type:pdf, Size:1020Kb
Load more
Recommended publications
-
SCIENCE CHINA Effects of Tide-Surge Interactions on Storm Surges Along
SCIENCE CHINA Earth Sciences • RESEARCH PAPER • doi: 10.1007/s11430-015-5251-y Effects of tide-surge interactions on storm surges along the coast of the Bohai Sea, Yellow Sea, and East China Sea XU JunLi1, ZHANG YuHong2, CAO AnZhou1, LIU Qiang2* & LV XianQing1 1 Key Laboratory of Physical Oceanography (Ocean University of China), Ministry of Education, Ocean University of China, Qingdao 266100, China; 2 College of Engineering, Ocean University of China, Qingdao 266100, China Received August 27, 2015; accepted November 17, 2015 Abstract A two-dimensional coupled tide-surge model was used to investigate the effects of tide-surge interactions on storm surges along the coast of the Bohai Sea, Yellow Sea, and East China Sea. In order to estimate the impacts of tide-surge interactions on storm surge elevations, Typhoon 7203 was assumed to arrive at 12 different times, with all other conditions remaining constant. This allowed simulation of tide and total water levels for 12 separate cases. Numerical simulation results for Yingkou, Huludao, Shijiusuo, and Lianyungang tidal stations were analyzed. Model results showed wide variations in storm surge elevations across the 12 cases. The largest difference between 12 extreme storm surge elevation values was of up to 58 cm and occurred at Yingkou tidal station. The results indicate that the effects of tide-surge interactions on storm surge elevations are very significant. It is therefore essential that these are taken into account when predicting storm surge elevations. Keywords Storm surges, Astronomical tides, Tide-surge interactions, Typhoon 7203, Coupled tide-surge model Citation: Xu J L, Zhang Y H, Cao A Z, Liu Q, Lv X Q. -
4. the TROPICS—HJ Diamond and CJ Schreck, Eds
4. THE TROPICS—H. J. Diamond and C. J. Schreck, Eds. Pacific, South Indian, and Australian basins were a. Overview—H. J. Diamond and C. J. Schreck all particularly quiet, each having about half their The Tropics in 2017 were dominated by neutral median ACE. El Niño–Southern Oscillation (ENSO) condi- Three tropical cyclones (TCs) reached the Saffir– tions during most of the year, with the onset of Simpson scale category 5 intensity level—two in the La Niña conditions occurring during boreal autumn. North Atlantic and one in the western North Pacific Although the year began ENSO-neutral, it initially basins. This number was less than half of the eight featured cooler-than-average sea surface tempera- category 5 storms recorded in 2015 (Diamond and tures (SSTs) in the central and east-central equatorial Schreck 2016), and was one fewer than the four re- Pacific, along with lingering La Niña impacts in the corded in 2016 (Diamond and Schreck 2017). atmospheric circulation. These conditions followed The editors of this chapter would like to insert two the abrupt end of a weak and short-lived La Niña personal notes recognizing the passing of two giants during 2016, which lasted from the July–September in the field of tropical meteorology. season until late December. Charles J. Neumann passed away on 14 November Equatorial Pacific SST anomalies warmed con- 2017, at the age of 92. Upon graduation from MIT siderably during the first several months of 2017 in 1946, Charlie volunteered as a weather officer in and by late boreal spring and early summer, the the Navy’s first airborne typhoon reconnaissance anomalies were just shy of reaching El Niño thresh- unit in the Pacific. -
'State Visit-Plus' for Trump in China
BEIJING Your Beijing Bible • Insightful and interactive – real voices from the capital’s expat community • Issues, life and style • Culture, eating, nightlife and more Metro Beijing appears in the English edition of the Global Times here in Beijing, Monday to Friday. Nation InDepth Life Business Path out Common Plunder Dandong of poverty destiny & rescue angry at US 6 12-13 20 sanctions B1 www.globaltimes.com.cn VOLUME 9 • NO. 2432 • TUESDAY NOVEMBER 7, 2017 PRICE 2 YUAN Vigil for the victims A candlelight vigil is observed on Sunday following the mass shooting at the First Baptist Church in Sutherland Springs, Texas, that left 26 people dead (see stories on pages 3 and 10). Photo: AFP Chinese public keenly follows Asia trip Beidou navigation system to ‘outperform GPS by 2020’ ‘State visit-plus’ for dou Navigation Satellite Sys- By Liu Yang in Xichang and Zhang Hui in Beijing tem. Beidou will lead the world China used a single carrier and outperform the GPS sys- Trump in China rocket Sunday night to launch tem by around 2020 when two state-of-the-art satellites Beidou goes global, into space, marking the global Chinese space ex- 2 network expansion of its Bei- perts said. Global By Li Ruohan first foreign head of state to vis- communication on significant it China after the 19th National issues of common concern to Amid tremendous public curi- Congress of the Communist build a new consensus, en- osity over the visit of US Presi- Party of China. hance mutual understanding Inside dent Donald Trump, China is China and the US are and friendship, and promote pulling out all the stops in its working to ensure President bilateral relations in all spheres, Top News: Chinese fear rising US gun violence 3 preparations for the leader who Trump’s state visit is a “historic Zheng said. -
Tropical Cyclone Intensity Estimation Using Multi-Dimensional Convolutional Neural Networks from Geostationary Satellite Data
remote sensing Article Tropical Cyclone Intensity Estimation Using Multi-Dimensional Convolutional Neural Networks from Geostationary Satellite Data Juhyun Lee 1, Jungho Im 1,* , Dong-Hyun Cha 1, Haemi Park 2 and Seongmun Sim 1 1 School of Urban & Environmental Engineering in Ulsan National Institute of Science and Technology, Ulsan 44919, Korea; [email protected] (J.L.); [email protected] (D.-H.C.); [email protected] (S.S.) 2 Institute of Industrial Science in the University of Tokyo, A building, 4 Chome-6-1 Komaba, Meguro City, Tokyo 153-8505, Japan; [email protected] * Correspondence: [email protected]; Tel.: +82-52-217-2824 Received: 25 November 2019; Accepted: 25 December 2019; Published: 28 December 2019 Abstract: For a long time, researchers have tried to find a way to analyze tropical cyclone (TC) intensity in real-time. Since there is no standardized method for estimating TC intensity and the most widely used method is a manual algorithm using satellite-based cloud images, there is a bias that varies depending on the TC center and shape. In this study, we adopted convolutional neural networks (CNNs) which are part of a state-of-art approach that analyzes image patterns to estimate TC intensity by mimicking human cloud pattern recognition. Both two dimensional-CNN (2D-CNN) and three-dimensional-CNN (3D-CNN) were used to analyze the relationship between multi-spectral geostationary satellite images and TC intensity. Our best-optimized model produced a root mean squared error (RMSE) of 8.32 kts, resulting in better performance (~35%) than the existing model using the CNN-based approach with a single channel image. -
Appendix 8: Damages Caused by Natural Disasters
Building Disaster and Climate Resilient Cities in ASEAN Draft Finnal Report APPENDIX 8: DAMAGES CAUSED BY NATURAL DISASTERS A8.1 Flood & Typhoon Table A8.1.1 Record of Flood & Typhoon (Cambodia) Place Date Damage Cambodia Flood Aug 1999 The flash floods, triggered by torrential rains during the first week of August, caused significant damage in the provinces of Sihanoukville, Koh Kong and Kam Pot. As of 10 August, four people were killed, some 8,000 people were left homeless, and 200 meters of railroads were washed away. More than 12,000 hectares of rice paddies were flooded in Kam Pot province alone. Floods Nov 1999 Continued torrential rains during October and early November caused flash floods and affected five southern provinces: Takeo, Kandal, Kampong Speu, Phnom Penh Municipality and Pursat. The report indicates that the floods affected 21,334 families and around 9,900 ha of rice field. IFRC's situation report dated 9 November stated that 3,561 houses are damaged/destroyed. So far, there has been no report of casualties. Flood Aug 2000 The second floods has caused serious damages on provinces in the North, the East and the South, especially in Takeo Province. Three provinces along Mekong River (Stung Treng, Kratie and Kompong Cham) and Municipality of Phnom Penh have declared the state of emergency. 121,000 families have been affected, more than 170 people were killed, and some $10 million in rice crops has been destroyed. Immediate needs include food, shelter, and the repair or replacement of homes, household items, and sanitation facilities as water levels in the Delta continue to fall. -
Research Article Application of Buoy Observations in Determining Characteristics of Several Typhoons Passing the East China Sea in August 2012
Hindawi Publishing Corporation Advances in Meteorology Volume 2013, Article ID 357497, 6 pages http://dx.doi.org/10.1155/2013/357497 Research Article Application of Buoy Observations in Determining Characteristics of Several Typhoons Passing the East China Sea in August 2012 Ningli Huang,1 Zheqing Fang,2 and Fei Liu1 1 Shanghai Marine Meteorological Center, Shanghai, China 2 Department of Atmospheric Science, Nanjing University, Nanjing, China Correspondence should be addressed to Zheqing Fang; [email protected] Received 27 February 2013; Revised 5 May 2013; Accepted 21 May 2013 Academic Editor: Lian Xie Copyright © 2013 Ningli Huang et al. This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited. The buoy observation network in the East China Sea is used to assist the determination of the characteristics of tropical cyclone structure in August 2012. When super typhoon “Haikui” made landfall in northern Zhejiang province, it passed over three buoys, the East China Sea Buoy, the Sea Reef Buoy, and the Channel Buoy, which were located within the radii of the 13.9 m/s winds, 24.5 m/s winds, and 24.5 m/s winds, respectively. These buoy observations verified the accuracy of typhoon intensity determined by China Meteorological Administration (CMA). The East China Sea Buoy had closely observed typhoons “Bolaven” and “Tembin,” which provided real-time guidance for forecasters to better understand the typhoon structure and were also used to quantify the air-sea interface heat exchange during the passage of the storm. -
Shear Banding
2020-1065 IJOI http://www.ijoi-online.org/ THE MAJOR CAUSE OF BRIDGE COLLAPSES ACROSS ROCK RIVERBEDS: SHEAR BANDING Tse-Shan Hsu Professor, Department of Civil Engineering, Feng-Chia University President, Institute of Mitigation for Earthquake Shear Banding Disasters Taiwan, R.O.C. [email protected] Po Yen Chuang Ph.D Program in Civil and Hydraulic Engineering Feng-Chia University, Taiwan, R.O.C. Kuan-Tang Shen Secretary-General, Institute of Mitigation for Earthquake Shear Banding Disasters Taiwan, R.O.C. Fu-Kuo Huang Associate Professor, Department of Water Resources and Environmental Engineering Tamkang University, Taiwan, R.O.C. Abstract Current performance design codes require that bridges be designed that they will not col- lapse within their design life. However, in the past twenty five years, a large number of bridges have collapsed in Taiwan, with their actual service life far shorter than their de- sign life. This study explores the major cause of the collapse of many these bridges. The results of the study reveal the following. (1) Because riverbeds can be divided into high shear strength rock riverbeds and low shear strength soil riverbeds, the main cause of bridge collapse on a high shear strength rock riverbed is the shear band effect inducing local brittle fracture of the rock, and the main cause on a low shear strength soil riverbed is scouring, but current bridge design specifications only fortify against the scouring of low shear strength soil riverbeds. (2) Since Taiwan is mountainous, most of the collapsed bridges cross high shear strength rock riverbeds in mountainous areas and, therefore, the major cause of collapse of bridges in Taiwan is that their design does not consider the 180 The International Journal of Organizational Innovation Volume 13 Number 1, July 2020 2020-1065 IJOI http://www.ijoi-online.org/ shear band effect. -
二零一七熱帶氣旋tropical Cyclones in 2017
176 第四節 熱帶氣旋統計表 表4.1是二零一七年在北太平洋西部及南海區域(即由赤道至北緯45度、東 經 100度至180 度所包括的範圍)的熱帶氣旋一覽。表內所列出的日期只說明某熱帶氣旋在上述範圍內 出現的時間,因而不一定包括整個風暴過程。這個限制對表內其他元素亦同樣適用。 表4.2是天文台在二零一七年為船舶發出的熱帶氣旋警告的次數、時段、首個及末個警告 發出的時間。當有熱帶氣旋位於香港責任範圍內時(即由北緯10至30度、東經105至125 度所包括的範圍),天文台會發出這些警告。表內使用的時間為協調世界時。 表4.3是二零一七年熱帶氣旋警告信號發出的次數及其時段的摘要。表內亦提供每次熱帶 氣旋警告信號生效的時間和發出警報的次數。表內使用的時間為香港時間。 表4.4是一九五六至二零一七年間熱帶氣旋警告信號發出的次數及其時段的摘要。 表4.5是一九五六至二零一七年間每年位於香港責任範圍內以及每年引致天文台需要發 出熱帶氣旋警告信號的熱帶氣旋總數。 表4.6是一九五六至二零一七年間天文台發出各種熱帶氣旋警告信號的最長、最短及平均 時段。 表4.7是二零一七年當熱帶氣旋影響香港時本港的氣象觀測摘要。資料包括熱帶氣旋最接 近香港時的位置及時間和當時估計熱帶氣旋中心附近的最低氣壓、京士柏、香港國際機 場及橫瀾島錄得的最高風速、香港天文台錄得的最低平均海平面氣壓以及香港各潮汐測 量站錄得的最大風暴潮(即實際水位高出潮汐表中預計的部分,單位為米)。 表4.8.1是二零一七年位於香港600公里範圍內的熱帶氣旋及其為香港所帶來的雨量。 表4.8.2是一八八四至一九三九年以及一九四七至二零一七年十個為香港帶來最多雨量 的熱帶氣旋和有關的雨量資料。 表4.9是自一九四六年至二零一七年間,天文台發出十號颶風信號時所錄得的氣象資料, 包括熱帶氣旋吹襲香港時的最近距離及方位、天文台錄得的最低平均海平面氣壓、香港 各站錄得的最高60分鐘平均風速和最高陣風。 表4.10是二零一七年熱帶氣旋在香港所造成的損失。資料參考了各政府部門和公共事業 機構所提供的報告及本地報章的報導。 表4.11是一九六零至二零一七年間熱帶氣旋在香港所造成的人命傷亡及破壞。資料參考 了各政府部門和公共事業機構所提供的報告及本地報章的報導。 表4.12是二零一七年天文台發出的熱帶氣旋路徑預測驗証。 177 Section 4 TROPICAL CYCLONE STATISTICS AND TABLES TABLE 4.1 is a list of tropical cyclones in 2017 in the western North Pacific and the South China Sea (i.e. the area bounded by the Equator, 45°N, 100°E and 180°). The dates cited are the residence times of each tropical cyclone within the above‐mentioned region and as such might not cover the full life‐ span. This limitation applies to all other elements in the table. TABLE 4.2 gives the number of tropical cyclone warnings for shipping issued by the Hong Kong Observatory in 2017, the durations of these warnings and the times of issue of the first and last warnings for all tropical cyclones in Hong Kong's area of responsibility (i.e. the area bounded by 10°N, 30°N, 105°E and 125°E). Times are given in hours and minutes in UTC. TABLE 4.3 presents a summary of the occasions/durations of the issuing of tropical cyclone warning signals in 2017. The sequence of the signals displayed and the number of tropical cyclone warning bulletins issued for each tropical cyclone are also given. -
The Contribution of Forerunner to Storm Surges Along the Vietnam Coast
Journal of Marine Science and Engineering Article The Contribution of Forerunner to Storm Surges along the Vietnam Coast Tam Thi Trinh 1,2,*, Charitha Pattiaratchi 2 and Toan Bui 2,3 1 Vietnam National Centre for Hydro-Meteorological Forecasting, No. 8 Phao Dai Lang Street, Lang Thuong Commune, Dong Da District, Hanoi 11512, Vietnam 2 Oceans Graduate School and the UWA Oceans Institute, The University of Western Australia, 35 Stirling Highway, Perth WA 6009, Australia; [email protected] (C.P.); [email protected] (T.B.) 3 Faculty of Marine Sciences, Hanoi University of Natural Resource and Environment, No. 41A Phu Dien Road, Phu Dien Commune, North-Tu Liem District 11916, Hanoi, Vietnam * Correspondence: [email protected]; Tel.: +84-988-132-520 Received: 3 May 2020; Accepted: 7 July 2020; Published: 10 July 2020 Abstract: Vietnam, located in the tropical region of the northwest Pacific Ocean, is frequently impacted by tropical storms. Occurrence of extreme water level events associated with tropical storms are often unpredicted and put coastal infrastructure and safety of coastal populations at risk. Hence, an improved understanding of the nature of storm surges and their components along the Vietnam coast is required. For example, a higher than expected extreme storm surge during Typhoon Kalmegi (2014) highlighted the lack of understanding on the characteristics of storm surges in Vietnam. Physical processes that influence the non-tidal water level associated with tropical storms can persist for up to 14 days, beginning 3–4 days prior to storm landfall and cease up to 10 days after the landfall of the typhoon. -
Recent Advances in Research and Forecasting of Tropical Cyclone Rainfall
106 TROPICAL CYCLONE RESEARCH AND REVIEW VOLUME 7, NO. 2 RECENT ADVANCES IN RESEARCH AND FORECASTING OF TROPICAL CYCLONE RAINfaLL 1 2 3 4 5 KEVIN CHEUNG , ZIFENG YU , RUSSELL L. ELSBErry , MICHAEL BELL , HAIYAN JIANG , 6 7 8 9 TSZ CHEUNG LEE , KUO-CHEN LU , YOSHINORI OIKAWA , LIANGBO QI , 10 11 ROBErt F. ROGERS , KAZUHISA TSUBOKI 1Macquarie University, Sydney, Australia 2Shanghai Typhoon Institute, Shanghai, China 3University of Colorado Colorado Springs, Colorado Springs, USA 4Colorado State University, Fort Collins, USA 5Florida International University, Miami, USA 6Hong Kong Observatory, Hong Kong, China 7Pacific Science Association 8RSMC Tokyo/Japan Meteorological Agency, Tokyo, Japan 9Shanghai Meteorological Service, Shanghai, China 10NOAA/AOML/Hurricane Research Division, Miami, USA 11Nagoya University, Nagoya, Japan ABSTRACT In preparation for the Fourth International Workshop on Tropical Cyclone Landfall Processes (IWTCLP-IV), a summary of recent research studies and the forecasting challenges of tropical cyclone (TC) rainfall has been prepared. The extreme rainfall accumulations in Hurricane Harvey (2017) near Houston, Texas and Typhoon Damrey (2017) in southern Vietnam are examples of the TC rainfall forecasting challenges. Some progress is being made in understanding the internal rainfall dynamics via case studies. Environmental effects such as vertical wind shear and terrain-induced rainfall have been studied, as well as the rainfall relationships with TC intensity and structure. Numerical model predictions of TC-related rainfall have been improved via data as- similation, microphysics representation, improved resolution, and ensemble quantitative precipitation forecast techniques. Some attempts have been made to improve the verification techniques as well. A basic forecast challenge for TC-related rainfall is monitoring the existing rainfall distribution via satellite or coastal radars, or from over-land rain gauges. -
Innovation for Water Infrastructure Development in the Mekong Region
The Development Dimension Innovation for Water Infrastructure Development in the Mekong Region The Development Dimension Innovation for Water Infrastructure Development in the Mekong Region This work is published under the responsibility of the Secretary-General of the OECD. The opinions expressed and arguments employed herein do not necessarily reflect the official views of the member countries of the OECD or its Development Centre, of the ADBI or of the Mekong Institute. By making any designation of or reference to a particular territory, city or geographic area, or by using the term “country” in this document, neither the OECD, ADBI, or the Mekong Institute intend to make any judgments as to the legal or other status of any territory, city or area. This publication, as well as any data and any map included herein are without prejudice to the status of or sovereignty over any territory, to the delimitation of international frontiers and boundaries and to the name of any territory, city or area. The names of countries and territories used in this joint publication follow the practice of the OECD. Please cite this publication as: OECD/ADBI/Mekong Institute (2020), Innovation for Water Infrastructure Development in the Mekong Region, The Development Dimension, OECD Publishing, Paris, https://doi.org/10.1787/167498ea-en. ISBN 978-92-64-81904-7 (print) ISBN 978-92-64-90245-9 (pdf) The Development Dimension ISSN 1990-1380 (print) ISSN 1990-1372 (online) Photo credits: Cover design by Aida Buendía (OECD Development Centre) on the basis of an image from © Macrovector/Shutterstock.com. Corrigenda to publications may be found on line at: www.oecd.org/about/publishing/corrigenda.htm. -
Fordebris Flow Triggering Characteristics and Occurrence Probability After Extreme Rainfalls: Case Study in the Chenyulan Watershed, Taiwan
forDebris flow triggering characteristics and occurrence probability after extreme rainfalls: case study in the Chenyulan watershed, Taiwan Jinn-Chyi Chen1, Jiang- Guo Jiang1, Wen-Shun Huang2, Yuan-Fan Tsai3 5 1Department of Environmental and Hazards-Resistant Design, Huafan University, Taipei 22301, Taiwan 2 Ecological Soil and Water Conservation Research Center, National Cheng Kung University, Tainan 70101, Taiwan 3Department of Social and Regional Development, National Taipei University of Education, Taipei 10671, Taiwan 10 Correspondence to: Jinn-Chyi Chen ([email protected]) ABSTRACT. Rainfall and other extreme events often trigger debris flows in Taiwan. This study examines the debris flow triggering characteristics and probability of debris flow occurrence after extreme rainfalls. The Chenyulan watershed, central Taiwan, which has suffered from the Chi-Chi 15 earthquake and extreme rainfalls, was selected as a study area. The rainfall index (RI) was used to analyze the return period and characteristics of debris flow occurrence after extreme rainfalls. The characteristics of debris flow occurrence included the variation in critical RI, threshold of RI for debris flow triggering, and recovery period, the time required for the lowered threshold to return to the original threshold. The variations in critical RI after extreme rainfall and the recovery period associated with RI 20 are presented. The critical RI threshold was reduced in the years following an extreme rainfall event. The reduction in RI as well as recovery period were influenced by the RI. Reduced RI values showed an increasing trend over time, and it gradually returned to the initial RI. The empirical relationship between the probability of debris flow occurrence (P) and corresponding return period (T) of the rainfall characteristics for areas affected by extreme rainfalls and affected by the Chi-Chi earthquake were 25 developed.