Multiplicity Among Solar–Type Stars

Total Page:16

File Type:pdf, Size:1020Kb

Multiplicity Among Solar–Type Stars A&A 397, 159–175 (2003) Astronomy DOI: 10.1051/0004-6361:20021507 & c ESO 2003 Astrophysics Multiplicity among solar–type stars III. Statistical properties of the F7–K binaries with periods up to 10 years? J. L. Halbwachs1, M. Mayor2,S.Udry2, and F. Arenou3 1 Observatoire Astronomique de Strasbourg (UMR 7550), Observatoire Astronomique, 11 rue de l’Universit´e, 67 000 Strasbourg, France 2 Geneva Observatory, 51 chemin des Maillettes, 1290 Sauverny, Switzerland e-mail: [email protected];[email protected] 3 Observatoire de Paris–Meudon, bˆat. 11, 5 place J. Janssen, 92195 Meudon Cedex, France e-mail: [email protected] Received 4 July 2002 / Accepted 1 October 2002 Abstract. Two CORAVEL radial velocity surveys – one among stars in the solar neighbourhood, the other in the Pleiades and in Praesepe – are merged to derive the statistical properties of main–sequence binaries with spectral types F7 to K and with periods up to 10 years. A sample of 89 spectroscopic orbits was finally obtained. Among them, 52 relate to a free–of–bias selection of 405 stars (240 field stars and 165 cluster stars). The statistics corrected for selection effects yield the following results: (1) No discrepancy is found between the binaries among field stars and the binaries in open cluster. The distributions of mass ratios, of periods, the period–eccentricity diagram and the binary frequencies are all within the same error intervals. (2) The distribution of mass ratios presents two maxima: a broad peak from q 0:2toq 0:7, and a sharp peak for q > 0:8 (twins). Both are present among the early–type as well as among the late–type part≈ of the sample,≈ indicating a scale–free formation process. The peak for q > 0:8 gradually decreases when long–period binaries are considered. Whatever their periods, the twins have eccentricities significantly lower than the other binaries, confirming a difference in the formation processes. Twins could be generated by in situ formation followed by accretion from a gaseous envelope, whereas binaries with intermediate mass ratios could be formed at wide separations, but they are made closer by migration led by interactions with a circumbinary disk. (3) The frequency of binaries with P < 10 years is about 14%. (4) About 0.3% of binaries are expected to appear as false positives in a planet search. +4 Therefore, the frequency of planetary systems among stars is presently 7 2%. The extension of the distribution of mass ratios in the planetary range would result in a very sharp and very high peak, well− separated from the binary stars with low mass ratios. Key words. stars: binaries: general – stars: binaries: spectroscopic – stars: formation – stars: low–mass, brown dwarfs 1. Introduction 1.1. Binary formation The distributions of fundamental parameters of binary stars The formation process of binary stars is still poorly under- have been searched for and debated over for three quarters of stood, and various mechanisms could intervene (see the recent century (since Opik¨ 1924), but we still did not have a definitive IAU symposium 200, and the conclusion by Mathieu 2001). answer. This controversy comes essentially from its importance Whatever the model, the complete formation process consists for our understanding of star formation. It is well–known that of two phases: the fragmentation producing condensing cores the majority of stars belong to double or multiple systems, and which will become the components of the binary, and the later any realistic model of star formation must allow the genera- evolution, consisting in accretion and migration, which will fix tion of binary stars having the statistical properties which are the final masses of the components and the orbital parameters observed. This interest increased after the discovery of the ex- of the systems. trasolar planets, when it was suggested that these new objects could have the same origin as double stars (Stepinski & Black 2000). 1.1.1. Fragmentation Send offprint requests to: J. L. Halbwachs, Fragmentation may occur at three different phases of the con- e-mail: [email protected] densation of a molecular cloud (see the reviews by Bonnell ? Based on photoelectric radial–velocity measurements collected at 2001a,b). The earliest one is the first phase of the gravitational Haute-Provence observatory and on observations made with the ESA collapse. The cloud is split in several condensing fragments, Hipparcos astrometry satellite. with centers separated by thousands of AU. Article published by EDP Sciences and available at http://www.aanda.org or http://dx.doi.org/10.1051/0004-6361:20021507 160 J. L. Halbwachs et al.: Statistical properties of F7–K binaries The first phase of the condensation ends when the gas is no ratios. Bate (2000) also found that, unlike migration led by a longer optically thin. The gravitational collapse is then stopped, disk, it seems that accretion generates low eccentricities. and the temperature grows, impeding fragmentation. In a very recent paper, Bate et al. (2002b) simulated the for- A second collapse begins when the core is hot enough mation of binary stars in a small cluster as a hydrodynamical to induce the dissociation of the molecular hydrogen. process, taking all these effects into account. They concluded Fragmentation during or after the second collapse could gen- that equal–mass systems should be frequent among close bina- erate a seed binary with components as close as 0.1 AU. ries, and that the frequency of close binaries should increase However, this process requires very specific conditions, and with the mass of the primary. They predicted also that close it is unlikely to happen in reality. Another process leading binaries should often have wide companions. to close condensing cores is the formation of a disk around the protostar, and its fragmentation (Bonnell & Bate 1994). 1.1.3. Minimum secondary mass Whatever the process, the masses of the two cores are roughly proportional to the separation (Bate 2000): when the separation It follows from the above that the final mass ratio of a binary is about 0.1 AU, the component mass is only about 0.005 . is the product of two consecutive processes: fragmentation and M accretion. Since a large amount of material is accreted, Bate et al. (2002a) estimate that the final mass of any component 1.1.2. Evolution should usually be above the hydrogen–burning limit. Brown dwarfs are then failed stars which were ejected from dynami- The continuation of binary formation, from condensing cores cally unstable systems, and they are expected to be rare among to the final binary, could follow three different scenarios. binary components. The evolution of a cluster of protostars is led by dynamical interactions (see Bodenheimer & Burkert 2001; Clarke 2001). 1.2. History of binary statistic Some binaries or multiple systems may be formed when the cluster is disrupted. Although the tail of the distribution may It results from the previous section that the distributions of contain close binaries, separations below 10 AU are expected mass ratios, of periods and of eccentricities of main sequence to be rather rare. The orbits of these systems should be eccen- binaries are important observational clues for validating the tric. The final mass ratios depend on dynamical exchange in- models. However, these distributions are difficult to derive in teractions: the encounter of a binary with a single star heavier practice: the statistics of binary samples are biased by selection than the secondary component typically results in the ejection effects, and the relevant physical parameters are sometimes not of the secondary and the capture of the originally single star. directly observed. Therefore, the results of the investigations The distribution of masses of the components depends on the look curiously unstable and varying. This concerns not only number of cores generated by fragmentation. When it is larger distributions derived from different classes of binaries, such as than 2, the distribution of secondary masses does not depend visual binaries or spectroscopic binaries, but also results ob- on the primary mass. In other words, the distribution of mass tained by different studies related to the same kind of objects. ratios varies with the mass of the primary components. About this aspect, the most critical parameter is the mass ratio, hereafter defined as the ratio of the masses, q = = . When a circumbinary disk is formed, the transfer of an- M2 M1 gular momentum from the binary to the disk results in a de- crease of the semi–major axis and an increase of the eccentric- 1.2.1. Mass ratios ity (Artymowicz et al. 1991). If material is transferred from the When only spectroscopic binaries are considered, the distribu- disk to the binary, the mass ratio may increase (Artymowicz & tions of mass ratios that were derived may be distributed in two Lubow 1994; G¨unther & Kley 2002) or decrease (G¨unther & categories : Kley 2002). Close binaries could thus result from migration of wide pairs, but the investigations into this process are not ad- – The double–peak distributions. This distribution was of- vanced enough to evaluate whether it is sufficiently efficient to ten found in studies based on all known spectroscopic bi- explain the frequency of close binaries (Artymowicz & Lubow naries (Trimble 1974, 1978; Staniucha 1979). It consists 2001). of one peak of equal–mass components, and one peak When a close seed binary is formed in situ, the components around q 0:2 or 0.3. The former corresponds to the have low initial masses and they still receive a large part of their double–lined≈ spectroscopic binaries (SB2), and the latter final mass. The result of accretion from a gaseous envelope de- to the single–lined binaries (SB1).
Recommended publications
  • The NTT Provides the Deepest Look Into Space 6
    The NTT Provides the Deepest Look Into Space 6. A. PETERSON, Mount Stromlo Observatory,Australian National University, Canberra S. D'ODORICO, M. TARENGHI and E. J. WAMPLER, ESO The ESO New Technology Telescope r on La Silla has again proven its extraor- - dinary abilities. It has now produced the "deepest" view into the distant regions of the Universe ever obtained with ground- or space-based telescopes. Figure 1 : This picture is a reproduction of a I.1 x 1.1 arcmin portion of a composite im- age of forty-one 10-minute exposures in the V band of a field at high galactic latitude in the constellation of Sextans (R.A. loh 45'7 Decl. -0' 143. The individual images were obtained with the EMMI imager/spectrograph at the Nas- myth focus of the ESO 3.5-m New Technolo- gy Telescope using a 1000 x 1000 pixel Thomson CCD. This combination gave a full field of 7.6 x 7.6 arcmin and a pixel size of 0.44 arcsec. The average seeing during these exposures was 1.0 arcsec. The telescope was offset between the indi- vidual exposures so that the sky background could be used to flat-field the frame. This procedure also removed the effects of cos- mic rays and blemishes in the CCD. More than 97% of the objects seen in this sub- field are galaxies. For the brighter galax- ies, there is good agreement between the galaxy counts of Tyson (1988, Astron. J., 96, 1) and the NTT counts for the brighter galax- ies.
    [Show full text]
  • A Review on Substellar Objects Below the Deuterium Burning Mass Limit: Planets, Brown Dwarfs Or What?
    geosciences Review A Review on Substellar Objects below the Deuterium Burning Mass Limit: Planets, Brown Dwarfs or What? José A. Caballero Centro de Astrobiología (CSIC-INTA), ESAC, Camino Bajo del Castillo s/n, E-28692 Villanueva de la Cañada, Madrid, Spain; [email protected] Received: 23 August 2018; Accepted: 10 September 2018; Published: 28 September 2018 Abstract: “Free-floating, non-deuterium-burning, substellar objects” are isolated bodies of a few Jupiter masses found in very young open clusters and associations, nearby young moving groups, and in the immediate vicinity of the Sun. They are neither brown dwarfs nor planets. In this paper, their nomenclature, history of discovery, sites of detection, formation mechanisms, and future directions of research are reviewed. Most free-floating, non-deuterium-burning, substellar objects share the same formation mechanism as low-mass stars and brown dwarfs, but there are still a few caveats, such as the value of the opacity mass limit, the minimum mass at which an isolated body can form via turbulent fragmentation from a cloud. The least massive free-floating substellar objects found to date have masses of about 0.004 Msol, but current and future surveys should aim at breaking this record. For that, we may need LSST, Euclid and WFIRST. Keywords: planetary systems; stars: brown dwarfs; stars: low mass; galaxy: solar neighborhood; galaxy: open clusters and associations 1. Introduction I can’t answer why (I’m not a gangstar) But I can tell you how (I’m not a flam star) We were born upside-down (I’m a star’s star) Born the wrong way ’round (I’m not a white star) I’m a blackstar, I’m not a gangstar I’m a blackstar, I’m a blackstar I’m not a pornstar, I’m not a wandering star I’m a blackstar, I’m a blackstar Blackstar, F (2016), David Bowie The tenth star of George van Biesbroeck’s catalogue of high, common, proper motion companions, vB 10, was from the end of the Second World War to the early 1980s, and had an entry on the least massive star known [1–3].
    [Show full text]
  • U.S. Naval Observatory Washington, DC 20392-5420 This Report Covers the Period July 2001 Through June Dynamical Astronomy in Order to Meet Future Needs
    1 U.S. Naval Observatory Washington, DC 20392-5420 This report covers the period July 2001 through June dynamical astronomy in order to meet future needs. J. 2002. Bangert continued to serve as Department head. I. PERSONNEL A. Civilian Personnel A. Almanacs and Other Publications Marie R. Lukac retired from the Astronomical Appli- cations Department. The Nautical Almanac Office ͑NAO͒, a division of the Scott G. Crane, Lisa Nelson Moreau, Steven E. Peil, and Astronomical Applications Department ͑AA͒, is responsible Alan L. Smith joined the Time Service ͑TS͒ Department. for the printed publications of the Department. S. Howard is Phyllis Cook and Phu Mai departed. Chief of the NAO. The NAO collaborates with Her Majes- Brian Luzum and head James R. Ray left the Earth Ori- ty’s Nautical Almanac Office ͑HMNAO͒ of the United King- entation ͑EO͒ Department. dom to produce The Astronomical Almanac, The Astronomi- Ralph A. Gaume became head of the Astrometry Depart- cal Almanac Online, The Nautical Almanac, The Air ment ͑AD͒ in June 2002. Added to the staff were Trudy Almanac, and Astronomical Phenomena. The two almanac Tillman, Stephanie Potter, and Charles Crawford. In the In- offices meet twice yearly to discuss and agree upon policy, strument Shop, Tie Siemers, formerly a contractor, was hired science, and technical changes to the almanacs, especially to fulltime. Ellis R. Holdenried retired. Also departing were The Astronomical Almanac. Charles Crawford and Brian Pohl. Each almanac edition contains data for 1 year. These pub- William Ketzeback and John Horne left the Flagstaff Sta- lications are now on a well-established production schedule.
    [Show full text]
  • "#$%&'() + '', %-./0$%)%1 2 ()3 4&(5' 456')5'
    rs uvvwxyuzyws { yz|z|} rsz}~suzywsu}u~w vz~wsw 456789@A C 99D 7EFGH67A7I P @AQ R8@S9 RST9AS9 UVWUX `abcdUVVe fATg96GTHP7Eh96HE76QGiT69pf q rAS76876@HTAs tFR u Fv wxxy @AQ 4FR 4u Fv wxxy UVVe abbc d dbdc e f gc hi` ij ad bch dgcadabdddc c d ac k lgbc bcgb dmg agd g` kg bdcd dW dd k bg c ngddbaadgc gabmob nb boglWad g kdcoddog kedgcW pd gc bcogbpd kb obpcggc dd kfq` UVVe c iba ! " #$%& $' ())01023 Book of Abstracts – Table of Contents Welcome to the European Week of Astronomy & Space Science ...................................................... iii How space, and a few stars, came to Hatfield ............................................................................... v Plenary I: UK Solar Physics (UKSP) and Magnetosphere, Ionosphere and Solar Terrestrial (MIST) ....... 1 Plenary II: European Organisation for Astronomical Research in the Southern Hemisphere (ESO) ....... 2 Plenary III: European Space Agency (ESA) .................................................................................. 3 Plenary IV: Square Kilometre Array (SKA), High-Energy Astrophysics, Asteroseismology ................... 4 Symposia (1) The next era in radio astronomy: the pathway to SKA .............................................................. 5 (2) The standard cosmological models - successes and challenges .................................................. 17 (3) Understanding substellar populations and atmospheres: from brown dwarfs to exo-planets .......... 28 (4) The life cycle of dust ...........................................................................................................
    [Show full text]
  • QUALIFIER EXAM SOLUTIONS 1. Cosmology (Early Universe, CMB, Large-Scale Structure)
    Draft version June 20, 2012 Preprint typeset using LATEX style emulateapj v. 5/2/11 QUALIFIER EXAM SOLUTIONS Chenchong Zhu (Dated: June 20, 2012) Contents 1. Cosmology (Early Universe, CMB, Large-Scale Structure) 7 1.1. A Very Brief Primer on Cosmology 7 1.1.1. The FLRW Universe 7 1.1.2. The Fluid and Acceleration Equations 7 1.1.3. Equations of State 8 1.1.4. History of Expansion 8 1.1.5. Distance and Size Measurements 8 1.2. Question 1 9 1.2.1. Couldn't photons have decoupled from baryons before recombination? 10 1.2.2. What is the last scattering surface? 11 1.3. Question 2 11 1.4. Question 3 12 1.4.1. How do baryon and photon density perturbations grow? 13 1.4.2. How does an individual density perturbation grow? 14 1.4.3. What is violent relaxation? 14 1.4.4. What are top-down and bottom-up growth? 15 1.4.5. How can the power spectrum be observed? 15 1.4.6. How can the power spectrum constrain cosmological parameters? 15 1.4.7. How can we determine the dark matter mass function from perturbation analysis? 15 1.5. Question 4 16 1.5.1. What is Olbers's Paradox? 16 1.5.2. Are there Big Bang-less cosmologies? 16 1.6. Question 5 16 1.7. Question 6 17 1.7.1. How can we possibly see galaxies that are moving away from us at superluminal speeds? 18 1.7.2. Why can't we explain the Hubble flow through the physical motion of galaxies through space? 19 1.7.3.
    [Show full text]
  • Theia: Faint Objects in Motion Or the New Astrometry Frontier
    Theia: Faint objects in motion or the new astrometry frontier The Theia Collaboration ∗ July 6, 2017 Abstract In the context of the ESA M5 (medium mission) call we proposed a new satellite mission, Theia, based on rel- ative astrometry and extreme precision to study the motion of very faint objects in the Universe. Theia is primarily designed to study the local dark matter properties, the existence of Earth-like exoplanets in our nearest star systems and the physics of compact objects. Furthermore, about 15 % of the mission time was dedicated to an open obser- vatory for the wider community to propose complementary science cases. With its unique metrology system and “point and stare” strategy, Theia’s precision would have reached the sub micro-arcsecond level. This is about 1000 times better than ESA/Gaia’s accuracy for the brightest objects and represents a factor 10-30 improvement for the faintest stars (depending on the exact observational program). In the version submitted to ESA, we proposed an optical (350-1000nm) on-axis TMA telescope. Due to ESA Technology readiness level, the camera’s focal plane would have been made of CCD detectors but we anticipated an upgrade with CMOS detectors. Photometric mea- surements would have been performed during slew time and stabilisation phases needed for reaching the required astrometric precision. Authors Management team: Céline Boehm (PI, Durham University - Ogden Centre, UK), Alberto Krone-Martins (co-PI, Universidade de Lisboa - CENTRA/SIM, Portugal) and, in alphabetical order, António Amorim
    [Show full text]
  • Post-Main-Sequence Planetary System Evolution Rsos.Royalsocietypublishing.Org Dimitri Veras
    Post-main-sequence planetary system evolution rsos.royalsocietypublishing.org Dimitri Veras Department of Physics, University of Warwick, Coventry CV4 7AL, UK Review The fates of planetary systems provide unassailable insights Cite this article: Veras D. 2016 into their formation and represent rich cross-disciplinary Post-main-sequence planetary system dynamical laboratories. Mounting observations of post-main- evolution. R. Soc. open sci. 3: 150571. sequence planetary systems necessitate a complementary level http://dx.doi.org/10.1098/rsos.150571 of theoretical scrutiny. Here, I review the diverse dynamical processes which affect planets, asteroids, comets and pebbles as their parent stars evolve into giant branch, white dwarf and neutron stars. This reference provides a foundation for the Received: 23 October 2015 interpretation and modelling of currently known systems and Accepted: 20 January 2016 upcoming discoveries. 1. Introduction Subject Category: Decades of unsuccessful attempts to find planets around other Astronomy Sun-like stars preceded the unexpected 1992 discovery of planetary bodies orbiting a pulsar [1,2]. The three planets around Subject Areas: the millisecond pulsar PSR B1257+12 were the first confidently extrasolar planets/astrophysics/solar system reported extrasolar planets to withstand enduring scrutiny due to their well-constrained masses and orbits. However, a retrospective Keywords: historical analysis reveals even more surprises. We now know that dynamics, white dwarfs, giant branch stars, the eponymous celestial body that Adriaan van Maanen observed pulsars, asteroids, formation in the late 1910s [3,4]isanisolatedwhitedwarf(WD)witha metal-enriched atmosphere: direct evidence for the accretion of planetary remnants. These pioneering discoveries of planetary material around Author for correspondence: or in post-main-sequence (post-MS) stars, although exciting, Dimitri Veras represented a poor harbinger for how the field of exoplanetary e-mail: [email protected] science has since matured.
    [Show full text]
  • Astronomical Optical Interferometry, II
    Serb. Astron. J. } 183 (2011), 1 - 35 UDC 520.36{14 DOI: 10.2298/SAJ1183001J Invited review ASTRONOMICAL OPTICAL INTERFEROMETRY. II. ASTROPHYSICAL RESULTS S. Jankov Astronomical Observatory, Volgina 7, 11060 Belgrade 38, Serbia E{mail: [email protected] (Received: November 24, 2011; Accepted: November 24, 2011) SUMMARY: Optical interferometry is entering a new age with several ground- based long-baseline observatories now making observations of unprecedented spatial resolution. Based on a great leap forward in the quality and quantity of interfer- ometric data, the astrophysical applications are not limited anymore to classical subjects, such as determination of fundamental properties of stars; namely, their e®ective temperatures, radii, luminosities and masses, but the present rapid devel- opment in this ¯eld allowed to move to a situation where optical interferometry is a general tool in studies of many astrophysical phenomena. Particularly, the advent of long-baseline interferometers making use of very large pupils has opened the way to faint objects science and ¯rst results on extragalactic objects have made it a reality. The ¯rst decade of XXI century is also remarkable for aperture synthesis in the visual and near-infrared wavelength regimes, which provided image reconstruc- tions from stellar surfaces to Active Galactic Nuclei. Here I review the numerous astrophysical results obtained up to date, except for binary and multiple stars milli- arcsecond astrometry, which should be a subject of an independent detailed review, taking into account its importance and expected results at micro-arcsecond precision level. To the results obtained with currently available interferometers, I associate the adopted instrumental settings in order to provide a guide for potential users concerning the appropriate instruments which can be used to obtain the desired astrophysical information.
    [Show full text]
  • On the Probability of Habitable Planets
    On the probability of habitable planets. François Forget LMD, Institut Pierre Simon Laplace, CNRS, UPMC, Paris, France E-mail : [email protected] Published in “International Journal of Astrobiology” doi:10.1017/S1473550413000128, Cambridge University Press 2013. Abstract In the past 15 years, astronomers have revealed that a significant fraction of the stars should harbor planets and that it is likely that terrestrial planets are abundant in our galaxy. Among these planets, how many are habitable, i.e. suitable for life and its evolution? These questions have been discussed for years and we are slowly making progress. Liquid water remains the key criterion for habitability. It can exist in the interior of a variety of planetary bodies, but it is usually assumed that liquid water at the surface interacting with rocks and light is necessary for the emergence of a life able to modify its environment and evolve. A first key issue is thus to understand the climatic conditions allowing surface liquid water assuming a suitable atmosphere. This have been studied with global mean 1D models which has defined the “classical habitable zone”, the range of orbital distances within which worlds can maintain liquid water on their surfaces (Kasting et al. 1993). A new generation of 3D climate models based on universal equations and tested on bodies in the solar system is now available to explore with accuracy climate regimes that could locally allow liquid water. A second key issue is now to better understand the processes which control the composition and the evolution of the atmospheres of exoplanets, and in particular the geophysical feedbacks that seems to be necessary to maintain a continuously habitable climate.
    [Show full text]
  • Astrobiology Math
    National Aeronautics andSpace Administration Aeronautics National Astrobiology Math This collection of activities is based on a weekly series of space science problems intended for students looking for additional challenges in the math and physical science curriculum in grades 6 through 12. The problems were created to be authentic glimpses of modern science and engineering issues, often involving actual research data. The problems were designed to be one-pagers with a Teacher’s Guide and Answer Key as a second page. This compact form was deemed very popular by participating teachers. Astrobiology Math Mathematical Problems Featuring Astrobiology Applications Dr. Sten Odenwald NASA / ADNET Corp. [email protected] Astrobiology Math i http://spacemath.gsfc.nasa.gov Acknowledgments: We would like to thank Ms. Daniella Scalice for her boundless enthusiasm in the review and editing of this resource. Ms. Scalice is the Education and Public Outreach Coordinator for the NASA Astrobiology Institute (NAI) at the Ames Research Center in Moffett Field, California. We would also like to thank the team of educators and scientists at NAI who graciously read through the first draft of this book and made numerous suggestions for improving it and making it more generally useful to the astrobiology education community: Dr. Harold Geller (George Mason University), Dr. James Kratzer (Georgia Institute of Technology; Doyle Laboratory) and Ms. Suzi Taylor (Montana State University), For more weekly classroom activities about astronomy and space visit the Space Math@ NASA website, http://spacemath.gsfc.nasa.gov Image Credits: Front Cover: Collage created by Julie Fletcher (NAI), molecule image created by Jenny Mottar, NASA HQ.
    [Show full text]
  • Effects of Rotation Arund the Axis on the Stars, Galaxy and Rotation of Universe* Weitter Duckss1
    Effects of Rotation Arund the Axis on the Stars, Galaxy and Rotation of Universe* Weitter Duckss1 1Independent Researcher, Zadar, Croatia *Project: https://www.svemir-ipaksevrti.com/Universe-and-rotation.html; (https://www.svemir-ipaksevrti.com/) Abstract: The article analyzes the blueshift of the objects, through realized measurements of galaxies, mergers and collisions of galaxies and clusters of galaxies and measurements of different galactic speeds, where the closer galaxies move faster than the significantly more distant ones. The clusters of galaxies are analyzed through their non-zero value rotations and gravitational connection of objects inside a cluster, supercluster or a group of galaxies. The constant growth of objects and systems is visible through the constant influx of space material to Earth and other objects inside our system, through percussive craters, scattered around the system, collisions and mergers of objects, galaxies and clusters of galaxies. Atom and its formation, joining into pairs, growth and disintegration are analyzed through atoms of the same values of structure, different aggregate states and contiguous atoms of different aggregate states. The disintegration of complex atoms is followed with the temperature increase above the boiling point of atoms and compounds. The effects of rotation around an axis are analyzed from the small objects through stars, galaxies, superclusters and to the rotation of Universe. The objects' speeds of rotation and their effects are analyzed through the formation and appearance of a system (the formation of orbits, the asteroid belt, gas disk, the appearance of galaxies), its influence on temperature, surface gravity, the force of a magnetic field, the size of a radius.
    [Show full text]
  • Extrasolar Planets and Their Host Stars
    Kaspar von Braun & Tabetha S. Boyajian Extrasolar Planets and Their Host Stars July 25, 2017 arXiv:1707.07405v1 [astro-ph.EP] 24 Jul 2017 Springer Preface In astronomy or indeed any collaborative environment, it pays to figure out with whom one can work well. From existing projects or simply conversations, research ideas appear, are developed, take shape, sometimes take a detour into some un- expected directions, often need to be refocused, are sometimes divided up and/or distributed among collaborators, and are (hopefully) published. After a number of these cycles repeat, something bigger may be born, all of which one then tries to simultaneously fit into one’s head for what feels like a challenging amount of time. That was certainly the case a long time ago when writing a PhD dissertation. Since then, there have been postdoctoral fellowships and appointments, permanent and adjunct positions, and former, current, and future collaborators. And yet, con- versations spawn research ideas, which take many different turns and may divide up into a multitude of approaches or related or perhaps unrelated subjects. Again, one had better figure out with whom one likes to work. And again, in the process of writing this Brief, one needs create something bigger by focusing the relevant pieces of work into one (hopefully) coherent manuscript. It is an honor, a privi- lege, an amazing experience, and simply a lot of fun to be and have been working with all the people who have had an influence on our work and thereby on this book. To quote the late and great Jim Croce: ”If you dig it, do it.
    [Show full text]