Astrobiology Math
Total Page:16
File Type:pdf, Size:1020Kb
Load more
Recommended publications
-
Arxiv:1910.11169V1 [Astro-Ph.EP] 24 Oct 2019 Metchev Et Al.(2004) Due to the Detection of a Strong Mid- Tinuum and at HCO+ and CO Gas Emission Lines
Astronomy & Astrophysics manuscript no. PDS70_v2 c ESO 2019 October 25, 2019 VLT/SPHERE exploration of the young multiplanetary system PDS70? D. Mesa1, M. Keppler2, F. Cantalloube2, L. Rodet3, B. Charnay4, R. Gratton1, M. Langlois5; 6, A. Boccaletti4, M. Bonnefoy3, A. Vigan6, O. Flasseur7, J. Bae8, M. Benisty3; 9, G. Chauvin3; 9, J. de Boer10, S. Desidera1, T. Henning2, A.-M. Lagrange3, M. Meyer11, J. Milli12, A. Müller2, B. Pairet13, A. Zurlo14; 15; 6, S. Antoniucci16, J.-L. Baudino17, S. Brown Sevilla2, E. Cascone18, A. Cheetham19, R.U. Claudi1, P. Delorme3, V. D’Orazi1, M. Feldt2, J. Hagelberg19, M. Janson20, Q. Kral4, E. Lagadec21, C. Lazzoni1, R. Ligi22, A.-L. Maire2; 23, P. Martinez21, F. Menard3, N. Meunier3, C. Perrot4; 24; 25, S. Petrus3, C. Pinte26; 3, E.L. Rickman19, S. Rochat3, D. Rouan4, M. Samland2; 20, J.-F. Sauvage27; 6, T. Schmidt4; 28, S. Udry19, L. Weber19, F. Wildi19 (Affiliations can be found after the references) Received / accepted ABSTRACT Context. PDS 70 is a young (5.4 Myr), nearby (∼113 pc) star hosting a known transition disk with a large gap. Recent observations with SPHERE and NACO in the near-infrared (NIR) allowed us to detect a planetary mass companion, PDS 70 b, within the disk cavity. Moreover, observations in Hα with MagAO and MUSE revealed emission associated to PDS 70 b and to another new companion candidate, PDS 70 c, at a larger separation from the star. PDS 70 is the only multiple planetary system at its formation stage detected so far through direct imaging. Aims. Our aim is to confirm the discovery of the second planet PDS 70 c using SPHERE at VLT, to further characterize its physical properties, and search for additional point sources in this young planetary system. -
CENTAURI II Benutzerhandbuch
CENTAURI II Benutzerhandbuch SW-Version ab 3.1.0.73 MAYAH, CENTAURI, FLASHCAST sind eingetragene Warenzeichen. Alle anderen verwendeten Warenzeichen werden hiermit anerkannt. CENTAURI II Benutzerhandbuch ab SW 3.1.0.73 Bestell-Nr. CIIUM001 Stand 11/2005 (c) Copyright by MAYAH Communications GmbH Die Vervielfältigung des vorliegenden Handbuches, sowie der darin besprochenen Dokumentationen aus dem Internet, auch nur auszugsweise, ist nur mit ausdrücklicher schriftlicher Genehmigung der MAYAH Communications GmbH erlaubt. 1 Einführung ........................................................................................................... 1 1.1 Vorwort......................................................................................................... 1 1.2 Einbau / Installation ...................................................................................... 2 1.3 Lieferumfang ................................................................................................ 2 1.4 Umgebungs- / Betriebsbedingung................................................................ 2 1.5 Anschlüsse................................................................................................... 3 2 Verbindungsaufbau ............................................................................................. 4 2.1 ISDN Verbindungen mit dem Centauri II ...................................................... 4 2.1.1 FlashCast Technologie und Audiocodec Kategorien............................. 4 2.1.2 Wie bekomme ich eine synchronisierte Verbindung -
SETI Is Part of Astrobiology
SETI is Part of Astrobiology Jason T. Wright Department of Astronomy & Physics Center for Exoplanets and Habitable Worlds Penn State University Phone: (814) 863-8470 [email protected] I. SETI is Part of Astrobiology “Traditional SETI is not part of astrobiology” declares the NASA Astrobiology Strategy 2015 document (p. 150). This is incorrect.1 Astrobiology is the study of life in the universe, in particular its “origin, evolution, distribution, and future in the universe.” [emphasis mine] Searches for biosignatures are searches for the results of interactions between life and its environment, and could be sensitive to even primitive life on other worlds. As such, these searches focus on the origin and evolution of life, using past life on Earth as a guide. But some of the most obvious ways in which Earth is inhabited today are its technosignatures such as radio transmissions, alterations of its atmosphere by industrial pollutants, and probes throughout the Solar System. It seems clear that the future of life on Earth includes the development of ever more obvious technosignatures. Indeed, the NASA Astrobiology Strategy 2015 document acknowledges “the possibility” that such technosignatures exist, but erroneously declares them to be “not part of contemporary SETI,” and mentions them only to declare that we should “be aware of the possibility” and to “be sure to include [technosignatures] as a possible kind of interpretation we should consider as we begin to get data on the exoplanets.” In other words, while speculation on the nature of biosignatures and the design of multi-billion dollar missions to find those signatures is consistent with NASA’s vision for astrobiology, speculation on the nature of technosignatures and the design of observations to find them is not. -
Modeling Super-Earth Atmospheres in Preparation for Upcoming Extremely Large Telescopes
Modeling Super-Earth Atmospheres In Preparation for Upcoming Extremely Large Telescopes Maggie Thompson1 Jonathan Fortney1, Andy Skemer1, Tyler Robinson2, Theodora Karalidi1, Steph Sallum1 1University of California, Santa Cruz, CA; 2Northern Arizona University, Flagstaff, AZ ExoPAG 19 January 6, 2019 Seattle, Washington Image Credit: NASA Ames/JPL-Caltech/T. Pyle Roadmap Research Goals & Current Atmosphere Modeling Selecting Super-Earths for State of Super-Earth Tool (Past & Present) Follow-Up Observations Detection Preliminary Assessment of Future Observatories for Conclusions & Upcoming Instruments’ Super-Earths Future Work Capabilities for Super-Earths M. Thompson — ExoPAG 19 01/06/19 Research Goals • Extend previous modeling tool to simulate super-Earth planet atmospheres around M, K and G stars • Apply modified code to explore the parameter space of actual and synthetic super-Earths to select most suitable set of confirmed exoplanets for follow-up observations with JWST and next-generation ground-based telescopes • Inform the design of advanced instruments such as the Planetary Systems Imager (PSI), a proposed second-generation instrument for TMT/GMT M. Thompson — ExoPAG 19 01/06/19 Current State of Super-Earth Detections (1) Neptune Mass Range of Interest Earth Data from NASA Exoplanet Archive M. Thompson — ExoPAG 19 01/06/19 Current State of Super-Earth Detections (2) A Approximate Habitable Zone Host Star Spectral Type F G K M Data from NASA Exoplanet Archive M. Thompson — ExoPAG 19 01/06/19 Atmosphere Modeling Tool Evolution of Atmosphere Model • Solar System Planets & Moons ~ 1980’s (e.g., McKay et al. 1989) • Brown Dwarfs ~ 2000’s (e.g., Burrows et al. 2001) • Hot Jupiters & Other Giant Exoplanets ~ 2000’s (e.g., Fortney et al. -
Lurking in the Shadows: Wide-Separation Gas Giants As Tracers of Planet Formation
Lurking in the Shadows: Wide-Separation Gas Giants as Tracers of Planet Formation Thesis by Marta Levesque Bryan In Partial Fulfillment of the Requirements for the Degree of Doctor of Philosophy CALIFORNIA INSTITUTE OF TECHNOLOGY Pasadena, California 2018 Defended May 1, 2018 ii © 2018 Marta Levesque Bryan ORCID: [0000-0002-6076-5967] All rights reserved iii ACKNOWLEDGEMENTS First and foremost I would like to thank Heather Knutson, who I had the great privilege of working with as my thesis advisor. Her encouragement, guidance, and perspective helped me navigate many a challenging problem, and my conversations with her were a consistent source of positivity and learning throughout my time at Caltech. I leave graduate school a better scientist and person for having her as a role model. Heather fostered a wonderfully positive and supportive environment for her students, giving us the space to explore and grow - I could not have asked for a better advisor or research experience. I would also like to thank Konstantin Batygin for enthusiastic and illuminating discussions that always left me more excited to explore the result at hand. Thank you as well to Dimitri Mawet for providing both expertise and contagious optimism for some of my latest direct imaging endeavors. Thank you to the rest of my thesis committee, namely Geoff Blake, Evan Kirby, and Chuck Steidel for their support, helpful conversations, and insightful questions. I am grateful to have had the opportunity to collaborate with Brendan Bowler. His talk at Caltech my second year of graduate school introduced me to an unexpected population of massive wide-separation planetary-mass companions, and lead to a long-running collaboration from which several of my thesis projects were born. -
Lecture-29 (PDF)
Life in the Universe Orin Harris and Greg Anderson Department of Physics & Astronomy Northeastern Illinois University Spring 2021 c 2012-2021 G. Anderson., O. Harris Universe: Past, Present & Future – slide 1 / 95 Overview Dating Rocks Life on Earth How Did Life Arise? Life in the Solar System Life Around Other Stars Interstellar Travel SETI Review c 2012-2021 G. Anderson., O. Harris Universe: Past, Present & Future – slide 2 / 95 Dating Rocks Zircon Dating Sedimentary Grand Canyon Life on Earth How Did Life Arise? Life in the Solar System Life Around Dating Rocks Other Stars Interstellar Travel SETI Review c 2012-2021 G. Anderson., O. Harris Universe: Past, Present & Future – slide 3 / 95 Zircon Dating Zircon, (ZrSiO4), minerals incorporate trace amounts of uranium but reject lead. Naturally occuring uranium: • U-238: 99.27% • U-235: 0.72% Decay chains: • 238U −→ 206Pb, τ =4.47 Gyrs. • 235U −→ 207Pb, τ = 704 Myrs. 1956, Clair Camron Patterson dated the Canyon Diablo meteorite: τ =4.55 Gyrs. c 2012-2021 G. Anderson., O. Harris Universe: Past, Present & Future – slide 4 / 95 Dating Sedimentary Rocks • Relative ages: Deeper layers were deposited earlier • Absolute ages: Decay of radioactive isotopes old (deposited last) oldest (depositedolder first) c 2012-2021 G. Anderson., O. Harris Universe: Past, Present & Future – slide 5 / 95 Grand Canyon: Earth History from 200 million - 2 billion yrs ago. Dating Rocks Life on Earth Earth History Timeline Late Heavy Bombardment Hadean Shark Bay Stromatolites Cyanobacteria Q: Earliest Fossils? Life on Earth O2 History Q: Life on Earth How Did Life Arise? Life in the Solar System Life Around Other Stars Interstellar Travel SETI Review c 2012-2021 G. -
BRAS Newsletter August 2013
www.brastro.org August 2013 Next meeting Aug 12th 7:00PM at the HRPO Dark Site Observing Dates: Primary on Aug. 3rd, Secondary on Aug. 10th Photo credit: Saturn taken on 20” OGS + Orion Starshoot - Ben Toman 1 What's in this issue: PRESIDENT'S MESSAGE....................................................................................................................3 NOTES FROM THE VICE PRESIDENT ............................................................................................4 MESSAGE FROM THE HRPO …....................................................................................................5 MONTHLY OBSERVING NOTES ....................................................................................................6 OUTREACH CHAIRPERSON’S NOTES .........................................................................................13 MEMBERSHIP APPLICATION .......................................................................................................14 2 PRESIDENT'S MESSAGE Hi Everyone, I hope you’ve been having a great Summer so far and had luck beating the heat as much as possible. The weather sure hasn’t been cooperative for observing, though! First I have a pretty cool announcement. Thanks to the efforts of club member Walt Cooney, there are 5 newly named asteroids in the sky. (53256) Sinitiere - Named for former BRAS Treasurer Bob Sinitiere (74439) Brenden - Named for founding member Craig Brenden (85878) Guzik - Named for LSU professor T. Greg Guzik (101722) Pursell - Named for founding member Wally Pursell -
The Nearest Stars: a Guided Tour by Sherwood Harrington, Astronomical Society of the Pacific
www.astrosociety.org/uitc No. 5 - Spring 1986 © 1986, Astronomical Society of the Pacific, 390 Ashton Avenue, San Francisco, CA 94112. The Nearest Stars: A Guided Tour by Sherwood Harrington, Astronomical Society of the Pacific A tour through our stellar neighborhood As evening twilight fades during April and early May, a brilliant, blue-white star can be seen low in the sky toward the southwest. That star is called Sirius, and it is the brightest star in Earth's nighttime sky. Sirius looks so bright in part because it is a relatively powerful light producer; if our Sun were suddenly replaced by Sirius, our daylight on Earth would be more than 20 times as bright as it is now! But the other reason Sirius is so brilliant in our nighttime sky is that it is so close; Sirius is the nearest neighbor star to the Sun that can be seen with the unaided eye from the Northern Hemisphere. "Close'' in the interstellar realm, though, is a very relative term. If you were to model the Sun as a basketball, then our planet Earth would be about the size of an apple seed 30 yards away from it — and even the nearest other star (alpha Centauri, visible from the Southern Hemisphere) would be 6,000 miles away. Distances among the stars are so large that it is helpful to express them using the light-year — the distance light travels in one year — as a measuring unit. In this way of expressing distances, alpha Centauri is about four light-years away, and Sirius is about eight and a half light- years distant. -
Discovery of a Pulsar Wind Nebula Candidate in the Cygnus Loop
Discovery of a Pulsar Wind Nebula Candidate in the Cygnus Loop 2 3 S Satoru Katsuda" Hiroshi Tsunemi , Koji Mori , Hiroyuki Uchida" Robert Petre , Shin'ya 1 Yamada , and Thru Tamagawa' ABSTRACT We report on a discovery of a diffuse nebula containing a pointlike source in the southern blowout region of the Cygnus Loop supernova remnant, based on Suzaku and XMM-Newton observations. The X-ray spectra from the nebula and the pointlike source are well represented by an absorbed power-law model with photon indices of 2.2±0.1 and 1.6±0.2, respectively. The photon indices as well as the flux ratio of F nebula/ F po;.,li" ~ 4 lead us to propose that the system is a pulsar wind nebula, although pulsations have not yet been detected. If we attribute its origin to the Cygnus Loop supernova, then the 0.5- 8 keY luminosity of the nebula is computed to be 2.1xlo"' (d/MOpc)2ergss-" where d is the distance to the Loop. This implies a spin-down loss-energy E ~ 2.6 X 1035 (d/MOpc)2ergss-'. The location of the neutron star candidate, ~2° away from the geometric center of the Loop, implies a high transverse velocity of ~ 1850(8/2D ) (d/540pc) (t/lOkyr)- ' kms-" assuming the currently accepted age of the Cygnus Loop. Subject headings: ISM: individual objects (Cygnus Loop) - ISM: supernova remnants - pulsars: general - stars: neutron - stars: winds, outflows - X-rays: ISM 'RlKEN (The Institute of Physical and Chemical Research), 2-1 Hirosawa, Wako, Sailama 351-0198 2Department of EaTth and Space Science, Graduate School of Science, Osaka University, 1-1 Machikaneyama, Thyonaka, Osaka, 60-0043, Japan SDepartment of Applied Physics, Faculty of Engineering, University of Miyazaki, 1-1 Gakuen Klbana-dai Nishi, Miyazaki, 889-2192, Japan ' Department of PhysiCS, Kyoto University, Kitashirakawa-oiwake-clto, Sakyo, Kyoto 606-8502, J apan 'NASA Goddard Space Flight Center, Code 662, Greenbelt MD 20771 - 2 - 1. -
A Spectroscopic Atlas of Deneb (A2 Iae) $\Lambda\Lambda$3826–5212
A&A 400, 1043–1049 (2003) Astronomy DOI: 10.1051/0004-6361:20030014 & c ESO 2003 Astrophysics A spectroscopic atlas of Deneb (A2 Iae) λλ3826–5212? B. Albayrak1,A.F.Gulliver2,??,S.J.Adelman3,??, C. Aydın1,andD.Ko¸cer4 1 Ankara University, Science Faculty, Department of Astronomy and Space Sciences, 06100, Tando˘gan, Ankara, Turkey e-mail: [email protected]; [email protected] 2 Department of Physics and Astronomy, Brandon University, Brandon, MB, R7A 6A9, Canada e-mail: [email protected] 3 Department of Physics, The Citadel, 171 Moultrie Street, Charleston, SC 29409, USA e-mail: [email protected] 4 Istanbul˙ K¨ult¨ur University, Science & Art Faculty, Department of Mathematics, E5 Karayolu Uzeri,¨ 34510, S¸irinevler, Istanbul,˙ Turkey e-mail: [email protected] Received 2 December 2002 / Accepted 6 January 2003 Abstract. We present a spectroscopic atlas of Deneb (A2 Iae) obtained with the long camera of the 1.22-m telescope of the 1 Dominion Astrophysical Observatory using Reticon and CCD detectors. For λλ3826–5212 the inverse dispersion is 2.4 Å mm− with a resolution of 0.072 Å. At the continuum the mean signal-to-noise ratio is 1030. The wavelengths in the laboratory frame, the equivalent widths, and the identifications of the various spectral features are given. This atlas should provide useful guidance for studies of other stars with similar spectral types. The stellar and synthetic spectra with their corresponding line identifications can be examined at http://www.brandonu.ca/physics/gulliver/atlases.html Key words. atlases – stars: early type – stars: individual: Deneb – stars: supergiants 1. -
Breakthrough Propulsion Study Assessing Interstellar Flight Challenges and Prospects
Breakthrough Propulsion Study Assessing Interstellar Flight Challenges and Prospects NASA Grant No. NNX17AE81G First Year Report Prepared by: Marc G. Millis, Jeff Greason, Rhonda Stevenson Tau Zero Foundation Business Office: 1053 East Third Avenue Broomfield, CO 80020 Prepared for: NASA Headquarters, Space Technology Mission Directorate (STMD) and NASA Innovative Advanced Concepts (NIAC) Washington, DC 20546 June 2018 Millis 2018 Grant NNX17AE81G_for_CR.docx pg 1 of 69 ABSTRACT Progress toward developing an evaluation process for interstellar propulsion and power options is described. The goal is to contrast the challenges, mission choices, and emerging prospects for propulsion and power, to identify which prospects might be more advantageous and under what circumstances, and to identify which technology details might have greater impacts. Unlike prior studies, the infrastructure expenses and prospects for breakthrough advances are included. This first year's focus is on determining the key questions to enable the analysis. Accordingly, a work breakdown structure to organize the information and associated list of variables is offered. A flow diagram of the basic analysis is presented, as well as more detailed methods to convert the performance measures of disparate propulsion methods into common measures of energy, mass, time, and power. Other methods for equitable comparisons include evaluating the prospects under the same assumptions of payload, mission trajectory, and available energy. Missions are divided into three eras of readiness (precursors, era of infrastructure, and era of breakthroughs) as a first step before proceeding to include comparisons of technology advancement rates. Final evaluation "figures of merit" are offered. Preliminary lists of mission architectures and propulsion prospects are provided. -
SEPTEMBER 2014 OT H E D Ebn V E R S E R V ESEPTEMBERR 2014
THE DENVER OBSERVER SEPTEMBER 2014 OT h e D eBn v e r S E R V ESEPTEMBERR 2014 FROM THE INSIDE LOOKING OUT Calendar Taken on July 25th in San Luis State Park near the Great Sand Dunes in Colorado, Jeff made this image of the Milky Way during an overnight camping stop on the way to Santa Fe, NM. It was taken with a Canon 2............................. First quarter moon 60D camera, an EFS 15-85 lens, using an iOptron SkyTracker. It is a single frame, with no stacking or dark/ 8.......................................... Full moon bias frames, at ISO 1600 for two minutes. Visible in this south-facing photograph is Sagittarius, and the 14............ Aldebaran 1.4˚ south of moon Dark Horse Nebula inside of the Milky Way. He processed the image in Adobe Lightroom. Image © Jeff Tropeano 15............................ Last quarter moon 22........................... Autumnal Equinox 24........................................ New moon Inside the Observer SEPTEMBER SKIES by Dennis Cochran ygnus the Swan dives onto center stage this other famous deep-sky object is the Veil Nebula, President’s Message....................... 2 C month, almost overhead. Leading the descent also known as the Cygnus Loop, a supernova rem- is the nose of the swan, the star known as nant so large that its separate arcs were known Society Directory.......................... 2 Albireo, a beautiful multi-colored double. One and named before it was found to be one wide Schedule of Events......................... 2 wonders if Albireo has any planets from which to wisp that came out of a single star. The Veil is see the pair up-close.