QUALIFIER EXAM SOLUTIONS 1. Cosmology (Early Universe, CMB, Large-Scale Structure)

Total Page:16

File Type:pdf, Size:1020Kb

QUALIFIER EXAM SOLUTIONS 1. Cosmology (Early Universe, CMB, Large-Scale Structure) Draft version June 20, 2012 Preprint typeset using LATEX style emulateapj v. 5/2/11 QUALIFIER EXAM SOLUTIONS Chenchong Zhu (Dated: June 20, 2012) Contents 1. Cosmology (Early Universe, CMB, Large-Scale Structure) 7 1.1. A Very Brief Primer on Cosmology 7 1.1.1. The FLRW Universe 7 1.1.2. The Fluid and Acceleration Equations 7 1.1.3. Equations of State 8 1.1.4. History of Expansion 8 1.1.5. Distance and Size Measurements 8 1.2. Question 1 9 1.2.1. Couldn't photons have decoupled from baryons before recombination? 10 1.2.2. What is the last scattering surface? 11 1.3. Question 2 11 1.4. Question 3 12 1.4.1. How do baryon and photon density perturbations grow? 13 1.4.2. How does an individual density perturbation grow? 14 1.4.3. What is violent relaxation? 14 1.4.4. What are top-down and bottom-up growth? 15 1.4.5. How can the power spectrum be observed? 15 1.4.6. How can the power spectrum constrain cosmological parameters? 15 1.4.7. How can we determine the dark matter mass function from perturbation analysis? 15 1.5. Question 4 16 1.5.1. What is Olbers's Paradox? 16 1.5.2. Are there Big Bang-less cosmologies? 16 1.6. Question 5 16 1.7. Question 6 17 1.7.1. How can we possibly see galaxies that are moving away from us at superluminal speeds? 18 1.7.2. Why can't we explain the Hubble flow through the physical motion of galaxies through space? 19 1.7.3. Can galaxies with recession velocities v > c slow down until v < c? 19 1.8. Question 7 19 1.8.1. How does nucleosythesis scale with cosmological parameters? 20 1.8.2. How do we determine primordial densities if D is easily destroyed in stars? 20 1.8.3. Why is there more matter than antimatter? 20 1.8.4. What are WIMPs? 20 1.9. Question 8 20 1.9.1. Describe systematic errors. 21 1.9.2. Describe alternate explanations to the SNe luminosity distance data, and why they can be ruled out? 22 1.9.3. Can SNe II be used as standard candles? 23 1.10. Question 9 23 1.10.1. What is the fate of the universe, given some set of Ωs? 23 1.10.2. How do we determine, observationally, the age of the universe? 24 1.10.3. Is Λ caused by vacuum energy? 25 1.11. Question 10 25 1.11.1. What are the consequences of these numbers on the nature of the universe? 26 1.11.2. How do we determine Ωr from the CMB? 26 1.11.3. How are other values empirically determined? 26 1.11.4. What are the six numbers that need to be specified to uniquely identify a ΛCDM universe? 27 1.11.5. Why is h often included in cosmological variables? 27 1.12. Question 11 27 1.12.1. What are the possible fates the universe? 28 1.13. Question 12 29 [email protected] 2 1.13.1. How does the CMB power spectrum support the inflation picture? 31 1.13.2. Derive the horizon size at recombination. 31 1.13.3. Why is the CMB a perfect blackbody? 31 1.13.4. How is the CMB measured? 32 1.13.5. Why did people use to think CMB anisotropy would be much larger than it is currently known to be? 32 1.13.6. What is the use of CMB polarization? 32 1.14. Question 13 32 1.14.1. Why is BAO often used in conjunction with CMB? 35 1.14.2. What is the BAO equivalent of higher-l CMB peaks? 35 1.15. Question 14 35 1.15.1. How is weak lensing measured? 36 1.15.2. Can strong lensing be used to determine cosmological parameters? 36 1.16. Question 15 36 1.16.1. What caused inflation? 37 1.16.2. How does inflation affect the large scale structure of the universe? 37 1.16.3. Is inflation the only way to explain the three observations above? 37 1.17. Question 16 37 1.17.1. Is the anthropic principle a scientifically or logically valid argument? 38 1.18. Question 17 38 1.18.1. Describe galaxy surveys. 39 1.18.2. What about three or higher point correlation functions? 39 1.19. Question 18 40 1.20. Question 19 40 1.20.1. What about He reionization? 41 2. Extragalactic Astronomy (Galaxies and Galaxy Evolution, Phenomenology) 43 2.1. Question 1 43 2.1.1. What does the Hubble sequence miss? 44 2.1.2. What is the Tully-Fisher relationship? 45 2.1.3. What is the fundamental plane? 45 2.1.4. What other criteria could be used for galaxy classification? 45 2.2. Question 2 45 2.2.1. Why can't we simply use the inner 10 kpc data derived from 21-cm line emission and a model of the halo to determine the mass of the halo? 46 2.2.2. How is the total mass of an elliptical galaxy determined? 46 2.3. Question 3 47 2.3.1. Is He and metals ionized? Is any component of the IGM neutral? 47 2.3.2. What are the properties of these neutral H clouds? Can they form galaxies? 48 2.4. Question 4 48 2.5. Question 5 50 2.5.1. How are SMBHs formed? 52 2.5.2. What correlations are there between the properties of the SMBH and the host galaxy? 52 2.6. Question 6 52 2.7. Question 7 53 2.7.1. What determines the emission spectrum of an AGN? 54 2.7.2. Are there backgrounds at other wavelengths? 54 2.8. Question 8 54 2.8.1. What are cold flows? 55 2.8.2. What is feedback? 55 2.8.3. What is downsizing? 56 2.9. Question 9 56 2.9.1. What are cooling flows? 57 2.10. Question 10 57 2.11. Question 11 59 2.11.1. Describe population synthesis. 60 2.11.2. What do the spectra of real galaxies look like? 60 2.12. Question 12 60 2.12.1. What have we learned about high-z galaxies from LBGs? 62 2.12.2. Are there other \breaks" that could be used to detect galaxies? 62 2.12.3. Can we find Lyman-break galaxies at low redshifts? 62 2.13. Question 13 62 2.13.1. What is the cause of the various emission features of AGN? 64 2.14. Question 14 64 3 2.14.1. Are there non-EM backgrounds? 66 2.15. Question 15 66 2.15.1. Where are most AGN located? 69 2.15.2. What evidence is there that AGN are powered by supermassive black holes? 69 2.16. Question 16 69 2.16.1. How are high-z cluster found? 71 2.17. Question 17 71 2.18. Question 18 73 2.18.1. What are SZ surveys conducted with? 74 2.18.2. What is the kinematic SZ effect? 74 3. Galactic Astronomy (Includes Star Formation/ISM) 75 3.1. Question 1 75 3.1.1. What is the IMF useful for? 75 3.1.2. Is there a universal IMF? 75 3.1.3. Why are the lower and upper limits of the IMF poorly understood compared to that of the middle (several M stars)? What constraints are there? 76 3.1.4. What's the difference between a field and stellar cluster IMF? 77 3.1.5. How do you determine an a present-day mass function (PDMF) from an IMF? 77 3.2. Question 2 77 3.2.1. What Orbits are Allowed in an Axisymmetric Potential? 78 3.2.2. How did each population of stars gain their particular orbit? 78 3.2.3. Orbits in Elliptical Galaxies 79 3.2.4. What are the different populations in the galaxy, and what are their ages and metallicities? 80 3.2.5. What is the spheroid composed of (globular clusters?)? 80 3.3. Question 3 80 3.3.1. What errors are in your analysis? 80 3.3.2. Can you give some real statistics for SNe Ia? 81 3.4. Question 4 81 3.4.1. What stars are collisional? 82 3.4.2. Gas is collisional. Why? 82 3.5. Question 5/6 82 3.5.1. How does H2 form? 82 3.5.2. Why is H2 necessary for star formation? 83 3.5.3. How do Population III stars form? 83 3.6. Question 7 84 3.6.1. What observational differences are there between GCs and dSphs? 84 3.6.2. What is a Galaxy? 84 3.7. Question 8 85 3.7.1. How does velocity dispersion increase over time? 85 3.7.2. Why is the mean [Fe/H] not -1 at the birth of the MW? 86 3.8. Question 9 87 3.9. Question 10 88 3.9.1. Given a cross-section, how would you calculate the amount of extinction? 90 3.9.2. What percentage of the light is absorbed (rather than scattered) by the light? 90 3.9.3. Why is dust scattering polarized? 90 3.9.4. What is the grain distribution of the ISM? 91 3.10. Question 11 91 3.10.1. Under what conditions does the above formulation of dynamical friction hold? 92 3.10.2.
Recommended publications
  • Cosmic Questions, Answers Pending
    special section | cosmic questions, Answers pending Cosmic questions, answers pending throughout human history, great missions of mission reveal the exploration have been inspired by curiosity, : the desire to find out about unknown realms. secrets of the universe such missions have taken explorers across wide oceans and far below their surfaces, THE OBJECTIVE deep into jungles, high onto mountain peaks For millennia, people have turned to the heavens in search of clues to nature’s mysteries. truth seekers from ages past to the present day and over vast stretches of ice to the earth’s have found that the earth is not the center of the universe, that polar extremities. countless galaxies dot the abyss of space, that an unknown form of today’s greatest exploratory mission is no matter and dark forces are at work in shaping the cosmos. Yet despite longer earthbound. it’s the scientific quest to these heroic efforts, big cosmological questions remain unresolved: explain the cosmos, to answer the grandest What happened before the Big Bang? ............................... Page 22 questions about the universe as a whole. What is the universe made of? ......................................... Page 24 what is the identity, for example, of the Is there a theory of everything? ....................................... Page 26 Are space and time fundamental? .................................... Page 28 “dark” ingredients in the cosmic recipe, com- What is the fate of the universe? ..................................... Page 30 posing 95 percent of the
    [Show full text]
  • Qiao Et Al., Sosigenes Pit Crater Age 1/51
    Qiao et al., Sosigenes pit crater age 1 2 The role of substrate characteristics in producing anomalously young crater 3 retention ages in volcanic deposits on the Moon: Morphology, topography, 4 sub-resolution roughness and mode of emplacement of the Sosigenes Lunar 5 Irregular Mare Patch (IMP) 6 7 Le QIAO1,2,*, James W. HEAD2, Long XIAO1, Lionel WILSON3, and Josef D. 8 DUFEK4 9 1Planetary Science Institute, School of Earth Sciences, China University of 10 Geosciences, Wuhan 430074, China. 11 2Department of Earth, Environmental and Planetary Sciences, Brown University, 12 Providence, RI 02912, USA. 13 3Lancaster Environment Centre, Lancaster University, Lancaster LA1 4YQ, UK. 14 4School of Earth and Atmospheric Sciences, Georgia Institute of Technology, Atlanta, 15 Georgia 30332, USA. 16 *Corresponding author E-mail: [email protected] 17 18 19 20 Key words: Lunar/Moon, Sosigenes, irregular mare patches, mare volcanism, 21 magmatic foam, lava lake, dike emplacement 22 23 24 25 1/51 Qiao et al., Sosigenes pit crater age 26 Abstract: Lunar Irregular Mare Patches (IMPs) are comprised of dozens of small, 27 distinctive and enigmatic lunar mare features. Characterized by their irregular shapes, 28 well-preserved state of relief, apparent optical immaturity and few superposed impact 29 craters, IMPs are interpreted to have been formed or modified geologically very 30 recently (<~100 Ma; Braden et al. 2014). However, their apparent relatively recent 31 formation/modification dates and emplacement mechanisms are debated. We focus in 32 detail on one of the major IMPs, Sosigenes, located in western Mare Tranquillitatis, 33 and dated by Braden et al.
    [Show full text]
  • The Cosmos - Before the Big Bang
    From issue 2601 of New Scientist magazine, 28 April 2007, page 28-33 The cosmos - before the big bang How did the universe begin? The question is as old as humanity. Sure, we know that something like the big bang happened, but the theory doesn't explain some of the most important bits: why it happened, what the conditions were at the time, and other imponderables. Many cosmologists think our standard picture of how the universe came to be is woefully incomplete or even plain wrong, and they have been dreaming up a host of strange alternatives to explain how we got here. For the first time, they are trying to pin down the initial conditions of the big bang. In particular, they want to solve the long-standing mystery of how the universe could have begun in such a well- ordered state, as fundamental physics implies, when it seems utter chaos should have reigned. Several models have emerged that propose intriguing answers to this question. One says the universe began as a dense sea of black holes. Another says the big bang was sparked by a collision between two membranes floating in higher-dimensional space. Yet another says our universe was originally ripped from a larger entity, and that in turn countless baby universes will be born from the wreckage of ours. Crucially, each scenario makes unique and testable predictions; observations coming online in the next few years should help us to decide which, if any, is correct. Not that modelling the origin of the universe is anything new.
    [Show full text]
  • Quantum Cosmology of the Big Rip: Within GR and in a Modified Theory of Gravity
    universe Conference Report Quantum Cosmology of the Big Rip: Within GR and in a Modified Theory of Gravity Mariam Bouhmadi-López 1,2,*, Imanol Albarran 3,4 and Che-Yu Chen 5,6 1 Department of Theoretical Physics, University of the Basque Country UPV/EHU, P.O. Box 644, 48080 Bilbao, Spain 2 IKERBASQUE, Basque Foundation for Science, 48011 Bilbao, Spain 3 Departamento de Física, Universidade da Beira Interior, Rua Marquês D’Ávila e Bolama, 6201-001 Covilhã, Portugal; [email protected] 4 Centro de Matemática e Aplicações da Universidade da Beira Interior (CMA-UBI), Rua Marquês D’Ávila e Bolama, 6201-001 Covilhã, Portugal 5 Department of Physics, National Taiwan University, 10617 Taipei, Taiwan; [email protected] 6 LeCosPA, National Taiwan University, 10617 Taipei, Taiwan * Correspondence: [email protected] Academic Editors: Mariusz P. D ˛abrowski, Manuel Krämer and Vincenzo Salzano Received: 8 March 2017; Accepted: 12 April 2017; Published: 14 April 2017 Abstract: Quantum gravity is the theory that is expected to successfully describe systems that are under strong gravitational effects while at the same time being of an extreme quantum nature. When this principle is applied to the universe as a whole, we use what is commonly named “quantum cosmology”. So far we do not have a definite quantum theory of gravity or cosmology, but we have several promising approaches. Here we will review the application of the Wheeler–DeWitt formalism to the late-time universe, where it might face a Big Rip future singularity. The Big Rip singularity is the most virulent future dark energy singularity which can happen not only in general relativity but also in some modified theories of gravity.
    [Show full text]
  • Special Catalogue Milestones of Lunar Mapping and Photography Four Centuries of Selenography on the Occasion of the 50Th Anniversary of Apollo 11 Moon Landing
    Special Catalogue Milestones of Lunar Mapping and Photography Four Centuries of Selenography On the occasion of the 50th anniversary of Apollo 11 moon landing Please note: A specific item in this catalogue may be sold or is on hold if the provided link to our online inventory (by clicking on the blue-highlighted author name) doesn't work! Milestones of Science Books phone +49 (0) 177 – 2 41 0006 www.milestone-books.de [email protected] Member of ILAB and VDA Catalogue 07-2019 Copyright © 2019 Milestones of Science Books. All rights reserved Page 2 of 71 Authors in Chronological Order Author Year No. Author Year No. BIRT, William 1869 7 SCHEINER, Christoph 1614 72 PROCTOR, Richard 1873 66 WILKINS, John 1640 87 NASMYTH, James 1874 58, 59, 60, 61 SCHYRLEUS DE RHEITA, Anton 1645 77 NEISON, Edmund 1876 62, 63 HEVELIUS, Johannes 1647 29 LOHRMANN, Wilhelm 1878 42, 43, 44 RICCIOLI, Giambattista 1651 67 SCHMIDT, Johann 1878 75 GALILEI, Galileo 1653 22 WEINEK, Ladislaus 1885 84 KIRCHER, Athanasius 1660 31 PRINZ, Wilhelm 1894 65 CHERUBIN D'ORLEANS, Capuchin 1671 8 ELGER, Thomas Gwyn 1895 15 EIMMART, Georg Christoph 1696 14 FAUTH, Philipp 1895 17 KEILL, John 1718 30 KRIEGER, Johann 1898 33 BIANCHINI, Francesco 1728 6 LOEWY, Maurice 1899 39, 40 DOPPELMAYR, Johann Gabriel 1730 11 FRANZ, Julius Heinrich 1901 21 MAUPERTUIS, Pierre Louis 1741 50 PICKERING, William 1904 64 WOLFF, Christian von 1747 88 FAUTH, Philipp 1907 18 CLAIRAUT, Alexis-Claude 1765 9 GOODACRE, Walter 1910 23 MAYER, Johann Tobias 1770 51 KRIEGER, Johann 1912 34 SAVOY, Gaspare 1770 71 LE MORVAN, Charles 1914 37 EULER, Leonhard 1772 16 WEGENER, Alfred 1921 83 MAYER, Johann Tobias 1775 52 GOODACRE, Walter 1931 24 SCHRÖTER, Johann Hieronymus 1791 76 FAUTH, Philipp 1932 19 GRUITHUISEN, Franz von Paula 1825 25 WILKINS, Hugh Percy 1937 86 LOHRMANN, Wilhelm Gotthelf 1824 41 USSR ACADEMY 1959 1 BEER, Wilhelm 1834 4 ARTHUR, David 1960 3 BEER, Wilhelm 1837 5 HACKMAN, Robert 1960 27 MÄDLER, Johann Heinrich 1837 49 KUIPER Gerard P.
    [Show full text]
  • The NTT Provides the Deepest Look Into Space 6
    The NTT Provides the Deepest Look Into Space 6. A. PETERSON, Mount Stromlo Observatory,Australian National University, Canberra S. D'ODORICO, M. TARENGHI and E. J. WAMPLER, ESO The ESO New Technology Telescope r on La Silla has again proven its extraor- - dinary abilities. It has now produced the "deepest" view into the distant regions of the Universe ever obtained with ground- or space-based telescopes. Figure 1 : This picture is a reproduction of a I.1 x 1.1 arcmin portion of a composite im- age of forty-one 10-minute exposures in the V band of a field at high galactic latitude in the constellation of Sextans (R.A. loh 45'7 Decl. -0' 143. The individual images were obtained with the EMMI imager/spectrograph at the Nas- myth focus of the ESO 3.5-m New Technolo- gy Telescope using a 1000 x 1000 pixel Thomson CCD. This combination gave a full field of 7.6 x 7.6 arcmin and a pixel size of 0.44 arcsec. The average seeing during these exposures was 1.0 arcsec. The telescope was offset between the indi- vidual exposures so that the sky background could be used to flat-field the frame. This procedure also removed the effects of cos- mic rays and blemishes in the CCD. More than 97% of the objects seen in this sub- field are galaxies. For the brighter galax- ies, there is good agreement between the galaxy counts of Tyson (1988, Astron. J., 96, 1) and the NTT counts for the brighter galax- ies.
    [Show full text]
  • Habitability on Local, Galactic and Cosmological Scales
    Habitability on local, Galactic and cosmological scales Luigi Secco1 • Marco Fecchio1 • Francesco Marzari1 Abstract The aim of this paper is to underline con- detectable studying our site. The Climatic Astronom- ditions necessary for the emergence and development ical Theory is introduced in sect.5 in order to define of life. They are placed at local planetary scale, at the circumsolar habitable zone (HZ) (sect.6) while the Galactic scale and within the cosmological evolution, translation from Solar to extra-Solar systems leads to a as pointed out by the Anthropic Cosmological Princi- generalized circumstellar habitable zone (CHZ) defined ple. We will consider the circumstellar habitable zone in sect.7 with some exemplifications to the Gliese-667C (CHZ) for planetary systems and a Galactic Habitable and the TRAPPIST-1 systems; some general remarks Zone (GHZ) including also a set of strong cosmologi- follow (sect.8). A first conclusion related to CHZ is cal constraints to allow life (cosmological habitability done moving toward GHZ and COSH (sect.9). The (COSH)). Some requirements are specific of a single conditions for the development of life are indeed only scale and its related physical phenomena, while others partially connected to the local scale in which a planet are due to the conspired effects occurring at more than is located. A strong interplay between different scales one scale. The scenario emerging from this analysis is exists and each single contribution to life from individ- that all the habitability conditions here detailed must ual scales is difficult to be isolated. However we will at least be met.
    [Show full text]
  • Analysis of Big Bounce in Einstein--Cartan Cosmology
    Analysis of big bounce in Einstein{Cartan cosmology Jordan L. Cubero∗ and Nikodem J. Poplawski y Department of Mathematics and Physics, University of New Haven, 300 Boston Post Road, West Haven, CT 06516, USA We analyze the dynamics of a homogeneous and isotropic universe in the Einstein{Cartan theory of gravity. The spin of fermions produces spacetime torsion that prevents gravitational singularities and replaces the big bang with a nonsingular big bounce. We show that a closed universe exists only when a particular function of its scale factor and temperature is higher than some threshold value, whereas an open and a flat universes do not have such a restriction. We also show that a bounce of the scale factor is double: as the temperature increases and then decreases, the scale factor decreases, increases, decreases, and then increases. Introduction. The Einstein{Cartan (EC) theory of a size where the cosmological constant starts cosmic ac- gravity provides the simplest mechanism generating a celeration. This expansion also predicts the cosmic mi- nonsingular big bounce, without unknown parameters crowave background radiation parameters that are con- or hypothetical fields [1]. EC is the simplest and most sistent with the Planck 2015 observations [11], as was natural theory of gravity with torsion, in which the La- shown in [12]. grangian density for the gravitational field is proportional The spin-fluid description of matter is the particle ap- to the Ricci scalar, as in general relativity [2, 3]. The con- proximation of the multipole expansion of the integrated sistency of the conservation law for the total (orbital plus conservation laws in EC.
    [Show full text]
  • Squashing and Spaghettification in Newtonian Gravitation
    Revista Brasileira de Ensino de F´ısica, vol. 42, e20200278 (2020) Artigos Gerais www.scielo.br/rbef c b DOI: https://doi.org/10.1590/1806-9126-RBEF-2020-0278 Licenc¸aCreative Commons Squashing and spaghettification in Newtonian gravitation R. R. Machado*1 , A. C. Tort2 , C. A. D. Zarro2 1Centro Federal de Educa¸c˜aoTecnol´ogicaCelso Suckow da Fonseca, Rio de Janeiro, RJ, Brasil 2Universidade Federal do Rio de Janeiro, Instituto de F´ısica,Rio de Janeiro, RJ, Brasil Received on July 06, 2020. Revised on September 07, 2020. Accepted on October 08, 2020. Action films and sci-fi novels should be common resources in classrooms since they serve as examples and references involving physical situations. This is due to the abstract nature of many physical concepts, and the lack of references in students’ daily lives makes them more difficult to be visualized or imagined. In this work we bring a discussion of how we can resort to films and literary works in order to elucidate the concepts regarding tidal forces. To this effect, we have used the action film Total Recall (2012) to present the squashing effect and the classic of juvenile literature From Earth to the Moon (1865) to discuss the effect of spaghettification in the context of Newtonian mechanics. Keywords: Newtonian gravitation, non-inertial frames, tidal forces. 1. Introduction Earth to the Moon [3], see Figure 2. On Verne’s chap- ter XXIII, he describes the Projectile-Vehicle, to which Action movies and sci-fi novels can always be resorted to we will refer as Verne’s projectile, designed to trans- whenever we look for situations, or examples, capable of port adventurous people through space; more precisely motivating our students.
    [Show full text]
  • BLACK HOLES: the OTHER SIDE of INFINITY General Information
    BLACK HOLES: THE OTHER SIDE OF INFINITY General Information Deep in the middle of our Milky Way galaxy lies an object made famous by science fiction—a supermassive black hole. Scientists have long speculated about the existence of black holes. German astronomer Karl Schwarzschild theorized that black holes form when massive stars collapse. The resulting gravity from this collapse would be so strong that the matter would become more and more dense. The gravity would eventually become so strong that nothing, not even radiation moving at the speed of light, could escape. Schwarzschild’s theories were predicted by Einstein and then borne out mathematically in 1939 by American astrophysicists Robert Oppenheimer and Hartland Snyder. WHAT EXACTLY IS A BLACK HOLE? First, it’s not really a hole! A black hole is an extremely massive concentration of matter, created when the largest stars collapse at the end of their lives. Astronomers theorize that a point with infinite density—called a singularity—lies at the center of black holes. SO WHY IS IT CALLED A HOLE? Albert Einstein’s 1915 General Theory of Relativity deals largely with the effects of gravity, and in essence predicts the existence of black holes and singularities. Einstein hypothesized that gravity is a direct result of mass distorting space. He argued that space behaves like an invisible fabric with an elastic quality. Celestial bodies interact with this “fabric” of space-time, appearing to create depressions termed “gravity wells” and drawing nearby objects into orbit around them. Based on this principle, the more massive a body is in space, the deeper the gravity well it will create.
    [Show full text]
  • The Anthropic Principle and Multiple Universe Hypotheses Oren Kreps
    The Anthropic Principle and Multiple Universe Hypotheses Oren Kreps Contents Abstract ........................................................................................................................................... 1 Introduction ..................................................................................................................................... 1 Section 1: The Fine-Tuning Argument and the Anthropic Principle .............................................. 3 The Improbability of a Life-Sustaining Universe ....................................................................... 3 Does God Explain Fine-Tuning? ................................................................................................ 4 The Anthropic Principle .............................................................................................................. 7 The Multiverse Premise ............................................................................................................ 10 Three Classes of Coincidence ................................................................................................... 13 Can The Existence of Sapient Life Justify the Multiverse? ...................................................... 16 How unlikely is fine-tuning? .................................................................................................... 17 Section 2: Multiverse Theories ..................................................................................................... 18 Many universes or all possible
    [Show full text]
  • Ghost Imaging of Space Objects
    Ghost Imaging of Space Objects Dmitry V. Strekalov, Baris I. Erkmen, Igor Kulikov, and Nan Yu Jet Propulsion Laboratory, California Institute of Technology, 4800 Oak Grove Drive, Pasadena, California 91109-8099 USA NIAC Final Report September 2014 Contents I. The proposed research 1 A. Origins and motivation of this research 1 B. Proposed approach in a nutshell 3 C. Proposed approach in the context of modern astronomy 7 D. Perceived benefits and perspectives 12 II. Phase I goals and accomplishments 18 A. Introducing the theoretical model 19 B. A Gaussian absorber 28 C. Unbalanced arms configuration 32 D. Phase I summary 34 III. Phase II goals and accomplishments 37 A. Advanced theoretical analysis 38 B. On observability of a shadow gradient 47 C. Signal-to-noise ratio 49 D. From detection to imaging 59 E. Experimental demonstration 72 F. On observation of phase objects 86 IV. Dissemination and outreach 90 V. Conclusion 92 References 95 1 I. THE PROPOSED RESEARCH The NIAC Ghost Imaging of Space Objects research program has been carried out at the Jet Propulsion Laboratory, Caltech. The program consisted of Phase I (October 2011 to September 2012) and Phase II (October 2012 to September 2014). The research team consisted of Drs. Dmitry Strekalov (PI), Baris Erkmen, Igor Kulikov and Nan Yu. The team members acknowledge stimulating discussions with Drs. Leonidas Moustakas, Andrew Shapiro-Scharlotta, Victor Vilnrotter, Michael Werner and Paul Goldsmith of JPL; Maria Chekhova and Timur Iskhakov of Max Plank Institute for Physics of Light, Erlangen; Paul Nu˜nez of Coll`ege de France & Observatoire de la Cˆote d’Azur; and technical support from Victor White and Pierre Echternach of JPL.
    [Show full text]