Epibionts and Basiphytes 43 3 Epibiont-Marine Macrophyte Assemblages Carol S. Thornber,1,* Emily Jones2 and Mads S. Thomsen3,4 Introduction: Ecological importance of basiphyte-epibiont interactions What is epibiont ecology? The biology and ecology of marine seagrasses and macroalgae have likely been infl uenced by the presence of epibionts for millions of years, given the evolutionary history of both groups, and the potential for co-evolution (Taylor and Wilson 2003). Epibionts are ubiquitous in marine environments, span numerous taxonomic divisions and phyla, occur on a wide taxonomic diversity of basiphytes (hosts), and can either be host-specifi c (obligate) or host non-specifi c (facultative). Their importance in ecosystem functioning has been well documented in systems ranging from estuaries to subtidal rocky reefs, as well as from tropical to polar regions (Thomsen et al. 2010). As widely recognized ecosystem engineers and foundation species, seagrasses and their associated epibionts have been widely studied (e.g., Tomas et al. 2005, Cook et al. 2011, York et al. 2012, Lobelle et al. 2013; Fig. 1). While the majority of algal epiphytes are located on older regions of seagrass leaves, epibionts can also occur 1 Dept. of Biological Sciences, University of Rhode Island, 120 Flagg Rd, Kingston, RI 02881 USA. 2 Department of Biology, San Diego State University, 5500 Campanile Dr., San Diego, CA 92182 USA. Email:
[email protected] 3 Marine Ecology Research Group, School of Biological Sciences, University of Canterbury, Private Bag 4800, Christchurch, New Zealand. 4 UWA Oceans Institute and School of Plant Biology, University of Western Australia, Hackett Drive, Crawley 6009 WA, Australia.