The Natural Products Chemistry of the Red Algae Ptilota Filicina and Laurencia Obtusa

Total Page:16

File Type:pdf, Size:1020Kb

The Natural Products Chemistry of the Red Algae Ptilota Filicina and Laurencia Obtusa AN ABSTRACT OF THE THESIS OF Albert Lopez for the degree of Master of Science in Pharmacy presented onMay 14, 1987. Title: The Natural Products Chemistry of the Red Algae Ptilota filicina and Laurencia obtusa Abstract approved: Redacted for Privacy Dr. William H. Gerwick The sea offers a wide variety of potentially useful resources. Marine algae have been a rich source of structurally unique natural products showing diverse biological properties. The current need to develop new antifungal, antibiotic, anticancer and antiviral drugs has prompted intense research efforts into the discovery, isolation and structure determination of these potential medicinal agents from seaweeds. Over the past two years a survey of the biomedicinal potential of seaweeds from the Oregon Coast has beenconducted. In this period we have made 125 survey collections representingsome 85 different species of algae. On the basis of antimicrobial bioassays and preliminary chemical characterization, 16 seaweeds have been identified for further study. This research has investigated, using standard chromatographic and spectrochemical techniques including 2D NMR spectroscopy, the natural products of the previously unstudied red alga Ptilota filicina J. Agardh (order: Ceramiales). P. filicina, which grows abundantly on rocks in the mid- intertidal zones along the central Oregon coast, yielded a unique series of w-3 fatty acids. Two of them were found to be stereoisomeric icosapentaenoic acids containing conjugated triene functionalities, while a third, ptilodene, was characterized as another novel 20-carbon fatty acid with oxidation sites at C-11 and C-16. Ptilodene showed slight antimicrobial activity to pathogenic gram-negative and gram-positive bacteria, and moderate inhibition to the dog kidney Na+/K+ ATPase. From a previous survey of marine algae from the Caribbean, the red seaweed Laurencia obtusa (Hudson) Lamouroux (order: Ceramiales) was identified for further investigation. L. obtusa is a recognized source of many novel natural products and occurs worldwide in tropical and subtropical marine habitats. Of the several collections made, the Isleta Marina collection (northeastern coast of Puerto Rico) was shown to possess two novel isomeric brominated sesquiterpenes, in addition to the previously known sesquiterpenes, elatol and obtusol. A minor component of this research was devoted to the isolation of hormothamnione, the first naturally occuring styrylchromone, from the tropical marine cyanophyte Hormothamnion enteromorphoides Grunow. Hormothamnione was found to be a potent cytotoxin to cancer cells in vitro and appears to be a selective inhibitor of RNA synthesis. The results obtained from our survey of Oregon seaweeds contradicts the generally accepted hypothesis that temperate-cold water algae, as versus tropical algae, are devoid of interesting secondary metabolites. The occurrence of novel w-3 icosapentaenoic acids is of current interest because of their structural similarity to 5Z, 8Z, 11Z, 14Z, 17Z- icosapentaenoic acid, arachidonic acid and related derivatives of these, many of whichpossess significant hormonal and bioregulatory functions in mammalian systems. The Natural Products Chemistry of the Red Algae Ptilota filicina and Laurencia obtusa by Albert Lopez A THESIS submitted to Oregon State University in partial fulfillment of the requirements for the degree of Master of Science Completed May 14, 1987 Commencement June 1988 APPROVED: Redacted for Privacy \-....' Professor of Pharmacy in charge of major Redacted for Privacy Dean of'Colleie of Pharmacy Redacted for Privacy Dean of Graduat chool A ('1 Date thesis is presented May 14, 1987 Typed by researcher for Albert Lopez ACKNOWLEDGEMENTS I am extremely grateful to my advisor Dr. William H. Gerwick for his friendliness, patience, support and assistance throughout my graduate studies. His constant guidance and encouragements stimulated my curiosity as well as my desire to do research. I would like to thank my committee members, Dr. George C. Constantine and Dr. Stephen J. Gould for their valuable advice and assistance. I acknowledge the Oregon State Sea Grant Program and the College of Pharmacy for their financial support during the length of my graduate studies. I wish to express my deepest appreciation to all my fellow graduate students (including my friends at Chemistry), faculty, secretarial staff and stockroom manager of Pharmacy for their help and friendship. I am deeply grateful to my parents, brothers and sister for their love, financial support and for believing in me. My special thanks to my darling Lorraine (Mi Prieta) for her patience, devotion, faith and love. Even though we were separated for hundreds and hundreds of miles, she always managed to be close to my heart. TABLE OF CONTENTS CHAPTER I: GENERAL INTRODUCTION 1 CHAPTER II: A SURVEY OF THE BIOMEDICINAL POTENTIAL 25 OF SEAWEEDS FROM THE OREGON COAST ABSTRACT 25 INTRODUCTION 26 MATERIALS AND METHODS 28 RESULTS AND DISCUSSION 32 CONCLUSIONS 34 CHAPTER III. TWO NEW ICOSAPENTAENOIC ACIDS FROM THE 59 TEMPERATE RED SEAWEED PTILOTA FILICINA J. AGARDH ABSTRACT 59 INTRODUCTION 60 EXPERIMENTAL 62 RESULTS AND DISCUSSION 65 CHAPTER IV. PTILODENE, A NOVEL EICOSANOID NA+/K+ ATPASE 77 INHIBITOR FROM THE MARINE ALGA PTILOTA FILICINA J. AGARDH ABSTRACT 77 INTRODUCTION 78 EXPERIMENTAL 80 RESULTS AND DISCUSSION 83 CHAPTER V TWO NEW CHAMIGRENE SESQUITERPENOIDS FROM THE 90 RED ALGA LAURENCIA OBTUSA (HUDSON) LAMOUROUX ABSTRACT 90 INTRODUCTION 91 EXPERIMENTAL 92 RESULTS AND DISCUSSION 95 BIBLIOGRAPHY 101 APPENDIX 112 LIST OF FIGURES Figure Page I.1 Taxonomic classification of Ptilota filicina 16 J. Agardh. 1.2 Taxonomic classification of Laurencia obtusa 17 (Hudson) Lamouroux. 1.3 Sesquiterpenoids isolated from L.obtusa. 18 1.4 Diterpenoids isolated from L. obtusa. 21 1.5 Triterpenoids isolated from L. obtusa. 22 1.6 C-15 acetogenins isolated from L obtusa. 23 11.1 Generalized extraction scheme. 35 III.1 Chemical structures of the isolated P. filicina 70 metabolites (1) and (3), together with their respective methyl ester derivatives. 111.2 1H-1H COSY of methyl 5(Z),7(E),9(E),14(Z), 71 17(Z)-icosapentaenoate (2) showing correlations between coupled protons (ca.7 mg of 2 in 0.4 ml CDC13 with 0.3% TMS,5 mm tube, 400, MHz). 111.3 1H-13C HETCOR of methyl5(E),7(E),9(E),14(Z), 72 17(Z)-icosapentaenoate (4) showing one bond coupling (1J) correlation between carbons and their respective protons (ca. 20 mg of 4 in 0.4 ml CDC13 with 0.3% TMS, 5 mm tube; IH NMR at 400 MHz, 13C NMR at 100 MHz). 111.4 Proposed biogenesis of conjugated triene fatty 73 acids of P. filicina. IV.1 The chemical structures of ptilodene (6) and its 86 acetate-methyl ester derivative (7). IV.2 1H-1H COSY of acetate-methylester derivative (7) 87 showing one bond coupling (IJ) correlation between carbons and their respective protons. IV.3 Proposed biogenesis for ptilodene (6). 88 V.1 Chemical structures of obtusadiene (8) and 97 isoobtusadiene (9) isolated from L. obtusa and of the p-Br benzoate derivative (10). V.2 Proposed biogenesis of natural products 98 (8) and (9). A.1 Chemical structures of hormothamnione (11) and 118 its triacetate derivative (12). A.2 A computer generated perspective drawing of the 119 final x-ray model of hormothamnione triacetate (12).The chromone fragment (atoms 01 to C8a) is planar, and the substituents on the fully substituted aromatic ring are all rotated out of the plane. The relevant torsional angles vary from 50° for C8-C7-031-C21 to 87° for C7-C8-032-C22. The acetate substituents on the 1,3,5,- substituted ring are also rotated by roughly 77°. LIST OF TABLES Table Page II.1 Summary of the bioactivity and TLC analysis 36 of seaweeds collected from the Oregon coast. 11.2 Summary of bioactivity and chemistry in 57 different phyla of algae from Oregon. 11.3 Seaweeds collected in mass from the coast of 58 Oregon as a result of screening efforts. III.1 NMR data of the two icosapentaenoic acids 76 isolated from P. filicina as their respective methyl ester derivatives (2) and (4). IV.1 IH NMR data of ptilodene (6) and its 89 acetate-methyl ester derivative (7). V.1 13C NMR data of the brominated sesquiterpenes 99 obtusadiene (8) and isoobtusadiene (9) isolated from L. obtusa. V.2 IH NMR data of the brominated sesquiterpenes 100 obtusadiene (8) and isoobtusadiene (9) isolated from L. obtusa. A.1 Inhibition of cell growth and macromolecule 120 biosynthesis in several cancerous human cell lines by hormothamnione (11). Preface My special thanks to Michelle Solem and Matthew Bernard for their participation and valuable assistance in the collection of macroalgae from the Oregon Coast, extraction, TLC analysis and biological testing of crude extracts as described in chapter II. I acknowledge both Ramon Davila and Richard Albors for their initial contribution towards the extraction and isolation of natural products from Ptilota filicina as described in chapter V. My contribution in the study of constituents from the marine cyanophyte Hormothamnion enteromorphoides, directed by Dr. William Gerwick, involved the initial extraction of the first survey collection of this blue-green algae and purification of the natural product hormothamnione as described in the appendix. We are extremely grateful to Dr. Jon Clardy and Gregory D. Van Duyne (Department of Chemistry, Cornell University) for providing the unequivocal assignment of hormothamnione by an X-ray crystallographic experiment. Finally we wish to acknowledge Dr. Adriana Baez and Wanda Ortiz for determining the
Recommended publications
  • US 2019 / 0029266 A1 SAWANT ( 43 ) Pub
    US 20190029266A1 ( 19) United States (12 ) Patent Application Publication ( 10) Pub . No. : US 2019 / 0029266 A1 SAWANT ( 43 ) Pub . Date : Jan . 31 , 2019 ( 54 ) NOVEL CROP FORTIFICATION , (52 ) U .S . CI. NUTRITION AND CROP PROTECTION CPC .. .. .. A01N 63/ 04 ( 2013 .01 ) ; AOIN 25 / 12 COMPOSITION ( 2013 .01 ) ; A01N 63/ 00 ( 2013 .01 ) ; C05G 3 / 02 (2013 .01 ) ; C050 9 / 00 (2013 .01 ) ; C05C 9 / 00 (71 ) Applicant: Arun Vitthal SAWANT, Mumbai ( IN ) ( 2013. 01 ) ; C05F 11/ 00 ( 2013 .01 ) ( 72 ) Inventor: Arun Vitthal SAWANT, Mumbai ( IN ) (57 ) ABSTRACT (21 ) Appl. No. : 16 /047 ,834 The invention relates to an algal granular composition . More (22 ) Filed : Jul. 27 , 2018 particularly , the invention relates to an algal granular com position comprising at least one alga, and at least one (30 ) Foreign Application Priority Data agrochemically acceptable excipients selected from one or more of surfactants , binders or disintegrant having weight Jul. 27, 2017 (IN ) .. .. .. .. 201721026745 ratio of algae to at least one of surfactant, binder or disin tegrant in the range of 99 : 1 to 1 : 99 . The algae comprise Publication Classification 0 . 1 % to 90 % by weight of the total composition . The (51 ) Int . Cl. composition has a particle size in the range of 0 . 1 microns AOIN 63 / 04 ( 2006 .01 ) to 60 microns . Furthermore , the invention relates to a AOIN 25 / 12 ( 2006 . 01 ) process of preparing the algal granular composition com A01N 63 / 00 ( 2006 . 01 ) prising at least one alga and at least one agrochemically C05F 11/ 00 ( 2006 . 01 ) acceptable excipient. The invention further relates to a C05D 9 / 00 ( 2006 .01 ) method of treating the plants , seeds, crops , plantpropagation C05C 9 /00 ( 2006 .01 ) material, locus , parts thereof or the soil with the algal C05G 3 / 02 ( 2006 .01 ) granular composition .
    [Show full text]
  • The Genus Laurencia (Rhodomelaceae, Rhodophyta) in the Canary Islands
    Courier Forsch.-Inst. Senckenberg, 159: 113-117 Frankfurt a.M., 01.07.1993 The Genus Laurencia (Rhodomelaceae, Rhodophyta) in the Canary Islands M. CANDELARIA GIL-RODRIGUEZ & RICARDO HAROUN I Figure The genus Laurencia LAMOUROUX is a group of In the Atlantic Coasts, SAITO (1982) made a short medium-sized, erect, fleshy or cartilaginous, red al­ review of three typical European species: L. obtusa gae distributed from temperate to tropical waters. (HUDSON) LAMOUROUX, L. pinnatifida (HUDSON) LA­ During the last few years several collections along MOUROUX and L. hybrida (De.) LENORMAND. Other the coasts of the Canary Islands have shown the im­ researches carried out in this troublesome genus in portant role of the Laurencia species in the intertidal the Atlantic Ocean were made by TAYLOR (1960) in communities; however, it is rather problematic to Eastern Tropical and Subtropical Coasts of America, identify many of the taxa observed, and it seems 0LIVEIRA-FILHO {1969) in Brazil, MAGNE (1980) in necessary to make a biosystematic review of this ge­ the French Atlantic Coasts, LAWSON & JoHN (1982) nus in the Macaronesian Region. in the West Coast of Africa, RODRIGUEZ DE Rros LAMouRoux in 1813 established the genus with 8 (1981), RODRIGUEZ DE RIOS & SAITO (1982, 1985) and species, but he didn't mention a type species. Critical RODRIGUEZ DE RIOS & LOBO {1984) in Venezuela. systematic studies have been made by several authors, C. AGARDH (1823, 1824), J.AGARDH {1842, 1851, 1880), DE TONI {1903, 1924), YAMADA {1931), after reviewing many type specimens
    [Show full text]
  • Distribution of Epiphytic Macroalgae on the Thalli of Their Hosts in Cuba
    Acta Botanica Brasilica 27(4): 815-826. 2013. Distribution of epiphytic macroalgae on the thalli of their hosts in Cuba Yander Luis Diez García1, Abdiel Jover Capote2,6, Ana María Suárez Alfonso3, Liliana María Gómez Luna4 and Mutue Toyota Fujii5 Received: 4 April, 2012. Accepted: 14 October, 2013 ABSTRACT We investigated the distribution of epiphytic macroalgae on the thalli of their hosts at eight localities along the sou- theastern coast of Cuba between June 2010 and March 2011. We divided he epiphytes in two groups according to their distribution on the host: those at the base of the thallus and those on its surface. We determining the dissimilarity between the zones and the species involved. We identified 102 taxa of epiphytic macroalgae. There were significant differences between the two zones. In 31 hosts, the number of epiphytes was higher on the surface of the thallus, whereas the number of epiphytes was higher at the thallus base in 25 hosts, and the epiphytes were equally distributed between the two zones in five hosts (R=−0.001, p=0.398). The mean dissimilarity between the two zones, in terms of the species composition of the epiphytic macroalgae, was 96.64%. Hydrolithon farinosum and Polysiphonia atlantica accounted for 43.76% of the dissimilarity. Among macroalgae, the structure of the thallus seems to be a determinant of their viability as hosts for epiphytes. Key words: Chlorophyta, epiphytism, distribution, Phaeophyceae, Rhodophyta Introduction scales is a potentially productive approach. It is important to understand the patterns of abundance of all sympatric The structure of intertidal marine communities is deter- epiphytic species along the various gradients, because in- mined by a combination of physical factors and biotic interac- terspecific relationships could represent one of the factors tions (Little & Kitching 1996; Wernberg & Connell 2008).
    [Show full text]
  • The Genus "Laurencia (Rhodomelaceae
    - Courier Forsch.-Inst. Senckenberg, 159: 113- 117 - Frankfurt a.M., 0 1.07.1993 The Genus Laurencia (Rhodomelaceae, Rhodophyta) in the Canary Islands I Figure Tha riamiir 1 ~i..-ni.-:~ 1 i.inwinnrtv :e a mrnian nr iii~~GUUJ uuursi~,iu knmvunvun a= a fiiuup vk Ir! !he A!!ari.!ic Cous, STUTC(!W) ?i?ade a short medium-sized, erect, fleshy or cartilaginous, red al- review of three typical European species: L. obtusa gae distributed from temperate to tropical waters. (HUDSON)LAMOUROUX, L. pinnatifida (HUDSON)LA- During the last few years severa1 collections along MoURoUX and L. hybrida (Dc.) LENORMAND.Other the coasts of the Canary Islands have shown the im- researches carried out in this troublesome genus in portant role of the Laurencia species in the intertidal the Atlantic Ocean were made by TAYLOR(1960) in communities; however, it is rather problematic to Eastern Tropical and Subtropical Coasts of America, identify rnany of the taxa observed, and it seems OLIVEIRA-FILHO(1 969) jn Brazil, MACNE(1 980) in necessary to make a biosystematic review of this ge- the French Atlantic Coasts, LAWSON& JOHN(1982) nus in the Macaronesian Region. in the West Coast of Africa, RODRICUEZDE RIOS LAMOUROUXin 1813 established the genus with 8 (1981), RODRIGUEZDERroS & SNTO (1982, 1985) and species, but he didn't mention a type species. Critica1 RODRIGUEZDE RIOS& LOBO(1984) in Venezuela. systematic studies have been made by several authors, C. ACAIU)H(1823, 1824), J.AGARDH(1842, 1851, 1880), DE TON1 (1903, 1924). YMADA(1931). after reviewing many type specimens from different American and European Herbaria.
    [Show full text]
  • Ceramiales, Rhodophyta) from the Southwestern Atlantic Ocean
    Phytotaxa 100 (1): 41–56 (2013) ISSN 1179-3155 (print edition) www.mapress.com/phytotaxa/ Article PHYTOTAXA Copyright © 2013 Magnolia Press ISSN 1179-3163 (online edition) http://dx.doi.org/10.11646/phytotaxa.100.1.5 Osmundea sanctarum sp. nov. (Ceramiales, Rhodophyta) from the southwestern Atlantic Ocean RENATO ROCHA-JORGE1,6, VALÉRIA CASSANO2, MARIA BEATRIZ BARROS-BARRETO3, JHOANA DÍAZ-LARREA4, ABEL SENTÍES4, MARIA CANDELARIA GIL-RODRÍGUEZ5 & MUTUE TOYOTA FUJII6,7 1Post-Graduate Program “Biodiversidade Vegetal e Meio Ambiente”, Instituto de Botânica, Av. Miguel Estéfano, 3687, 04301-902 São Paulo, SP, Brazil. 2 Departamento de Botânica, Universidade de São Paulo, Rua do Matão 277, 05508-900 São Paulo, SP, Brazil. 3Departamento de Botânica, Universidade Federal do Rio de Janeiro, Av. Prof. Rodolpho Rocco 211, CCS, bloco A, subsolo, sala 99, 21941-902 Rio de Janeiro, RJ, Brazil. 4Departamento de Hidrobiología, Universidad Autónoma Metropolitana-Iztapalapa, A.P. 55-535, 09340 Mexico, D.F. 5Departamento de Biología Vegetal (Botánica), Universidad de La Laguna, 38071. La Laguna, Tenerife, Islas Canarias, Spain. 6Núcleo de Pesquisa em Ficologia, Instituto de Botânica, Av. Miguel Estéfano, 3687, 04301-902 São Paulo, SP, Brazil. 7Author for correspondence. E-mail: [email protected] Abstract An ongoing phycological survey in the Laje de Santos Marine State Park (LSMSP) of São Paulo in southeastern Brazil revealed a previously undescribed species of Osmundea (Rhodophyta, Rhodomelaceae), which was found in the subtidal zone at a depth of 7 to 20 m. Morphological studies conducted on Osmundea specimens collected in the LSMSP revealed characteristics typical of the genus Osmundea, including two pericentral cells per each axial segment and tetrasporangia cut off randomly from cortical cells.
    [Show full text]
  • Molecular Phylogenies Support Taxonomic Revision of Three Species of Laurencia (Rhodomelaceae, Rhodophyta), with the Description of a New Genus
    European Journal of Taxonomy 269: 1–19 ISSN 2118-9773 http://dx.doi.org/10.5852/ejt.2017.269 www.europeanjournaloftaxonomy.eu 2017 · Rousseau F. et al. This work is licensed under a Creative Commons Attribution 3.0 License. DNA Library of Life, research article Molecular phylogenies support taxonomic revision of three species of Laurencia (Rhodomelaceae, Rhodophyta), with the description of a new genus Florence ROUSSEAU 1,*, Delphine GEY 2, Akira KURIHARA 3, Christine A. MAGGS 4, Julie MARTIN-LESCANNE 5, Claude PAYRI 6, Bruno de REVIERS 7, Alison R. SHERWOOD 8 & Line LE GALL 9 1,7,9 Institut de Systématique, Evolution, Biodiversité (ISyEB), UMR 7205 CNRS, EPHE, MNHN, UPMC, Sorbonne Universités, Equipe Exploration, Espèces, Evolution, Muséum National d’Histoire Naturelle, case postale N° 39, 57 rue Cuvier, 75231 Cedex 05 Paris, France 2,5 Outils et Méthodes de la Systématique Intégrative, UMS 2700 MNHN, CNRS, Service de Systématique Moléculaire, Muséum National d’Histoire Naturelle, case postale N° 26, 57 rue Cuvier, 75231 Cedex 05 Paris, France 3,8 Department of Botany, 3190 Maile Way, University of Hawaii, Honolulu, Hawaii, 96822 U.S.A. 4 Faculty of Science and Technology, Bournemouth University, Poole House, Talbot Campus, Poole, Dorset BH12 5BB, U.K. 6 Institut de Recherche pour le Développement (IRD), UMR ENTROPIE-IRD, UR, CNRS, BP A5, 98848 Noumea cedex, Noumea, New Caledonia * Corresponding author E-mail: [email protected] 2 Email: [email protected] 3,8 Email: [email protected] 4 Email: [email protected] 5 Email: [email protected] 6 Email: [email protected] 7 Email: [email protected] 9 Email: [email protected] Abstract.
    [Show full text]
  • The Classification of Lower Organisms
    The Classification of Lower Organisms Ernst Hkinrich Haickei, in 1874 From Rolschc (1906). By permission of Macrae Smith Company. C f3 The Classification of LOWER ORGANISMS By HERBERT FAULKNER COPELAND \ PACIFIC ^.,^,kfi^..^ BOOKS PALO ALTO, CALIFORNIA Copyright 1956 by Herbert F. Copeland Library of Congress Catalog Card Number 56-7944 Published by PACIFIC BOOKS Palo Alto, California Printed and bound in the United States of America CONTENTS Chapter Page I. Introduction 1 II. An Essay on Nomenclature 6 III. Kingdom Mychota 12 Phylum Archezoa 17 Class 1. Schizophyta 18 Order 1. Schizosporea 18 Order 2. Actinomycetalea 24 Order 3. Caulobacterialea 25 Class 2. Myxoschizomycetes 27 Order 1. Myxobactralea 27 Order 2. Spirochaetalea 28 Class 3. Archiplastidea 29 Order 1. Rhodobacteria 31 Order 2. Sphaerotilalea 33 Order 3. Coccogonea 33 Order 4. Gloiophycea 33 IV. Kingdom Protoctista 37 V. Phylum Rhodophyta 40 Class 1. Bangialea 41 Order Bangiacea 41 Class 2. Heterocarpea 44 Order 1. Cryptospermea 47 Order 2. Sphaerococcoidea 47 Order 3. Gelidialea 49 Order 4. Furccllariea 50 Order 5. Coeloblastea 51 Order 6. Floridea 51 VI. Phylum Phaeophyta 53 Class 1. Heterokonta 55 Order 1. Ochromonadalea 57 Order 2. Silicoflagellata 61 Order 3. Vaucheriacea 63 Order 4. Choanoflagellata 67 Order 5. Hyphochytrialea 69 Class 2. Bacillariacea 69 Order 1. Disciformia 73 Order 2. Diatomea 74 Class 3. Oomycetes 76 Order 1. Saprolegnina 77 Order 2. Peronosporina 80 Order 3. Lagenidialea 81 Class 4. Melanophycea 82 Order 1 . Phaeozoosporea 86 Order 2. Sphacelarialea 86 Order 3. Dictyotea 86 Order 4. Sporochnoidea 87 V ly Chapter Page Orders. Cutlerialea 88 Order 6.
    [Show full text]
  • Defence on Surface of Rhodophyta Halymenia Floresii
    THESE DE DOCTORAT DE UNIVERSITE BRETAGNE SUD ECOLE DOCTORALE N° 598 Sciences de la Mer et du littoral Spécialité : Biotechnologie Marine Par Shareen A ABDUL MALIK Defence on surface of Rhodophyta Halymenia floresii: metabolomic fingerprint and interactions with the surface-associated bacteria Thèse présentée et soutenue à « Vannes », le « 7 July 2020 » Unité de recherche : Laboratoire de Biotechnologie et Chimie Marines Thèse N°: Rapporteurs avant soutenance : Composition du Jury : Prof. Gérald Culioli Associate Professor Président : Université de Toulon (La Garde) Prof. Claire Gachon Professor Dr. Leila Tirichine Research Director (CNRS) Museum National d’Histoire Naturelle, Paris Université de Nantes Examinateur(s) : Prof. Gwenaëlle Le Blay Professor Université Bretagne Occidentale (UBO), Brest Dir. de thèse : Prof. Nathalie Bourgougnon Professor Université Bretagne Sud (UBS), Vannes Co-dir. de thèse : Dr. Daniel Robledo Director CINVESTAV, Mexico i Invité(s) Dr. Gilles Bedoux Maître de conferences Université Bretagne Sud (UBS), Vannes Title: Systèmes de défence de surface de la Rhodophycée Halymenia floresii : Analyse metabolomique et interactions avec les bactéries épiphytes Mots clés: Halymenia floresii, antibiofilm, antifouling, métabolomique, bactéries associées à la surface, quorum sensing, molecules de défense Abstract : Halymenia floresii, une Rhodophycée présente Vibrio owensii, ainsi que son signal C4-HSL QS, a été une surface remarquablement exempte d'épiphytes dans les identifié comme pathogène opportuniste induisant un conditions de l'Aquaculture MultiTrophique Intégrée (AMTI). blanchiment. Les métabolites extraits de la surface et Ce phénomène la présence en surface de composés actifs de cellules entières de H. floresii ont été analysés par allélopathiques. L'objectif de ce travail a été d'explorer les LC-MS.
    [Show full text]
  • Revisiting Marine Bioprospecting of Tropical Indonesian Macroalgae from West Timor
    REVISITING MARINE BIOPROSPECTING OF TROPICAL INDONESIAN MACROALGAE FROM WEST TIMOR Turupadang, Welem Linggi A thesis submitted to Victoria University of Wellington in fulfilment of the requirements for the degree of Master of Science in Chemistry. Victoria University of Wellington 2018 Abstract Marine algae are an important and historically rich source of new marine-based natural products. This thesis describes the screening of 40 Indonesian macroalgal samples using liquid chromatography-mass spectrometry (LC-MS) based molecular networking, and the subsequent nuclear magnetic resonance (NMR)-guided isolation and structural elucidation of a 6-deoxy-6-aminoglycoglyrecolipid (60). Molecular networking was performed using LC-MS/MS data through the online Global Natural Product Social Molecular Networking (GNPS) platform directly from crude extracts. NMR spectroscopy-guided screening was also employed targeting unique peaks detected by 1H NMR to validate any hits from GNPS. Out of 40 macroalgae specimens collected from West Timor waters, six samples were prioritised by the molecular networking screening. Proton NMR revealed three specimens with significantly interesting peaks but only one specimen, Laurencia snackeyi was purified further, which yielded compound 60. i Acknowledgements I am humbly grateful to Abba Father throughout my study at Victoria University of Wellington, how much knowledge and experience that has been passed on by academics (especially during my formative year doing my graduate Diploma), fellow students and postgrads, as well as technicians over the past two-and-a-half year in the School of Chemical and Physical Sciences (SCPS). Thank you very much. My fabulous supervisor Dr Rob Keyzers, thank you for your guidance, patience and wisdom; also, for being a guru and mentor during my study; I benefit not only academically and through laboratory skills but also how you have inspired me to be a good teacher and serve students from different backgrounds.
    [Show full text]
  • Marine Algae of the Kurile Islands. ⅱ
    Title MARINE ALGAE OF THE KURILE ISLANDS. Ⅱ Author(s) NAGAI, Masaji Citation Journal of the Faculty of Agriculture, Hokkaido Imperial University, 46(2), 139-310 Issue Date 1941-06-30 Doc URL http://hdl.handle.net/2115/12740 Type bulletin (article) File Information 46(2)_p139-310.pdf Instructions for use Hokkaido University Collection of Scholarly and Academic Papers : HUSCAP MARINE ALGAE OF THE KURILE ISLANDS. II By Masaji NAGAI RHODOPHYCEAE Subclass 1. BANGIALES Family 1. Bangiaceae Key to the genera I. Fronds filamentous, consisting of a row of cells, arranged immersed within the tender gelat:nous matrix, without any typical rhizoidal cells as holdfast ........................................ : . .. Goniotrichum (1) II. Fronds expanded, membranaceous or rarely subcoriaceous, consisting of 1 or 2 layers of cells (mono- or distromatic), arranged immersed within the stiff, lamellose, gelatinous matrix with a bundle of rhizoidal cells, arising from the basal part of frond as holdfast .................. :Porphyra(2) Subfamily 1. Goniotrichieae 1. Goniotrichum KUTZING, 1843 Goniotrichum Alsidii(ZANARDINI) HOWE (PI. IV, figs. 1, 2) Mar. Alg. Peru, (1914), p. 75-INAGAKI, Mar. Red Alg. Osyoro Bay, Hokkaido, p. 12, fig. 5-TSENG, Mar. Alg. fro Amoy, p. 32, pI. IV, fig. 15- OKAMURA, Mar. AIg Jap. p. 369, fig. 175-TAYLOR, Mar. Alg. N.-E. Coast N. Amer. p. 215, pI. XXVIII, fig. 1-4. Bangia elegans CHAUVIN, in Mem. Soc. Linn. Norm. VI, (1838), p. 13- HARVEY, Phyc. Brit. III, pI. CCXLVI-ZANARDINI, Plant. in Mari Rubro, p. 87 (nomen nud.). B. A.lsidii ZANARDINI, BibL Ital. 96, (18119), p. 136. Coniotrichum elegans ZANARDINI, Not. Cell. Mar.
    [Show full text]
  • Seaweeds of California Green Algae
    PDF version Remove references Seaweeds of California (draft: Sun Nov 24 15:32:39 2019) This page provides current names for California seaweed species, including those whose names have changed since the publication of Marine Algae of California (Abbott & Hollenberg 1976). Both former names (1976) and current names are provided. This list is organized by group (green, brown, red algae); within each group are genera and species in alphabetical order. California seaweeds discovered or described since 1976 are indicated by an asterisk. This is a draft of an on-going project. If you have questions or comments, please contact Kathy Ann Miller, University Herbarium, University of California at Berkeley. [email protected] Green Algae Blidingia minima (Nägeli ex Kützing) Kylin Blidingia minima var. vexata (Setchell & N.L. Gardner) J.N. Norris Former name: Blidingia minima var. subsalsa (Kjellman) R.F. Scagel Current name: Blidingia subsalsa (Kjellman) R.F. Scagel et al. Kornmann, P. & Sahling, P.H. 1978. Die Blidingia-Arten von Helgoland (Ulvales, Chlorophyta). Helgoländer Wissenschaftliche Meeresuntersuchungen 31: 391-413. Scagel, R.F., Gabrielson, P.W., Garbary, D.J., Golden, L., Hawkes, M.W., Lindstrom, S.C., Oliveira, J.C. & Widdowson, T.B. 1989. A synopsis of the benthic marine algae of British Columbia, southeast Alaska, Washington and Oregon. Phycological Contributions, University of British Columbia 3: vi + 532. Bolbocoleon piliferum Pringsheim Bryopsis corticulans Setchell Bryopsis hypnoides Lamouroux Former name: Bryopsis pennatula J. Agardh Current name: Bryopsis pennata var. minor J. Agardh Silva, P.C., Basson, P.W. & Moe, R.L. 1996. Catalogue of the benthic marine algae of the Indian Ocean.
    [Show full text]
  • The Distribution of Certain Benthonic Algae in Queen Charlotte Strait, British Columbia, in Relation to Some Environmental Factors
    The Distribution of Certain Benthonic Algae in Queen Charlotte Strait, British Columbia, in Relation to Some Environmental Factors ROBERT F. SCAGEL 1 IN COMPARISON with the progress in our knowl­ cially of members of the Laminariales on the edge of most groups of plants-especially con­ Pacific Coast of North America, on the basis of cerning their life histories and distributions­ latitudinal and seasonal temperature distribu­ the advances made in marine phycology and tions. The physical data available during this marine ecology have been relatively slow. The early period were limited, but many of the prin­ limited access to living material or to the facil­ ciples set forth by Setchell concerning the dis­ ities to maintain the larger marine algae in the tributions of marine algae are as sound now as living condition for a prolonged period of time, when they were first proposed. Except for more the difficulties of collection-particularly in the precise knowledge of the physical and chemical subtidal zone-and the lack of any extensive factors of the environment and the distribu­ direct economic importance until recent years tions of the algae concerned, much of Setchell's have all contributed to this slow progress. How­ ecological work can still be used as a good ever, in spite of these difficulties there has been foundation for further study. Although it was a considerable amount of interest in the marine largely a two-dimensional approach to the algae, including a number of studies of their marine environment, Setchell's work made a ecology. Although this interest has been fairly significant contributiOn to the development of widespread in a number of countries, until re­ marine algal ecology.
    [Show full text]