Protein Phosphatase Regulatory Protein 10 Cooperates with Neurofibromin Inactivation in Myeloid Leukemogenesis

Total Page:16

File Type:pdf, Size:1020Kb

Protein Phosphatase Regulatory Protein 10 Cooperates with Neurofibromin Inactivation in Myeloid Leukemogenesis PROTEIN PHOSPHATASE REGULATORY PROTEIN 10 COOPERATES WITH NEUROFIBROMIN INACTIVATION IN MYELOID LEUKEMOGENESIS By ANGELA HADJIPANAYIS A DISSERTATION PRESENTED TO THE GRADUATE SCHOOL OF THE UNIVERSITY OF FLORIDA IN PARTIAL FULFILLMENT OF THE REQUIREMENTS FOR THE DEGREE OF DOCTOR OF PHILOSOPHY UNIVERSITY OF FLORIDA 2008 1 © 2008 Angela Hadjipanayis 2 This work is dedicated to my extended family who never had the opportunity to obtain higher education. To my parents and husband for their loving support and belief in my abilities. To Camilynn I. Brannan whose research expertise led to the discovery of this locus. 3 ACKNOWLEDGMENTS First, I would like to thank my mentor Peggy Wallace for her indispensable support over the years, her encouragement, and her advice on how to become a better scientist. Second, I would like to thank my husband for taking a leap of faith in life and moving to Florida with me when he didn’t have a job at the time. Third, I would like to thank my parents for their love, support, and advice over the years. Fourth, I would like to thank my other committee members, Dr. Jim Resnick, Dr. Paul Oh, Dr. Stephen Hunger and Dr. Dan Driscoll for their valuable advice on the project. I also would like to thank Dr. Jennifer Embury for the tremendous effort on all the pathology of the mice. In addition, I would like to thank Dr. Kevin Shannon and Dr. Scott Kogan for their leukemia expertise and strategies in modeling leukemia. Lastly, I would like to thank the lab for their help on this project, their jokes, and all their personalities that made the days seem not as long. 4 TABLE OF CONTENTS page ACKNOWLEDGMENTS ...............................................................................................................4 LIST OF TABLES ...........................................................................................................................7 LIST OF FIGURES .........................................................................................................................8 LIST OF ABBREVIATIONS ........................................................................................................11 ABSTRACT ...................................................................................................................................13 CHAPTER 1 INTRODUCTION ..................................................................................................................15 Neurofibromatosis Type 1 and JMML ...................................................................................15 Mouse Models of Nf1 .............................................................................................................18 Molecular and Biochemical Mechanisms Underlying Myeloid Leukemogenesis. ................19 Hyperactive Ras in JMML ......................................................................................................20 Nf1 Reconstitution Mouse Model ..........................................................................................21 Identification of Epi Loci in Nf1-Related Myeloid Leukemia ...............................................21 Viral Insertional Mutagenesis .................................................................................................23 MRPS18B ...............................................................................................................................24 PPP1R10 .................................................................................................................................24 PP1, a Serine/Threonine Protein Phosphatase ........................................................................25 2 MUTATIONAL ANALYSIS OF PPP1R10 IN LEUKEMIA ...............................................28 Introduction .............................................................................................................................28 Materials and Methods ...........................................................................................................29 Patient Samples ...............................................................................................................29 Polymerase Chain Reaction and Sequencing of PPP1R10 Exons ..................................29 Restriction Fragment Length Polymorphism for Intron 15 Loss of Heterozygosity .......29 Real-Time mRNA Quantification ...................................................................................30 Results .....................................................................................................................................31 Discussion ...............................................................................................................................32 3 IN VITRO ANALYSIS OF PPP1R10 AS A POTENTIAL ONCOGENE ............................41 Introduction .............................................................................................................................41 Materials and Methods ...........................................................................................................41 Cloning of Ppp1r10 in the MSCV Viral Vectors ............................................................41 Hematopoietic Cell Isolation and Retroviral Transduction .............................................42 Colony Formation Unit Granulocyte/Macrophage Colony Assay ..................................42 5 Serum Starvation of COS7 Cells .....................................................................................43 Western Blots ..................................................................................................................43 Results .....................................................................................................................................44 Discussion ...............................................................................................................................44 4 PPP1R10 COOPERATES WITH NF1 INACTIVATION TO CAUSE ACUTE MYELOMONOCYTIC LEUKEMIA IN A MOUSE MODEL .............................................50 Introduction .............................................................................................................................50 Materials and Methods ...........................................................................................................51 Ppp1r10+/- Mouse Construction .....................................................................................51 Breeding Ppp1r10 Mice ..................................................................................................51 Pathology/Sectioning/H and E Stain ...............................................................................51 Blood Smears and Manual Counts ..................................................................................52 Sudan Black Stain and MPO Stain ..................................................................................52 Flow Cytometry ...............................................................................................................53 Nucleic Acid Extraction ..................................................................................................53 Loss of Heterozygosity Analysis .....................................................................................53 Results .....................................................................................................................................54 Discussion ...............................................................................................................................58 5 DISCUSSION .........................................................................................................................89 APPENDIX A PRIMER LIST ........................................................................................................................94 B PFAFFL METHOD ................................................................................................................95 REFERENCES ..............................................................................................................................96 BIOGRAPHICAL SKETCH .......................................................................................................105 6 LIST OF TABLES Table page 2-1 NF1-JMML human patient samples and Intron 15 polymorphism LOH. .........................38 2-2 JMML human samples and Intron 15 polymorphism LOH. ..............................................39 2-3 mRNA Quantification of human leukemia RNA. ..............................................................40 4-1 Ppp1r10+/- aged mice necropsy data, M: E (2 to 8.25) ratios, and blast numbers............86 4-2 Nf1+/-Ppp1r10+/-aged mice necropsy data, M:E (2.33 to 13.25) ratios, and blast numbers. .............................................................................................................................87 4-3 Peripheral blood smear analysis of Nf1+/-Ppp1r10+/- (NF1PKO), Ppp1r10+/- (PKO), and Nf1+/-. .............................................................................................................88 4-4 Bone marrow analysis of Nf1+/-Ppp1r10+/- (NF1PKO), Ppp1r10+/- (PKO), and Nf1+/- mice. WNL signifies within normal limits. ............................................................88 7 LIST OF FIGURES Figure page 2-1 Human NF1-JMML analysis PPP1R10, Promoter Polymorphism (rs16867845). ............33 2-2 Human NF1-JMML analysis, PPP1R10 Exon 6 nonsense, S125X. ..................................33 2-3 Human NF1-JMML
Recommended publications
  • Anti-MRPS18B Antibody
    D225370 Anti-MRPS18B antibody Cat. No. D225370 Package 25 μl/100 μl/200 μl Storage -20°C, pH7.4 PBS, 0.05% NaN3, 40% Glycerol Product overview Description A n ti-MRPS18B rabbit polyclonal antibody Applications ELISA, WB, IHC Immunogen Fusion protein of human MRPS18B Reactivity Human Content 1 mg/ml Host species Rabbit Ig class Immunogen-specific rabbit IgG Purification Antigen affinity purification Target information Symbol MRPS18B Full name mitochondrial ribosomal protein S18B Synonyms PTD017; S18amt; C6orf14; HSPC183; MRPS18-2; HumanS18a; MRP-S18-2 Swissprot Q9Y676 Target Background Mammalian mitochondrial ribosomal proteins are encoded by nuclear genes and help in protein synthesis within the mitochondrion. Mitochondrial ribosomes (mitoribosomes) consist of a small 28S subunit and a large 39S subunit. They have an estimated 75% protein to rRNA composition compared to prokaryotic ribosomes, where this ratio is reversed. Another difference between mammalian mitoribosomes and prokaryotic ribosomes is that the latter contain a 5S rRNA. Among different species, the proteins comprising the mitoribosome differ greatly in sequence, and sometimes in biochemical properties, which prevents easy recognition by sequence homology. This gene encodes a 28S subunit protein that belongs to the ribosomal protein S18P family. The encoded protein is one of three that has significant sequence similarity to bacterial S18 proteins. The primary sequences of the three human mitochondrial S18 proteins are no more closely reSlated to angoneach other than they are to the prok aryBiotic S18 proteins. tPseuedogenches corresponding to this gene are found on chromosomes 1q and 2q. Applications Immunohistochemistry Predicted cell location: Cytoplasm Positive control: Human tonsil Recommended dilution: 25-100 The image on the left is immunohistochemistry of paraffin-embedded Human tonsil tissue using D225370(MRPS18B Antibody) at dilution 1/55, on the right is treated with fusion protein.
    [Show full text]
  • Evidence for Differential Alternative Splicing in Blood of Young Boys With
    Stamova et al. Molecular Autism 2013, 4:30 http://www.molecularautism.com/content/4/1/30 RESEARCH Open Access Evidence for differential alternative splicing in blood of young boys with autism spectrum disorders Boryana S Stamova1,2,5*, Yingfang Tian1,2,4, Christine W Nordahl1,3, Mark D Shen1,3, Sally Rogers1,3, David G Amaral1,3 and Frank R Sharp1,2 Abstract Background: Since RNA expression differences have been reported in autism spectrum disorder (ASD) for blood and brain, and differential alternative splicing (DAS) has been reported in ASD brains, we determined if there was DAS in blood mRNA of ASD subjects compared to typically developing (TD) controls, as well as in ASD subgroups related to cerebral volume. Methods: RNA from blood was processed on whole genome exon arrays for 2-4–year-old ASD and TD boys. An ANCOVA with age and batch as covariates was used to predict DAS for ALL ASD (n=30), ASD with normal total cerebral volumes (NTCV), and ASD with large total cerebral volumes (LTCV) compared to TD controls (n=20). Results: A total of 53 genes were predicted to have DAS for ALL ASD versus TD, 169 genes for ASD_NTCV versus TD, 1 gene for ASD_LTCV versus TD, and 27 genes for ASD_LTCV versus ASD_NTCV. These differences were significant at P <0.05 after false discovery rate corrections for multiple comparisons (FDR <5% false positives). A number of the genes predicted to have DAS in ASD are known to regulate DAS (SFPQ, SRPK1, SRSF11, SRSF2IP, FUS, LSM14A). In addition, a number of genes with predicted DAS are involved in pathways implicated in previous ASD studies, such as ROS monocyte/macrophage, Natural Killer Cell, mTOR, and NGF signaling.
    [Show full text]
  • Pharmacodynamic Effects of Seliciclib, an Orally Administered
    Cancer Therapy: Clinical Pharmacodynamic Effects of Seliciclib, an Orally Administered Cell Cycle Modulator, in Undifferentiated Nasopharyngeal Cancer Wen-Son Hsieh,4 Ross Soo,1Bee-Keow Peh,2 Thomas Loh,4 Difeng Dong,3 Donny Soh,5 Lim-SoonWong,3,5 Simon Green,6 Judy Chiao,6 Chun-Ying Cui,1Yo k e -F o n g L a i , 4 Soo-Chin Lee,1Benjamin Mow,1 Richie Soong,2 Manuel Salto-Tellez,2 and Boon-Cher Goh1, 2 Abstract Purpose: Cell cycle dysregulation resulting in expression of antiapoptotic genes and uncontrolled proliferation is a feature of undifferentiated nasopharyngeal carcinoma. The pharmacodynamic effects of seliciclib, a cyclin-dependent kinase (CDK) inhibitor, were studied in patients with nasopharyngeal carcinoma. Experimental Design: Patients with treatment-naI«ve locally advanced nasopharyngeal carci- noma received seliciclib at 800 mg or 400 mg twice daily on days1 to 3 and 8 to12.Paired tumor samples obtained at baseline and on day 13 were assessed by light microscopy, immunohisto- chemistry, and transcriptionalprofiling using real-time PCR low-density array consisting of apanel of 380 genes related to cell cycle inhibition, apoptosis, signal transduction, and cell proliferation. Results: At 800 mg bd, one patient experienced grade 3 liver toxicity and another had grade 2 vomiting; no significant toxicities were experienced in 13 patients treated at 400 mg bd. Seven of fourteen evaluable patients had clinical evidence of tumor reduction. Some of these responses were associated with increased tumor apoptosis, necrosis, and decreases in plasma EBV DNA posttreatment. Reduced protein expression of Mcl-1, cyclin D1, phosphorylated retinoblastoma protein pRB (T821), and significant transcriptional down-regulation of genes related to cellular proliferation and survival were shown in some patients posttreatment, indicative of cell cycle modulation by seliciclib, more specifically inhibition of cdk2/cyclin E, cdk7/cyclin H, and cdk9/cyclinT.
    [Show full text]
  • Pathological Ribonuclease H1 Causes R-Loop Depletion and Aberrant DNA Segregation in Mitochondria
    Pathological ribonuclease H1 causes R-loop depletion PNAS PLUS and aberrant DNA segregation in mitochondria Gokhan Akmana,1, Radha Desaia,1, Laura J. Baileyb, Takehiro Yasukawab,2, Ilaria Dalla Rosaa, Romina Durigona, J. Bradley Holmesb,c, Chloe F. Mossa, Mara Mennunia, Henry Houldend, Robert J. Crouchc, Michael G. Hannad, Robert D. S. Pitceathlyd,e, Antonella Spinazzolaa,3, and Ian J. Holta,3 aMedical Research Council, Mill Hill Laboratory, London NW7 1AA, United Kingdom; bMedical Research Council Mitochondrial Biology Unit, Cambridge CB1 9SY, United Kingdom; cDivision of Developmental Biology, Eunice Kennedy Shriver National Institute of Child Health and Human Development, National Institutes of Health, Bethesda, MD 20892; dMedical Research Council Centre for Neuromuscular Diseases, University College London Institute of Neurology and National Hospital for Neurology and Neurosurgery, London WC1N 3BG, United Kingdom; and eDepartment of Basic and Clinical Neuroscience, Institute of Psychiatry, Psychology and Neuroscience, King’s College London, London SE5 8AF, United Kingdom Edited by Douglas Koshland, University of California, Berkeley, CA, and approved June 7, 2016 (received for review January 18, 2016) The genetic information in mammalian mitochondrial DNA is densely Results packed; there are no introns and only one sizeable noncoding, or Analysis of RNA hybridized to mtDNA must contend with the control, region containing key cis-elements for its replication and ready degradation of the RNA during extraction (16). Previous expression. Many molecules of mitochondrial DNA bear a third analysis of fragments of mtDNA encompassing the CR dem- strand of DNA, known as “7S DNA,” which forms a displacement onstrated that they included molecules with 7S DNA, as (D-) loop in the control region.
    [Show full text]
  • Transcriptional Recapitulation and Subversion Of
    Open Access Research2007KaiseretVolume al. 8, Issue 7, Article R131 Transcriptional recapitulation and subversion of embryonic colon comment development by mouse colon tumor models and human colon cancer Sergio Kaiser¤*, Young-Kyu Park¤†, Jeffrey L Franklin†, Richard B Halberg‡, Ming Yu§, Walter J Jessen*, Johannes Freudenberg*, Xiaodi Chen‡, Kevin Haigis¶, Anil G Jegga*, Sue Kong*, Bhuvaneswari Sakthivel*, Huan Xu*, Timothy Reichling¥, Mohammad Azhar#, Gregory P Boivin**, reviews Reade B Roberts§, Anika C Bissahoyo§, Fausto Gonzales††, Greg C Bloom††, Steven Eschrich††, Scott L Carter‡‡, Jeremy E Aronow*, John Kleimeyer*, Michael Kleimeyer*, Vivek Ramaswamy*, Stephen H Settle†, Braden Boone†, Shawn Levy†, Jonathan M Graff§§, Thomas Doetschman#, Joanna Groden¥, William F Dove‡, David W Threadgill§, Timothy J Yeatman††, reports Robert J Coffey Jr† and Bruce J Aronow* Addresses: *Biomedical Informatics, Cincinnati Children's Hospital Medical Center, Cincinnati, OH 45229, USA. †Departments of Medicine, and Cell and Developmental Biology, Vanderbilt University and Department of Veterans Affairs Medical Center, Nashville, TN 37232, USA. ‡McArdle Laboratory for Cancer Research, University of Wisconsin, Madison, WI 53706, USA. §Department of Genetics and Lineberger Cancer Center, University of North Carolina, Chapel Hill, NC 27599, USA. ¶Molecular Pathology Unit and Center for Cancer Research, Massachusetts deposited research General Hospital, Charlestown, MA 02129, USA. ¥Division of Human Cancer Genetics, The Ohio State University College of Medicine, Columbus, Ohio 43210-2207, USA. #Institute for Collaborative BioResearch, University of Arizona, Tucson, AZ 85721-0036, USA. **University of Cincinnati, Department of Pathology and Laboratory Medicine, Cincinnati, OH 45267, USA. ††H Lee Moffitt Cancer Center and Research Institute, Tampa, FL 33612, USA. ‡‡Children's Hospital Informatics Program at the Harvard-MIT Division of Health Sciences and Technology (CHIP@HST), Harvard Medical School, Boston, Massachusetts 02115, USA.
    [Show full text]
  • A High-Throughput Approach to Uncover Novel Roles of APOBEC2, a Functional Orphan of the AID/APOBEC Family
    Rockefeller University Digital Commons @ RU Student Theses and Dissertations 2018 A High-Throughput Approach to Uncover Novel Roles of APOBEC2, a Functional Orphan of the AID/APOBEC Family Linda Molla Follow this and additional works at: https://digitalcommons.rockefeller.edu/ student_theses_and_dissertations Part of the Life Sciences Commons A HIGH-THROUGHPUT APPROACH TO UNCOVER NOVEL ROLES OF APOBEC2, A FUNCTIONAL ORPHAN OF THE AID/APOBEC FAMILY A Thesis Presented to the Faculty of The Rockefeller University in Partial Fulfillment of the Requirements for the degree of Doctor of Philosophy by Linda Molla June 2018 © Copyright by Linda Molla 2018 A HIGH-THROUGHPUT APPROACH TO UNCOVER NOVEL ROLES OF APOBEC2, A FUNCTIONAL ORPHAN OF THE AID/APOBEC FAMILY Linda Molla, Ph.D. The Rockefeller University 2018 APOBEC2 is a member of the AID/APOBEC cytidine deaminase family of proteins. Unlike most of AID/APOBEC, however, APOBEC2’s function remains elusive. Previous research has implicated APOBEC2 in diverse organisms and cellular processes such as muscle biology (in Mus musculus), regeneration (in Danio rerio), and development (in Xenopus laevis). APOBEC2 has also been implicated in cancer. However the enzymatic activity, substrate or physiological target(s) of APOBEC2 are unknown. For this thesis, I have combined Next Generation Sequencing (NGS) techniques with state-of-the-art molecular biology to determine the physiological targets of APOBEC2. Using a cell culture muscle differentiation system, and RNA sequencing (RNA-Seq) by polyA capture, I demonstrated that unlike the AID/APOBEC family member APOBEC1, APOBEC2 is not an RNA editor. Using the same system combined with enhanced Reduced Representation Bisulfite Sequencing (eRRBS) analyses I showed that, unlike the AID/APOBEC family member AID, APOBEC2 does not act as a 5-methyl-C deaminase.
    [Show full text]
  • PP1RA Polyclonal Antibody Product Information
    PP1RA Polyclonal Antibody Cat #: ABP59975 Size: 30μl /100μl /200μl Product Information Product Name: PP1RA Polyclonal Antibody Applications: WB, ELISA Isotype: Rabbit IgG Reactivity: Human, Mouse, Rat Catalog Number: ABP59975 Lot Number: Refer to product label Formulation: Liquid Concentration: 1 mg/ml Storage: Store at -20°C. Avoid repeated Note: Contain sodium azide. freeze / thaw cycles. Background: PPP1R10 (Protein Phosphatase 1 Regulatory Subunit 10) is a Protein Coding gene. Diseases associated with PPP1R10 include Malignant Melanoma, Somatic. Among its related pathways are Beta-Adrenergic Signaling and Activation of cAMP-Dependent PKA. PPP1R10 encodes a protein phosphatase 1 binding protein. The encoded protein plays a role in many cellular processes including cell cycle progression, DNA repair and apoptosis by regulating the activity of protein phosphatase 1. PPP1R10 lies within the major histocompatibility complex class I region on chromosome 6 and alternatively spliced transcript variants have been observed for PPP1R10. Application Notes: Optimal working dilutions should be determined experimentally by the investigator. Suggested starting dilutions are as follows: WB (1:500-1:2000), ELISA (1:5000-1:20000). Storage Buffer: PBS, pH 7.4, containing 0.02% Sodium Azide as preservative and 50% Glycerol. Storage Instructions: Stable for one year at -20°C from date of shipment. For maximum recovery of product, centrifuge the original vial after thawing and prior to removing the cap. Aliquot to avoid repeated freezing and thawing. Note: The product listed herein is for research use only and is not intended for use in human or clinical diagnosis. Suggested applications of our products are not recommendations to use our products in violation of any patent or as a license.
    [Show full text]
  • Multiomic Analysis of the UV-Induced DNA Damage Response
    Multiomic Analysis of the UV-Induced DNA Damage Response The MIT Faculty has made this article openly available. Please share how this access benefits you. Your story matters. Citation Boeing, Stefan, Laura Williamson, Vesela Encheva, Ilaria Gori, Rebecca E. Saunders, Rachael Instrell, Ozan Aygün, et al. “Multiomic Analysis of the UV-Induced DNA Damage Response.” Cell Reports 15, no. 7 (May 2016): 1597–1610. As Published http://dx.doi.org/10.1016/j.celrep.2016.04.047 Publisher Elsevier Version Final published version Citable link http://hdl.handle.net/1721.1/105271 Terms of Use Creative Commons Attribution 4.0 International License Detailed Terms http://creativecommons.org/licenses/by/4.0/ Resource Multiomic Analysis of the UV-Induced DNA Damage Response Graphical Abstract Authors Stefan Boeing, Laura Williamson, Vesela Encheva, ..., Michael Howell, Ambrosius P. Snijders, Jesper Q. Svejstrup Correspondence [email protected] In Brief Boeing et al. investigate the UV-induced DNA damage response by combining a range of proteomic and genomic screens. A function in this response for the melanoma driver STK19 as well as a number of other factors are uncovered. Highlights d A multiomic screening approach examines the UV-induced DNA damage response d Multiple factors are connected to the transcription-related DNA damage response d Melanoma gene STK19 is required for a normal DNA damage response Boeing et al., 2016, Cell Reports 15, 1597–1610 May 17, 2016 ª 2016 The Author(s) http://dx.doi.org/10.1016/j.celrep.2016.04.047 Cell Reports Resource Multiomic Analysis of the UV-Induced DNA Damage Response Stefan Boeing,1,5 Laura Williamson,1 Vesela Encheva,2 Ilaria Gori,3 Rebecca E.
    [Show full text]
  • Lecture 15. Chromhmm & ENCODE
    Lecture 15. ChromHMM & ENCODE Michael Schatz March 23, 2020 JHU 601.749: Applied Comparative Genomics Assignment 5: Due Mon Mar 23 Project Proposal: Due Mon Mar 23 *-seq in 4 short vignettes RNA-seq Methyl-seq ChIP-seq Hi-C Human Evolution ~5 Mya ~75 Mya ~100 Mya ~160 and 210 Mya As expected, the majority of platypus genes (82%; 15,312 out of 18,596) have orthologues in these five other amniotes (Supplementary Table 5). The remaining 'orphan' genes are expected to primarily reflect rapidly evolving genes, for which no other homologues are discernible, erroneous predictions, and true lineage-specific genes that have been lost in each of the other five species under consideration. Genome analysis of the platypus reveals unique signatures of evolution (2008) Nature. 453, 175-183 doi:10.1038/nature06936 Methyl-seq Finding the fifth base: Genome-wide sequencing of cytosine methylation Lister and Ecker (2009) Genome Research. 19: 959-966 Bisulfite Conversion Treating DNA with sodium bisulfite will convert unmethylated C to T • 5-MethyC will be protected and not change, so can look for differences when mapping • Requires great care when analyzing reads, since the complementary strand will also be converted (G to A) • Typically analyzed by mapping to a “reduced alphabet” where we assume all Cs are converted to Ts once on the forward strand and once on the reverse Bismark: a flexible aligner and methylation caller for Bisulfite-Seq applications Krueger and Andrews (2010) Bioinformatics. 27 (11): 1571-1572. ChIP-seq Genome-wide mapping of in vivo protein-DNA interactions. Johnson et al (2007) Science.
    [Show full text]
  • Learning Chroma\N States from Chip-‐Seq Data
    Learning Chroman States from ChIP-seq data Luca Pinello GC Yuan Lab Outline • Chroman structure, histone modificaons and combinatorial paerns • How to segment the genome in chroman states • How to use ChromHMM step by step • Further references 2 Epigene-cs and chroman structure • All (almost) the cells of our body share the same genome but have very different gene expression programs…. 3 h?p://jpkc.scu.edu.cn/ywwy/zbsw(E)/edetail12.htm The code over the code • The chroman structure and the accessibility are mainly controlled by: 1. Nucleosome posioning, 2. DNA methylaon, 3. Histone modificaons. 4 Histone Modificaons Specific histone modificaons or combinaons of modificaons confer unique biological func-ons to the region of the genome associated with them: • H3K4me3: promoters, gene acva.on • H3K27me3: promoters, poised enhancers, gene silencing • H2AZ: promoters • H3K4me1: enhancers • H3K36me3: transcribed regions • H3K9me3: gene silencing • H3k27ac: acve enhancers 5 Examples of *-Seq Measuring the genome genome fragmentation assembler DNA DNA reads “genome” ChIP-seq to measure histone data fragments Measuring the regulome (e.g., protein-binding of the genome) Chromatin Immunopreciptation genomic (ChIP) + intervals fragmentation Protein - peak caller bound by DNA bound DNA reads proteins REVIEWS fragments a also informative, as this ratio corresponds to the fraction ChIP–chip of nucleosomes with the particular modification at that location, averaged over all the cells assayed. One of the difficulties in conducting a ChIP–seq con- trol experiment is the large amount of sequencing that ChIP–seq may be necessary. For input DNA and bulk nucleosomes, many of the sequenced tags are spread evenly across the genome.
    [Show full text]
  • Live-Cell Imaging Rnai Screen Identifies PP2A–B55α and Importin-Β1 As Key Mitotic Exit Regulators in Human Cells
    LETTERS Live-cell imaging RNAi screen identifies PP2A–B55α and importin-β1 as key mitotic exit regulators in human cells Michael H. A. Schmitz1,2,3, Michael Held1,2, Veerle Janssens4, James R. A. Hutchins5, Otto Hudecz6, Elitsa Ivanova4, Jozef Goris4, Laura Trinkle-Mulcahy7, Angus I. Lamond8, Ina Poser9, Anthony A. Hyman9, Karl Mechtler5,6, Jan-Michael Peters5 and Daniel W. Gerlich1,2,10 When vertebrate cells exit mitosis various cellular structures can contribute to Cdk1 substrate dephosphorylation during vertebrate are re-organized to build functional interphase cells1. This mitotic exit, whereas Ca2+-triggered mitotic exit in cytostatic-factor- depends on Cdk1 (cyclin dependent kinase 1) inactivation arrested egg extracts depends on calcineurin12,13. Early genetic studies in and subsequent dephosphorylation of its substrates2–4. Drosophila melanogaster 14,15 and Aspergillus nidulans16 reported defects Members of the protein phosphatase 1 and 2A (PP1 and in late mitosis of PP1 and PP2A mutants. However, the assays used in PP2A) families can dephosphorylate Cdk1 substrates in these studies were not specific for mitotic exit because they scored pro- biochemical extracts during mitotic exit5,6, but how this relates metaphase arrest or anaphase chromosome bridges, which can result to postmitotic reassembly of interphase structures in intact from defects in early mitosis. cells is not known. Here, we use a live-cell imaging assay and Intracellular targeting of Ser/Thr phosphatase complexes to specific RNAi knockdown to screen a genome-wide library of protein substrates is mediated by a diverse range of regulatory and targeting phosphatases for mitotic exit functions in human cells. We subunits that associate with a small group of catalytic subunits3,4,17.
    [Show full text]
  • It Is Illeg Al to P O St Th Is Co P Yrig H Ted P D F O N an Y W Eb Site. It Is Illegal
    Letters to the Editor It is Geneillegal Expression to Profiling post ofthis the xMHC copyrighted Region and HIST1H4C PDF encodeon histones.any Strong website. evidence of associations Reveals 9 Candidate Genes in Schizophrenia was observed within and around histone genes in schizophrenia.2 Abnormal expression of genes related to nucleosome and histone To the Editor: Strong association of the extended major structure and function has also been found in both schizophrenia 3 histocompatibility complex (xMHC) region on human patients and their siblings. MRPS18B encodes ribosomal protein chromosome 6 with schizophrenia has been supported by a that helps in mitochondrial protein synthesis. TUBB encodes number of genome-wide association studies.1 However, since tubulin that is the major constituent of microtubules. Altered the xMHC region is featured by numerous polymorphisms, expression of TUBB has been reported in a previous microarray 4 dense gene clusters, and strong linkage disequilibrium, it is study in schizophrenia patients. ABCF1 and BTN3A3 are difficult to attribute the association to specific genes. A targeted immune-related genes. BTN3A3 is involved in T-cell activity scrutinization of gene expression in the xMHC region can in adaptive immune response. ABCF1 enhances protein provide valuable candidate genes for future validation. Here synthesis and promotes inflammation. Decreased expression we utilize 2 real-time polymerase chain reaction (PCR)–based of ABCF1 had been found in the whole blood of patients with platforms and 2 sample sets to investigate protein-coding gene schizophrenia and identified as a hub gene in a gene expressional 5 expressions in the xMHC region in peripheral blood leukocytes subnetwork.
    [Show full text]