Pharmacodynamic Effects of Seliciclib, an Orally Administered

Total Page:16

File Type:pdf, Size:1020Kb

Pharmacodynamic Effects of Seliciclib, an Orally Administered Cancer Therapy: Clinical Pharmacodynamic Effects of Seliciclib, an Orally Administered Cell Cycle Modulator, in Undifferentiated Nasopharyngeal Cancer Wen-Son Hsieh,4 Ross Soo,1Bee-Keow Peh,2 Thomas Loh,4 Difeng Dong,3 Donny Soh,5 Lim-SoonWong,3,5 Simon Green,6 Judy Chiao,6 Chun-Ying Cui,1Yo k e -F o n g L a i , 4 Soo-Chin Lee,1Benjamin Mow,1 Richie Soong,2 Manuel Salto-Tellez,2 and Boon-Cher Goh1, 2 Abstract Purpose: Cell cycle dysregulation resulting in expression of antiapoptotic genes and uncontrolled proliferation is a feature of undifferentiated nasopharyngeal carcinoma. The pharmacodynamic effects of seliciclib, a cyclin-dependent kinase (CDK) inhibitor, were studied in patients with nasopharyngeal carcinoma. Experimental Design: Patients with treatment-naI«ve locally advanced nasopharyngeal carci- noma received seliciclib at 800 mg or 400 mg twice daily on days1 to 3 and 8 to12.Paired tumor samples obtained at baseline and on day 13 were assessed by light microscopy, immunohisto- chemistry, and transcriptionalprofiling using real-time PCR low-density array consisting of apanel of 380 genes related to cell cycle inhibition, apoptosis, signal transduction, and cell proliferation. Results: At 800 mg bd, one patient experienced grade 3 liver toxicity and another had grade 2 vomiting; no significant toxicities were experienced in 13 patients treated at 400 mg bd. Seven of fourteen evaluable patients had clinical evidence of tumor reduction. Some of these responses were associated with increased tumor apoptosis, necrosis, and decreases in plasma EBV DNA posttreatment. Reduced protein expression of Mcl-1, cyclin D1, phosphorylated retinoblastoma protein pRB (T821), and significant transcriptional down-regulation of genes related to cellular proliferation and survival were shown in some patients posttreatment, indicative of cell cycle modulation by seliciclib, more specifically inhibition of cdk2/cyclin E, cdk7/cyclin H, and cdk9/cyclinT. Conclusions: Brief treatment with this regimen of seliciclib in patients with nasopharyngeal carcinoma is tolerable at 400 mg bd and associated with tumor pharmacodynamic changes consistent with cdk inhibition, and warrants further efficacy studies in this tumor. A common feature of cancer is dysregulated cell cycle control inhibitors like p16INK4A, p27kip1, loss of activity of p53, or that allows uncontrolled cell cycle progression through events excessive activity of cdk4/6. Whereas cdk4 and 6 and cdk2 that promote global gene transcription (1). These defects could when associated with their cyclins are known to activate be a result of activation of cyclin-dependent kinases (cdk) 4 and S-phase DNA replication through retinoblastoma protein 6 or their regulatory D-type cyclins, loss of function of cdk phosphorylation and consequent unbridled transcriptional effects of E2F, CDK7/9 are able to maintain gene transcription by activating RNA polymerase II (1–3). It is known that cancer cells require continuous expression of antiapoptotic genes for 1 Authors’ Affiliations: Department of Hematology-Oncology, National University maintenance of their transformed state (4). Therefore, down- Hospital, 2Oncology Research Institute, 3School of Computing, and 4Department of Head and Neck Surgery, National University of Singapore, and 5Institute for regulation of gene transcription through inhibition of CDK2, Infocomm Research, Singapore; and 6Cyclacel Pharmaceuticals Inc., Dundee, CDK7/9 would result in apoptosis. Cell cycle inhibitors exploit United Kingdom this mechanism as potential anticancer drugs. Received 7/8/08; revised 10/7/08; accepted 10/7/08. Seliciclib (Cyclacel Ltd.; CYC202; R-roscovitine), an orally Grant support: Biomedical Research Council of Singapore (BMRC 01/1/26/18/ 060), SCS-PN0022, CN0079 and NHGRISE 07003. administered small molecule inhibitor of the serine/threonine The costs of publication of this article were defrayed in part by the payment of page kinases CDKs, through competition with ATP for binding, can charges. This article must therefore be hereby marked advertisement in accordance induce apoptosis in several human tumor cell lines, including with 18 U.S.C. Section 1734 solely to indicate this fact. nasopharyngeal carcinoma, through inhibition of retinoblasto- Note: Supplementary data for this article are available at Clinical Cancer Research ma and RNA polymerase II carboxy terminal domain phos- Online (http://clincancerres.aacrjournals.org/). This study was presented in part at the 18th EORTC-NCI-AACR Symposium on phorylation, leading to a reduction in levels of key ‘‘Molecular Targets and Cancer Therapeutics’’ held in Prague, Czech Republic on antiapoptotic proteins like Mcl-1 and XIAP, and cell cycle November 7-10, 2006. regulators such as cyclin D1 (5–7). The IC50 of seliciclib for the Requests for reprints: Boon-Cher Goh, Department of Hematology-Oncology, various cdks are in similar ranges [cdk2/cyclin E (0.1 Amol/L), National University Hospital, 5 Lower Kent Ridge Road, Singapore 119074. Phone: A A 65-67724621;Fax: 65-7775545; E-mail: [email protected]. cdk7/cyclin H (0.36 mol/L), and cdk9/cyclin T (0.8 mol/L); F 2009 American Association for Cancer Research. ref. 8]. Seliciclib is currently in phase II clinical trials in doi:10.1158/1078-0432.CCR-08-1748 combination with chemotherapy in breast and non–small cell www.aacrjournals.org 14 3 5 Clin Cancer Res 2009;15(4) February 15, 2009 Downloaded from clincancerres.aacrjournals.org on September 25, 2021. © 2009 American Association for Cancer Research. Cancer Therapy: Clinical Cooperative Oncology Group performance status of 0 or 1, and adequate bone marrow, renal, and hepatic function. Patients were Translational Relevance excluded if they were on alternative medications, had uncontrolled Cell cycle inhibitors have not been shown previously to major medical conditions, were pregnant or lactating, had evidence of malabsorption, had other malignancies within 5 y, or were known induce molecular changes in vivo in solid cancers. Using a carriers of hepatitis B or C or HIV. The protocol was approved by the window design clinical study, we showed that seliciclib local institutional review board and all patients gave written informed down-regulated transcription of genes relevant to EBV- consent prior to participation. mediated tumorigenesis and control of apoptosis through Treatment, procedures, and methodology. Baseline history, physical activation of signaling pathways that included mitogen- examination, performance status, biochemical profile, and complete activated protein kinase, c-Jun NH2-terminal kinase, p38, blood count were done within 7 d before starting treatment. Patients Janus kinase/signal transducer and activator of transcrip- had endoscopic assessment of tumor with tumor biopsy within 72 h tion, nuclear factor nB, phosphoinositide 3-kinase/protein prior to commencing seliciclib and on day 13 of treatment. Seliciclib was supplied by Cyclacel Ltd in 200-mg capsules. Previous phase I kinase B, and RhoGTPases in nasopharyngeal cancer, 2 where EBV-mediated transformation and expression of studies have established that 800 mg/m twice daily for 7 d is associated with dose-limiting toxicities; 5 d continuous dosing seemed to be latent membrane protein 1 has been associated with tolerable (14). Therefore, patients were orally administered a starting carcinogenicity. In addition, nasopharyngeal carcinoma is dose of 800 mg bd at least 2 h postprandial on days 1 to 3 and 8 to 12 characterized by dysregulation of the cell cycle, particularly for a single 14-day cycle. Treatment of three patients was planned at this through overexpression of cyclin D1 and silencing of dose level 1 with an additional three patients to be treated if one patient INK4A p16 , promoting gene transcription. Therefore, inhibi- had dose-limiting toxicities. Further enrollment at level 1 would tion of these pathways potentially restores cell cycle continue if no more than two of six patients had dose-limiting regulatory events. This proof of principle provides the toxicities. Reduction to dose level 2 was mandated if more than one of evidence required for a formal evaluation of cell cycle the first three patients exhibited dose-limiting toxicities. Patients were inhibitors in nasopharyngeal cancer, and represents a seen on days 8 and 12 for repeat laboratory testing, assessment of significant advance in the application of novel molecular- treatment compliance, and toxicity according to National Cancer targeted agents to therapy of this cancer. Institute Common Toxicity Criteria version 2. Tumor measurements and assessments. Bidimensional tumor meas- urements were done on all palpable cervical lymph nodes at pretreatment and on days 8 and 12 using skin calipers. The sum of lung cancer, but its pharmacodynamic effects of cdk inhibition the products of the pretreatment measurements was subtracted from the by itself in solid tumors in vivo have not been shown. In sum of the product of the posttreatment measurements and divided by chronic lymphocytic leukemia cells in vitro, seliciclib has been the sum of the product of the pretreatment measurements. Patients with shown to induce apoptosis through the down-regulation of >25% decrease in the sum of the product of the posttreatment genes, and a similar mechanism of apoptosis has been measurements were considered to show clinical response. Computed described with another cdk inhibitor flavopiridol (9). tomography scans of the nasopharynx and neck were done within 2 wk of starting seliciclib
Recommended publications
  • Detection of Interacting Transcription Factors in Human Tissues Using
    Myšičková and Vingron BMC Genomics 2012, 13(Suppl 1):S2 http://www.biomedcentral.com/1471-2164/13/S1/S2 PROCEEDINGS Open Access Detection of interacting transcription factors in human tissues using predicted DNA binding affinity Alena Myšičková*, Martin Vingron From The Tenth Asia Pacific Bioinformatics Conference (APBC 2012) Melbourne, Australia. 17-19 January 2012 Abstract Background: Tissue-specific gene expression is generally regulated by combinatorial interactions among transcription factors (TFs) which bind to the DNA. Despite this known fact, previous discoveries of the mechanism that controls gene expression usually consider only a single TF. Results: We provide a prediction of interacting TFs in 22 human tissues based on their DNA-binding affinity in promoter regions. We analyze all possible pairs of 130 vertebrate TFs from the JASPAR database. First, all human promoter regions are scanned for single TF-DNA binding affinities with TRAP and for each TF a ranked list of all promoters ordered by the binding affinity is created. We then study the similarity of the ranked lists and detect candidates for TF-TF interaction by applying a partial independence test for multiway contingency tables. Our candidates are validated by both known protein-protein interactions (PPIs) and known gene regulation mechanisms in the selected tissue. We find that the known PPIs are significantly enriched in the groups of our predicted TF-TF interactions (2 and 7 times more common than expected by chance). In addition, the predicted interacting TFs for studied tissues (liver, muscle, hematopoietic stem cell) are supported in literature to be active regulators or to be expressed in the corresponding tissue.
    [Show full text]
  • Identifying and Mapping Cell-Type-Specific Chromatin PNAS PLUS Programming of Gene Expression
    Identifying and mapping cell-type-specific chromatin PNAS PLUS programming of gene expression Troels T. Marstranda and John D. Storeya,b,1 aLewis-Sigler Institute for Integrative Genomics, and bDepartment of Molecular Biology, Princeton University, Princeton, NJ 08544 Edited by Wing Hung Wong, Stanford University, Stanford, CA, and approved January 2, 2014 (received for review July 2, 2013) A problem of substantial interest is to systematically map variation Relating DHS to gene-expression levels across multiple cell in chromatin structure to gene-expression regulation across con- types is challenging because the DHS represents a continuous ditions, environments, or differentiated cell types. We developed variable along the genome not bound to any specific region, and and applied a quantitative framework for determining the exis- the relationship between DHS and gene expression is largely tence, strength, and type of relationship between high-resolution uncharacterized. To exploit variation across cell types and test chromatin structure in terms of DNaseI hypersensitivity and genome- for cell-type-specific relationships between DHS and gene expres- wide gene-expression levels in 20 diverse human cell types. We sion, the measurement units must be placed on a common scale, show that ∼25% of genes show cell-type-specific expression ex- the continuous DHS measure associated to each gene in a well- plained by alterations in chromatin structure. We find that distal defined manner, and all measurements considered simultaneously. regions of chromatin structure (e.g., ±200 kb) capture more genes Moreover, the chromatin and gene-expression relationship may with this relationship than local regions (e.g., ±2.5 kb), yet the local only manifest in a single cell type, making standard measures of regions show a more pronounced effect.
    [Show full text]
  • REST Mediates Androgen Receptor Actions on Gene Repression And
    Published online 24 October 2013 Nucleic Acids Research, 2014, Vol. 42, No. 2 999–1015 doi:10.1093/nar/gkt921 REST mediates androgen receptor actions on gene repression and predicts early recurrence of prostate cancer Charlotte Svensson1, Jens Ceder2, Diego Iglesias-Gato1, Yin-Choy Chuan1, See Tong Pang3, Anders Bjartell2, Roxana Merino Martinez4, Laura Bott5, Leszek Helczynski6, David Ulmert2,7, Yuzhuo Wang8, Yuanjie Niu9, Colin Collins8 and Amilcar Flores-Morales1,* 1Novo Nordisk Foundation Center for Protein Research, Faculty of Health Sciences, University of Copenhagen, Downloaded from DK-2200 Copenhagen, Denmark, 2Division of Urological Cancers, Department of Clinical Sciences, Ska˚ ne University Hospital, Lund University, 20502 Malmo¨ , Sweden, 3Department of Urology, Chang Gung Memorial Hospital, Tao-Yuan 33305, Taiwan, R.O.C., 4Department of Epidemiology, Karolinska Institutet, 171 77 Stockholm, Sweden, 5Department of Cell and Molecular Biology, Karolinska Institute, 171 77 Stockholm, Sweden, 6Regional Laboratories Region Ska˚ ne, Clinical Pathology, 205 80 Malmo¨ , Sweden, 7Department of Surgery (Urology), Memorial Sloan-Kettering Cancer Center, New York, NY 100 65, USA, 8Vancouver Prostate http://nar.oxfordjournals.org/ Centre and The Department of Urologic Sciences, University of British Columbia, Vancouver, BC Canada V6H 3Z6 and 9Tianjin Institute of Urology, Tianjin Medical University, Tianjin 300 211, China Received December 19, 2012; Accepted September 20, 2013 ABSTRACT that has previously been implicated in the growth at University of British Columbia on August 12, 2014 The androgen receptor (AR) is a key regulator of NE-like castration-resistant tumors. The of prostate tumorgenesis through actions that are analysis of prostate cancer tissue microarrays not fully understood. We identified the repressor revealed that tumors with reduced expression of element (RE)-1 silencing transcription factor REST have higher probability of early recurrence, (REST) as a mediator of AR actions on gene repres- independently of their Gleason score.
    [Show full text]
  • The Cryoelectron Microscopy Structure of the Human CDK-Activating Kinase
    The cryoelectron microscopy structure of the human CDK-activating kinase Basil J. Grebera,b,1,2, Juan M. Perez-Bertoldic, Kif Limd, Anthony T. Iavaronee, Daniel B. Tosoa, and Eva Nogalesa,b,d,f,2 aCalifornia Institute for Quantitative Biosciences (QB3), University of California, Berkeley, CA 94720; bMolecular Biophysics and Integrative Bio-Imaging Division, Lawrence Berkeley National Laboratory, Berkeley, CA 94720; cBiophysics Graduate Group, University of California, Berkeley, CA 94720; dDepartment of Molecular and Cell Biology, University of California, Berkeley, CA 94720; eQB3/Chemistry Mass Spectrometry Facility, University of California, Berkeley, CA 94720; and fHoward Hughes Medical Institute, University of California, Berkeley, CA 94720 Edited by Seth A. Darst, Rockefeller University, New York, NY, and approved August 4, 2020 (received for review May 14, 2020) The human CDK-activating kinase (CAK), a complex composed of phosphoryl transfer (11). However, in addition to cyclin binding, cyclin-dependent kinase (CDK) 7, cyclin H, and MAT1, is a critical full activation of cell cycle CDKs requires phosphorylation of the regulator of transcription initiation and the cell cycle. It acts by T-loop (9, 12). In animal cells, these activating phosphorylations phosphorylating the C-terminal heptapeptide repeat domain of are carried out by CDK7 (13, 14), itself a cyclin-dependent ki- the RNA polymerase II (Pol II) subunit RPB1, which is an important nase whose activity depends on cyclin H (14). regulatory event in transcription initiation by Pol II, and it phos- In human and other metazoan cells, regulation of transcription phorylates the regulatory T-loop of CDKs that control cell cycle initiation by phosphorylation of the Pol II-CTD and phosphor- progression.
    [Show full text]
  • Gene Expression Profile of THZ1-Treated Nasopharyngeal Carcinoma Cell Lines Indicates Its Involvement in the Inhibition of the Cell Cycle
    460 Original Article Gene expression profile of THZ1-treated nasopharyngeal carcinoma cell lines indicates its involvement in the inhibition of the cell cycle Lijuan Gao1,2,3#, Shuang Xia4#, Kunyi Zhang1,2,3#, Chengguang Lin1,2,3, Xuyu He4, Ying Zhang4 1Sun Yat-sen University Cancer Center, Sun Yat-sen University, Guangzhou, China; 2State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine, Sun Yat-sen University, Guangzhou, China; 3Department of Radiation Oncology, Cancer Center, Sun Yat-sen University, Guangzhou, China; 4Department of Cardiology, Guangdong Cardiovascular Institute, Guangdong Provincial Key Laboratory of Coronary Heart Disease Prevention, Guangdong Provincial People’s Hospital, Guangdong Academy of Medical Sciences, Guangzhou, China Contributions: (I) Conception and design: L Gao, S Xia, K Zhang; (II) Administrative support: X He, Y Zhang; (III) Provision of study materials or patients: L Gao, S Xia, K Zhang; (IV) Collection and assembly of data: C Lin; (V) Data analysis and interpretation: C Lin, X He, Y Zhang; (VI) Manuscript writing: All authors; (VII) Final approval of manuscript: All authors. #The authors contributed equally to this work. Correspondence to: Xuyu He; Ying Zhang. Department of Cardiology, Guangdong Cardiovascular Institute, Guangdong Provincial Key Laboratory of Coronary Heart Disease Prevention, Guangdong Provincial People’s Hospital, Guangdong Academy of Medical Sciences, 106 Zhongshan 2nd road, Guangzhou 510080, China. Email: [email protected]; [email protected]. Background: The aim of this study was to identify downstream target genes and pathways regulated by THZ1 in nasopharyngeal carcinoma (NPC). Methods: The gene expression profile of GSE95750 in two NPC cell lines, untreated group and treated with THZ1 group, was analyzed.
    [Show full text]
  • Evidence for Differential Alternative Splicing in Blood of Young Boys With
    Stamova et al. Molecular Autism 2013, 4:30 http://www.molecularautism.com/content/4/1/30 RESEARCH Open Access Evidence for differential alternative splicing in blood of young boys with autism spectrum disorders Boryana S Stamova1,2,5*, Yingfang Tian1,2,4, Christine W Nordahl1,3, Mark D Shen1,3, Sally Rogers1,3, David G Amaral1,3 and Frank R Sharp1,2 Abstract Background: Since RNA expression differences have been reported in autism spectrum disorder (ASD) for blood and brain, and differential alternative splicing (DAS) has been reported in ASD brains, we determined if there was DAS in blood mRNA of ASD subjects compared to typically developing (TD) controls, as well as in ASD subgroups related to cerebral volume. Methods: RNA from blood was processed on whole genome exon arrays for 2-4–year-old ASD and TD boys. An ANCOVA with age and batch as covariates was used to predict DAS for ALL ASD (n=30), ASD with normal total cerebral volumes (NTCV), and ASD with large total cerebral volumes (LTCV) compared to TD controls (n=20). Results: A total of 53 genes were predicted to have DAS for ALL ASD versus TD, 169 genes for ASD_NTCV versus TD, 1 gene for ASD_LTCV versus TD, and 27 genes for ASD_LTCV versus ASD_NTCV. These differences were significant at P <0.05 after false discovery rate corrections for multiple comparisons (FDR <5% false positives). A number of the genes predicted to have DAS in ASD are known to regulate DAS (SFPQ, SRPK1, SRSF11, SRSF2IP, FUS, LSM14A). In addition, a number of genes with predicted DAS are involved in pathways implicated in previous ASD studies, such as ROS monocyte/macrophage, Natural Killer Cell, mTOR, and NGF signaling.
    [Show full text]
  • Cytotoxic Effects and Changes in Gene Expression Profile
    Toxicology in Vitro 34 (2016) 309–320 Contents lists available at ScienceDirect Toxicology in Vitro journal homepage: www.elsevier.com/locate/toxinvit Fusarium mycotoxin enniatin B: Cytotoxic effects and changes in gene expression profile Martina Jonsson a,⁎,MarikaJestoib, Minna Anthoni a, Annikki Welling a, Iida Loivamaa a, Ville Hallikainen c, Matti Kankainen d, Erik Lysøe e, Pertti Koivisto a, Kimmo Peltonen a,f a Chemistry and Toxicology Research Unit, Finnish Food Safety Authority (Evira), Mustialankatu 3, FI-00790 Helsinki, Finland b Product Safety Unit, Finnish Food Safety Authority (Evira), Mustialankatu 3, FI-00790 Helsinki, c The Finnish Forest Research Institute, Rovaniemi Unit, P.O. Box 16, FI-96301 Rovaniemi, Finland d Institute for Molecular Medicine Finland (FIMM), University of Helsinki, P.O. Box 20, FI-00014, Finland e Plant Health and Biotechnology, Norwegian Institute of Bioeconomy, Høyskoleveien 7, NO -1430 Ås, Norway f Finnish Safety and Chemicals Agency (Tukes), Opastinsilta 12 B, FI-00521 Helsinki, Finland article info abstract Article history: The mycotoxin enniatin B, a cyclic hexadepsipeptide produced by the plant pathogen Fusarium,isprevalentin Received 3 December 2015 grains and grain-based products in different geographical areas. Although enniatins have not been associated Received in revised form 5 April 2016 with toxic outbreaks, they have caused toxicity in vitro in several cell lines. In this study, the cytotoxic effects Accepted 28 April 2016 of enniatin B were assessed in relation to cellular energy metabolism, cell proliferation, and the induction of ap- Available online 6 May 2016 optosis in Balb 3T3 and HepG2 cells. The mechanism of toxicity was examined by means of whole genome ex- fi Keywords: pression pro ling of exposed rat primary hepatocytes.
    [Show full text]
  • Genome-Wide DNA Methylation Analysis of KRAS Mutant Cell Lines Ben Yi Tew1,5, Joel K
    www.nature.com/scientificreports OPEN Genome-wide DNA methylation analysis of KRAS mutant cell lines Ben Yi Tew1,5, Joel K. Durand2,5, Kirsten L. Bryant2, Tikvah K. Hayes2, Sen Peng3, Nhan L. Tran4, Gerald C. Gooden1, David N. Buckley1, Channing J. Der2, Albert S. Baldwin2 ✉ & Bodour Salhia1 ✉ Oncogenic RAS mutations are associated with DNA methylation changes that alter gene expression to drive cancer. Recent studies suggest that DNA methylation changes may be stochastic in nature, while other groups propose distinct signaling pathways responsible for aberrant methylation. Better understanding of DNA methylation events associated with oncogenic KRAS expression could enhance therapeutic approaches. Here we analyzed the basal CpG methylation of 11 KRAS-mutant and dependent pancreatic cancer cell lines and observed strikingly similar methylation patterns. KRAS knockdown resulted in unique methylation changes with limited overlap between each cell line. In KRAS-mutant Pa16C pancreatic cancer cells, while KRAS knockdown resulted in over 8,000 diferentially methylated (DM) CpGs, treatment with the ERK1/2-selective inhibitor SCH772984 showed less than 40 DM CpGs, suggesting that ERK is not a broadly active driver of KRAS-associated DNA methylation. KRAS G12V overexpression in an isogenic lung model reveals >50,600 DM CpGs compared to non-transformed controls. In lung and pancreatic cells, gene ontology analyses of DM promoters show an enrichment for genes involved in diferentiation and development. Taken all together, KRAS-mediated DNA methylation are stochastic and independent of canonical downstream efector signaling. These epigenetically altered genes associated with KRAS expression could represent potential therapeutic targets in KRAS-driven cancer. Activating KRAS mutations can be found in nearly 25 percent of all cancers1.
    [Show full text]
  • Elucidation of the ELK1 Target Gene Network Reveals a Role in the Coordinate Regulation of Core Components of the Gene Regulation Machinery
    Downloaded from genome.cshlp.org on October 4, 2021 - Published by Cold Spring Harbor Laboratory Press Letter Elucidation of the ELK1 target gene network reveals a role in the coordinate regulation of core components of the gene regulation machinery Joanna Boros,1,5 Ian J. Donaldson,1,5 Amanda O’Donnell,1 Zaneta A. Odrowaz,1 Leo Zeef,1 Mathieu Lupien,2,4 Clifford A. Meyer,3 X. Shirley Liu,3 Myles Brown,2 and Andrew D. Sharrocks1,6 1Faculty of Life Sciences, University of Manchester, Manchester M13 9PT, United Kingdom; 2Division of Molecular and Cellular Oncology, Department of Medical Oncology, Dana-Farber Cancer Institute and Department of Medicine, Brigham and Women’s Hospital and Harvard Medical School, Boston, Massachusetts 02115, USA; 3Department of Biostatistics and Computational Biology, Dana-Farber Cancer Institute and Harvard School of Public Health, Boston, Massachusetts 02115, USA Transcription factors play an important role in orchestrating the activation of specific networks of genes through targeting their proximal promoter and distal enhancer regions. However, it is unclear how the specificity of downstream responses is maintained by individual members of transcription-factor families and, in most cases, what their target repertoire is. We have used ChIP-chip analysis to identify the target genes of the ETS-domain transcription factor ELK1. Two distinct modes of ELK1 target gene selection are identified; the first involves redundant promoter binding with other ETS-domain family members; the second occurs through combinatorial binding with a second transcription factor SRF, which specifies a unique group of target genes. One of the most prominent groups of genes forming the ELK1 target network includes classes involved in core gene expression control, namely, components of the basal transcriptional machinery, the spliceosome and the ribosome.
    [Show full text]
  • SLC45A3-ELK4 Is a Novel and Frequent Erythroblast Transformation–Specific Fusion Transcript in Prostate Cancer
    Published OnlineFirst March 17, 2009; DOI: 10.1158/0008-5472.CAN-08-4926 Priority Report SLC45A3-ELK4 Is a Novel and Frequent Erythroblast Transformation–Specific Fusion Transcript in Prostate Cancer David S. Rickman,1 Dorothee Pflueger,1 Benjamin Moss,1 Vanessa E. VanDoren,1 Chen X. Chen,1 Alexandre de la Taille,4,5 Rainer Kuefer,6 Ashutosh K. Tewari,2 Sunita R. Setlur,7 Francesca Demichelis,1,3 and Mark A. Rubin1 Departments of 1Pathology and Laboratory Medicine and 2Urology, and 3Institute for Computational Biomedicine, Weill Cornell Medical College, New York, New York; 4Department of Urology, CHU Mondor and 5Institut National de la Sante et de la Recherche Medicale, Unite´841, Cre´teil,France; 6Department of Urology, University Hospital Ulm, Ulm, Germany; and 7Department of Pathology, Brigham and Women’s Hospital and Harvard Medical School, Boston, Massachusetts Abstract (2, 3), and a specific expression profile (4, 5). Androgen-regulated ¶ Chromosomal rearrangements account for all erythroblast genes account for the majority of the 5 genomic regulatory transformation–specific (ETS) family member gene fusions promoters elements fused with ETS genes in prostate cancer (6). The promoter of the androgen-regulated transmembrane protease, that have been reported in prostate cancer and have clinical, serine 2 TMPRSS2 diagnostic, and prognostic implications. Androgen-regulated ( ) gene is fused to the coding region of members genes account for the majority of the 5¶ genomic regulatory of the ETS family of transcription factors, most commonly v-ets TMPRSS2-ERG, erythroblastosis virus E26 oncogene homologue (avian; ERG; ref. 7). promoter elements fused with ETS genes. Solute carrier family 45, member 3 SLC45A3 TMPRSS2-ETV1, and SLC45A3-ERG rearrangements account ( ), also referred to as for roughly 90% of ETS fusion prostate cancer.
    [Show full text]
  • Cell Cycle–Regulated Phosphorylation of P220 by Cyclin E/Cdk2 in Cajal Bodies Promotes Histone Gene Transcription
    Downloaded from genesdev.cshlp.org on October 4, 2021 - Published by Cold Spring Harbor Laboratory Press Cell cycle–regulated phosphorylation of p220NPAT by cyclin E/Cdk2 in Cajal bodies promotes histone gene transcription Tianlin Ma,1,8 Brian A. Van Tine,4,5,8 Yue Wei,2 Michelle D. Garrett,6 David Nelson,7 Peter D. Adams,7 Jin Wang,1,3 Jun Qin,1,3 Louise T. Chow,4 and J. Wade Harper1,2,9 1Department of Biochemistry and Molecular Biology, 2Department of Molecular Physiology and Biophysics, 3Department of Molecular and Cellular Biology, Baylor College of Medicine, Houston, Texas 77030, USA; 4Department of Biochemistry and Molecular Genetics, 5Department of Pathology, University of Alabama, Birmingham, Alabama 35294, USA; 6CRC Centre for Cancer Therapeutics, Institute of Cancer Research, Sutton, SM2 5NG, United Kingdom; 7Fox Chase Cancer Center, Philadelphia, Pennsylvania 19111, USA Cyclin E/Cdk2 acts at the G1/S-phase transition to promote the E2F transcriptional program and the initiation of DNA synthesis. To explore further how cyclin E/Cdk2 controls S-phase events, we examined the subcellular localization of the cyclin E/Cdk2 interacting protein p220NPAT and its regulation by phosphorylation. p220 is localized to discrete nuclear foci. Diploid fibroblasts in Go and G1 contain two p220 foci, whereas S- and G2-phase cells contain primarily four p220 foci. Cells in metaphase and telophase have no detectable focus. p220 foci contain cyclin E and are coincident with Cajal bodies (CBs), subnuclear organelles that associate with histone gene clusters on chromosomes 1 and 6. Interestingly, p220 foci associate with chromosome 6 throughout the cell cycle and with chromosome 1 during S phase.
    [Show full text]
  • Transcriptional Recapitulation and Subversion Of
    Open Access Research2007KaiseretVolume al. 8, Issue 7, Article R131 Transcriptional recapitulation and subversion of embryonic colon comment development by mouse colon tumor models and human colon cancer Sergio Kaiser¤*, Young-Kyu Park¤†, Jeffrey L Franklin†, Richard B Halberg‡, Ming Yu§, Walter J Jessen*, Johannes Freudenberg*, Xiaodi Chen‡, Kevin Haigis¶, Anil G Jegga*, Sue Kong*, Bhuvaneswari Sakthivel*, Huan Xu*, Timothy Reichling¥, Mohammad Azhar#, Gregory P Boivin**, reviews Reade B Roberts§, Anika C Bissahoyo§, Fausto Gonzales††, Greg C Bloom††, Steven Eschrich††, Scott L Carter‡‡, Jeremy E Aronow*, John Kleimeyer*, Michael Kleimeyer*, Vivek Ramaswamy*, Stephen H Settle†, Braden Boone†, Shawn Levy†, Jonathan M Graff§§, Thomas Doetschman#, Joanna Groden¥, William F Dove‡, David W Threadgill§, Timothy J Yeatman††, reports Robert J Coffey Jr† and Bruce J Aronow* Addresses: *Biomedical Informatics, Cincinnati Children's Hospital Medical Center, Cincinnati, OH 45229, USA. †Departments of Medicine, and Cell and Developmental Biology, Vanderbilt University and Department of Veterans Affairs Medical Center, Nashville, TN 37232, USA. ‡McArdle Laboratory for Cancer Research, University of Wisconsin, Madison, WI 53706, USA. §Department of Genetics and Lineberger Cancer Center, University of North Carolina, Chapel Hill, NC 27599, USA. ¶Molecular Pathology Unit and Center for Cancer Research, Massachusetts deposited research General Hospital, Charlestown, MA 02129, USA. ¥Division of Human Cancer Genetics, The Ohio State University College of Medicine, Columbus, Ohio 43210-2207, USA. #Institute for Collaborative BioResearch, University of Arizona, Tucson, AZ 85721-0036, USA. **University of Cincinnati, Department of Pathology and Laboratory Medicine, Cincinnati, OH 45267, USA. ††H Lee Moffitt Cancer Center and Research Institute, Tampa, FL 33612, USA. ‡‡Children's Hospital Informatics Program at the Harvard-MIT Division of Health Sciences and Technology (CHIP@HST), Harvard Medical School, Boston, Massachusetts 02115, USA.
    [Show full text]