Voices from the Space Community” No
Total Page:16
File Type:pdf, Size:1020Kb
Load more
Recommended publications
-
Russia's Posture in Space
Russia’s Posture in Space: Prospects for Europe Executive Summary Prepared by the European Space Policy Institute Marco ALIBERTI Ksenia LISITSYNA May 2018 Table of Contents Background and Research Objectives ........................................................................................ 1 Domestic Developments in Russia’s Space Programme ............................................................ 2 Russia’s International Space Posture ......................................................................................... 4 Prospects for Europe .................................................................................................................. 5 Background and Research Objectives For the 50th anniversary of the launch of Sputnik-1, in 2007, the rebirth of Russian space activities appeared well on its way. After the decade-long crisis of the 1990s, the country’s political leadership guided by President Putin gave new impetus to the development of national space activities and put the sector back among the top priorities of Moscow’s domestic and foreign policy agenda. Supported by the progressive recovery of Russia’s economy, renewed political stability, and an improving external environment, Russia re-asserted strong ambitions and the resolve to regain its original position on the international scene. Towards this, several major space programmes were adopted, including the Federal Space Programme 2006-2015, the Federal Target Programme on the development of Russian cosmodromes, and the Federal Target Programme on the redeployment of GLONASS. This renewed commitment to the development of space activities was duly reflected in a sharp increase in the country’s launch rate and space budget throughout the decade. Thanks to the funds made available by flourishing energy exports, Russia’s space expenditure continued to grow even in the midst of the global financial crisis. Besides new programmes and increased funding, the spectrum of activities was also widened to encompass a new focus on space applications and commercial products. -
Ice& Stone 2020
Ice & Stone 2020 WEEK 34: AUGUST 16-22 Presented by The Earthrise Institute # 34 Authored by Alan Hale This week in history AUGUST 16 17 18 19 20 21 22 AUGUST 16, 1898: DeLisle Stewart at Harvard College Observatory’s Boyden Station in Arequipa, Peru, takes photographs on which Saturn’s outer moon Phoebe is discovered, although the images of Phoebe were not noticed until the following March by William Pickering. Phoebe was the first planetary moon to be discovered via photography, and it and other small planetary moons are discussed in last week’s “Special Topics” presentation. AUGUST 16, 2009: A team of scientists led by Jamie Elsila of the Goddard Space Flight Center in Maryland announces that they have detected the presence of the amino acid glycine in coma samples of Comet 81P/ Wild 2 that were returned to Earth by the Stardust mission 3½ years earlier. Glycine is utilized by life here on Earth, and the presence of it and other organic substances in the solar system’s “small bodies” is discussed in this week’s “Special Topics” presentation. AUGUST 16 17 18 19 20 21 22 AUGUST 17, 1877: Asaph Hall at the U.S. Naval Observatory in Washington, D.C. discovers Mars’ larger, inner moon, Phobos. Mars’ two moons, and the various small moons of the outer planets, are the subject of last week’s “Special Topics” presentation. AUGUST 17, 1989: In its monthly batch of Minor Planet Circulars (MPCs), the IAU’s Minor Planet Center issues MPC 14938, which formally numbers asteroid (4151), later named “Alanhale.” I have used this asteroid as an illustrative example throughout “Ice and Stone 2020” “Special Topics” presentations. -
REASONS to MIND ASTEROIDS with the Rapid Progress Made In
ASTEROID MINING & ITS LEGAL IMPLICATIONS Neil Modi & Devanshu Ganatra Presentation ID- IAC- 16.E7.IP.23.x32357 REASONS TO MINE ASTEROIDS With the rapid progress made in technology, humans are taking huge steps in space today. There is huge potential in space, and particularly in asteroid mining. ENERGY CRISIS RARE EARTH METALS • Non-renewable fossil fuels like coal, oil currently account for 81% of • Many of the metals widely used in almost all industrial products the world’s primary energy. were always limited and are now in SHORT SUPPLY leading to skyrocketing manufacturing costs. • EARLIER, renewable energy could not compete with non-renewable sources because it relied on metals in short supply. Resources found • These include Platinum Group Metals (PMGS) and others like on asteroids would solve this problem completely. gold, cobalt, iron, molybdenum etc. Image Credit-The U.S. Energy Image Credit- FuelSpace.org- ‘How Asteroids Can Information Administration Save Mankind’ PROJECTED SCARCITY OF RESOURCES ON EARTH Image Credit-Shackleton Energy Company Image Credit- Chris Clugston’s ‘An Oil Drum- An Analysis’ (2010) THE NEED FOR WATER 1. SUPPORT SYSTEM FOR ASTRONAUTS- Since the main constituents of water HYDRATION AND OXYGEN are hydrogen and oxygen, it is a source of oxygen for life support. TO ASTRONAUTS 2. PROTECTION FROM RADIATION- Water absorbs and blocks infrared radiation, which means that by storing heat it helps to maintain temperature. 3. ROCKET FUEL- Rocket propellant is hydrogen and oxygen based, with a large percentage of the weight of a spacecraft taken up by fuel. 4. SPACE EXPLORATION- A GAS STATION IN SPACE KEY TO SPACE BLOCKS EXPLORATION WATER RADIATION Today billions of dollars are spent in rocket fuel to sustain space explorations. -
Global Exploration Roadmap
The Global Exploration Roadmap January 2018 What is New in The Global Exploration Roadmap? This new edition of the Global Exploration robotic space exploration. Refinements in important role in sustainable human space Roadmap reaffirms the interest of 14 space this edition include: exploration. Initially, it supports human and agencies to expand human presence into the robotic lunar exploration in a manner which Solar System, with the surface of Mars as • A summary of the benefits stemming from creates opportunities for multiple sectors to a common driving goal. It reflects a coordi- space exploration. Numerous benefits will advance key goals. nated international effort to prepare for space come from this exciting endeavour. It is • The recognition of the growing private exploration missions beginning with the Inter- important that mission objectives reflect this sector interest in space exploration. national Space Station (ISS) and continuing priority when planning exploration missions. Interest from the private sector is already to the lunar vicinity, the lunar surface, then • The important role of science and knowl- transforming the future of low Earth orbit, on to Mars. The expanded group of agencies edge gain. Open interaction with the creating new opportunities as space agen- demonstrates the growing interest in space international science community helped cies look to expand human presence into exploration and the importance of coopera- identify specific scientific opportunities the Solar System. Growing capability and tion to realise individual and common goals created by the presence of humans and interest from the private sector indicate and objectives. their infrastructure as they explore the Solar a future for collaboration not only among System. -
Planetary Defence Activities Beyond NASA and ESA
Planetary Defence Activities Beyond NASA and ESA Brent W. Barbee 1. Introduction The collision of a significant asteroid or comet with Earth represents a singular natural disaster for a myriad of reasons, including: its extraterrestrial origin; the fact that it is perhaps the only natural disaster that is preventable in many cases, given sufficient preparation and warning; its scope, which ranges from damaging a city to an extinction-level event; and the duality of asteroids and comets themselves---they are grave potential threats, but are also tantalising scientific clues to our ancient past and resources with which we may one day build a prosperous spacefaring future. Accordingly, the problems of developing the means to interact with asteroids and comets for purposes of defence, scientific study, exploration, and resource utilisation have grown in importance over the past several decades. Since the 1980s, more and more asteroids and comets (especially the former) have been discovered, radically changing our picture of the solar system. At the beginning of the year 1980, approximately 9,000 asteroids were known to exist. By the beginning of 2001, that number had risen to approximately 125,000 thanks to the Earth-based telescopic survey efforts of the era, particularly the emergence of modern automated telescopic search systems, pioneered by the Massachusetts Institute of Technology’s (MIT’s) LINEAR system in the mid-to-late 1990s.1 Today, in late 2019, about 840,000 asteroids have been discovered,2 with more and more being found every week, month, and year. Of those, approximately 21,400 are categorised as near-Earth asteroids (NEAs), 2,000 of which are categorised as Potentially Hazardous Asteroids (PHAs)3 and 2,749 of which are categorised as potentially accessible.4 The hazards posed to us by asteroids affect people everywhere around the world. -
March 21–25, 2016
FORTY-SEVENTH LUNAR AND PLANETARY SCIENCE CONFERENCE PROGRAM OF TECHNICAL SESSIONS MARCH 21–25, 2016 The Woodlands Waterway Marriott Hotel and Convention Center The Woodlands, Texas INSTITUTIONAL SUPPORT Universities Space Research Association Lunar and Planetary Institute National Aeronautics and Space Administration CONFERENCE CO-CHAIRS Stephen Mackwell, Lunar and Planetary Institute Eileen Stansbery, NASA Johnson Space Center PROGRAM COMMITTEE CHAIRS David Draper, NASA Johnson Space Center Walter Kiefer, Lunar and Planetary Institute PROGRAM COMMITTEE P. Doug Archer, NASA Johnson Space Center Nicolas LeCorvec, Lunar and Planetary Institute Katherine Bermingham, University of Maryland Yo Matsubara, Smithsonian Institute Janice Bishop, SETI and NASA Ames Research Center Francis McCubbin, NASA Johnson Space Center Jeremy Boyce, University of California, Los Angeles Andrew Needham, Carnegie Institution of Washington Lisa Danielson, NASA Johnson Space Center Lan-Anh Nguyen, NASA Johnson Space Center Deepak Dhingra, University of Idaho Paul Niles, NASA Johnson Space Center Stephen Elardo, Carnegie Institution of Washington Dorothy Oehler, NASA Johnson Space Center Marc Fries, NASA Johnson Space Center D. Alex Patthoff, Jet Propulsion Laboratory Cyrena Goodrich, Lunar and Planetary Institute Elizabeth Rampe, Aerodyne Industries, Jacobs JETS at John Gruener, NASA Johnson Space Center NASA Johnson Space Center Justin Hagerty, U.S. Geological Survey Carol Raymond, Jet Propulsion Laboratory Lindsay Hays, Jet Propulsion Laboratory Paul Schenk, -
ASTEROID MINING and IN-SITU RESOURCE UTILIZATION A. A. Mardon1 and G
82nd Annual Meeting of The Meteoritical Society 2019 (LPI Contrib. No. 2157) 6189.pdf ASTEROID MINING AND IN-SITU RESOURCE UTILIZATION A. A. Mardon1 and G. Zhou2, 1University of Alberta, 2George Washington University. Introduction: Like many space exploration missions, cost is a determining factor. Transportation alone imposes a cost of $10,000 per kilogram for the entire mission making it simply not profitable or attractive to potential investors. A poten- tial near-instantaneous solution would be to develop an asteroid mining economy developing of a human-commercial market. It is suggested that this scenario will create the economic and technological opportunities not available today. Fu- ture manned missions would require the use of native material and energy on celestial objects to support future human and robotic explorations. The process of collecting and processing usable native material is known as in-situ resource utiliza- tion (ISRU). Currently, space travelling requires missions to carry life necessities such as air, food, water and habitable volume and shielding needed to sustain crew trips from Earth to interplanetary destinations. [1] The possibility of a mis- sion depends on the deduced market value from commercial sale of the product. Engineering choices are identified; a ma- trix of mineralogy, product and process choices can be developed. [2] One major consideration in the process of obtaining energy and life supporting materials from the lunar surface is the identification and excavation of raw material. [3] Lunar soil is produced primarily by meteorite impacts on the surface. This process caused for mineral fragmentation with com- position consisting of miscellaneous glasses, agglutinates and basaltic and brecciated lithic fragments. -
Issue #1 – 2012 October
TTSIQ #1 page 1 OCTOBER 2012 Introducing a new free quarterly newsletter for space-interested and space-enthused people around the globe This free publication is especially dedicated to students and teachers interested in space NEWS SECTION pp. 3-22 p. 3 Earth Orbit and Mission to Planet Earth - 13 reports p. 8 Cislunar Space and the Moon - 5 reports p. 11 Mars and the Asteroids - 5 reports p. 15 Other Planets and Moons - 2 reports p. 17 Starbound - 4 reports, 1 article ---------------------------------------------------------------------------------------------------- ARTICLES, ESSAYS & MORE pp. 23-45 - 10 articles & essays (full list on last page) ---------------------------------------------------------------------------------------------------- STUDENTS & TEACHERS pp. 46-56 - 9 articles & essays (full list on last page) L: Remote sensing of Aerosol Optical Depth over India R: Curiosity finds rocks shaped by running water on Mars! L: China hopes to put lander on the Moon in 2013 R: First Square Kilometer Array telescopes online in Australia! 1 TTSIQ #1 page 2 OCTOBER 2012 TTSIQ Sponsor Organizations 1. About The National Space Society - http://www.nss.org/ The National Space Society was formed in March, 1987 by the merger of the former L5 Society and National Space institute. NSS has an extensive chapter network in the United States and a number of international chapters in Europe, Asia, and Australia. NSS hosts the annual International Space Development Conference in May each year at varying locations. NSS publishes Ad Astra magazine quarterly. NSS actively tries to influence US Space Policy. About The Moon Society - http://www.moonsociety.org The Moon Society was formed in 2000 and seeks to inspire and involve people everywhere in exploration of the Moon with the establishment of civilian settlements, using local resources through private enterprise both to support themselves and to help alleviate Earth's stubborn energy and environmental problems. -
VBI China DA 2K11
VBI China DA 2k11 China DA China DA ................................................................................................................................................................ 1 China 1NC .............................................................................................................................................................. 2 China 1NC .............................................................................................................................................................. 3 Uniqueness—China Leads in Space ..................................................................................................................... 4 Uniqueness—China Leads in Space ..................................................................................................................... 5 Uniqueness—Chinese Heg Now ............................................................................................................................ 6 Uniqueness—Chinese Heg Now ............................................................................................................................ 7 Uniqueness—Chinese Heg Now ............................................................................................................................ 8 Uniqueness—Multipolarity Now ............................................................................................................................. 9 Brinks—Now Key Time ....................................................................................................................................... -
The Science Return from Venus Express the Science Return From
The Science Return from Venus Express Venus Express Science Håkan Svedhem & Olivier Witasse Research and Scientific Support Department, ESA Directorate of Scientific Programmes, ESTEC, Noordwijk, The Netherlands Dmitri V. Titov Max Planck Institute for Solar System Studies, Katlenburg-Lindau, Germany (on leave from IKI, Moscow) ince the beginning of the space era, Venus has been an attractive target for Splanetary scientists. Our nearest planetary neighbour and, in size at least, the Earth’s twin sister, Venus was expected to be very similar to our planet. However, the first phase of Venus spacecraft exploration (1962-1985) discovered an entirely different, exotic world hidden behind a curtain of dense cloud. The earlier exploration of Venus included a set of Soviet orbiters and descent probes, the Veneras 4 to14, the US Pioneer Venus mission, the Soviet Vega balloons and the Venera 15, 16 and Magellan radar-mapping orbiters, the Galileo and Cassini flybys, and a variety of ground-based observations. But despite all of this exploration by more than 20 spacecraft, the so-called ‘morning star’ remains a mysterious world! Introduction All of these earlier studies of Venus have given us a basic knowledge of the conditions prevailing on the planet, but have generated many more questions than they have answered concerning its atmospheric composition, chemistry, structure, dynamics, surface-atmosphere interactions, atmospheric and geological evolution, and plasma environment. It is now high time that we proceed from the discovery phase to a thorough -
Space, the Final Frontier of Enterprise: Incentivizing Asteroid Mining Under a Revised International Framework
View metadata, citation and similar papers at core.ac.uk brought to you by CORE provided by University of Michigan School of Law Michigan Journal of International Law Volume 40 Issue 1 2018 Space, the Final Frontier of Enterprise: Incentivizing Asteroid Mining Under a Revised International Framework Jack Heise University of Michigan Law School Follow this and additional works at: https://repository.law.umich.edu/mjil Part of the Air and Space Law Commons, International Law Commons, and the Oil, Gas, and Mineral Law Commons Recommended Citation Jack Heise, Space, the Final Frontier of Enterprise: Incentivizing Asteroid Mining Under a Revised International Framework, 40 MICH. J. INT'L L. 189 (2018). Available at: https://repository.law.umich.edu/mjil/vol40/iss1/5 This Note is brought to you for free and open access by the Michigan Journal of International Law at University of Michigan Law School Scholarship Repository. It has been accepted for inclusion in Michigan Journal of International Law by an authorized editor of University of Michigan Law School Scholarship Repository. For more information, please contact [email protected]. SPACE, THE FINAL FRONTIER OF ENTERPRISE: INCENTIVIZING ASTEROID MINING UNDER A REVISED INTERNATIONAL FRAMEWORK Jack Heise* Introduction The Restaurant at the End of the Universe, a novel by Douglas Adams, describes a torture device called the Total Perspective Vortex. This virtual reality machine permits the being inside to grasp, for an instant, “the entire unimaginable infinity of creation” and their size within it, denoted by a “mi- croscopic dot on a microscopic dot, which says ‘You are here.’ ”1 The re- sulting sense of insignificance and smallness has the power to completely annihilate a sentient being’s brain.2 Humans occupy and harness the resources of a miniscule percentage of the known universe. -
Hydrated Minerals on Asteroids: the Astronomical Record
Hydrated Minerals on Asteroids: The Astronomical Record A. S. Rivkin, E. S. Howell, F. Vilas, and L. A. Lebofsky March 28, 2002 Corresponding Author: Andrew Rivkin MIT 54-418 77 Massachusetts Ave. Cambridge MA, 02139 [email protected] 1 1 Abstract Knowledge of the hydrated mineral inventory on the asteroids is important for deducing the origin of Earth’s water, interpreting the meteorite record, and unraveling the processes occurring during the earliest times in solar system history. Reflectance spectroscopy shows absorption features in both the 0.6-0.8 and 2.5-3.5 pm regions, which are diagnostic of or associated with hydrated minerals. Observations in those regions show that hydrated minerals are common in the mid-asteroid belt, and can be found in unex- pected spectral groupings, as well. Asteroid groups formerly associated with mineralogies assumed to have high temperature formation, such as MAand E-class asteroids, have been observed to have hydration features in their reflectance spectra. Some asteroids have apparently been heated to several hundred degrees Celsius, enough to destroy some fraction of their phyllosili- cates. Others have rotational variation suggesting that heating was uneven. We summarize this work, and present the astronomical evidence for water- and hydroxyl-bearing minerals on asteroids. 2 Introduction Extraterrestrial water and water-bearing minerals are of great importance both for understanding the formation and evolution of the solar system and for supporting future human activities in space. The presence of water is thought to be one of the necessary conditions for the formation of life as 2 we know it.