Advances in Insect Physiology Volume 35

Total Page:16

File Type:pdf, Size:1020Kb

Advances in Insect Physiology Volume 35 Advances in Insect Physiology Volume 35 This page intentionally left blank Advances in Insect Physiology edited by S. J. Simpson School of Biological Sciences, The University of Sydney, Sydney, Australia Volume 35 Amsterdam Boston Heidelberg London New York Oxford Paris San Diego San Francisco Singapore Sydney Tokyo ACADEMIC Academic Press is an imprint of Elsevier PRESS Academic Press is an imprint of Elsevier 32 Jamestown Road, London NW1 7BY, UK Radarweg 29, PO Box 211, 1000 AE Amsterdam, The Netherlands Linacre House, Jordan Hill, Oxford OX2 8DP, UK 30 Corporate Drive, Suite 400, Burlington, MA 01803, USA 525 B Street, Suite 1900, San Diego, CA 92101-4495, USA First edition 2008 Copyright r 2008 Elsevier Ltd. All rights reserved No part of this publication may be reproduced, stored in a retrieval system or transmitted in any form or by any means electronic, mechanical, photocopying, recording or otherwise without the prior written permission of the publisher Permissions may be sought directly from Elsevier’s Science & Technology Rights Department in Oxford, UK: phone (+44) (0) 1865 843830; fax (+44) (0) 1865 853333; email: [email protected]. Alternatively you can submit your request online by visiting the Elsevier web site at http://www.elsevier.com/locate/permissions,and selecting Obtaining permission to use Elsevier material Notice No responsibility is assumed by the publisher for any injury and/or damage to persons or property as a matter of products liability, negligence or otherwise, or from any use or operation of any methods, products, instructions or ideas contained in the material herein. Because of rapid advances in the medical sciences, in particular, independent verification of diagnoses and drug dosages should be made ISBN: 978-0-12-374329-9 ISSN: 0065-2806 For information on all Academic Press publications visit our website at elsevierdirect.com Printed and bound in United Kingdom 080910111210987654321 Contents Contributors vii Insect Excretory Mechanisms 1 M. O’DONNELL Collective Decision-Making and Foraging Patterns in Ants and Honeybees 123 C. DETRAIN, J.-L. DENEUBOURG Index 175 This page intentionally left blank Contributors J.-L. Deneubourg Unit of Social Ecology, Universite´ Libre de Bruxelles, Campus de la Plaine, Brussels, Belgium C. Detrain Unit of Social Ecology, Universite´ Libre de Bruxelles, Campus de la Plaine, Brussels, Belgium M. O’Donnell Department of Biology, McMaster University, Hamilton, Ontario, L8S 4K1, Canada This page intentionally left blank Insect Excretory Mechanisms Michael O’Donnell Department of Biology, McMaster University, Hamilton, Ontario, L8S 4K1, Canada 1 Introduction 2 2 Design principles underlying the insect excretory system 3 3 Secretion of physiological ions by insect Malpighian tubules 8 3.1 Ion transport across Malpighian tubules composed of a single cell type 8 3.2 Ion transport across Malpighian tubules composed of principal cells and stellate cells 19 3.3 Aquaporins and osmotic permeability of Malpighian tubules 27 4 Secretion and reabsorption by downstream segments of the Malpighian tubule and the hindgut 28 4.1 Reabsorption by the Malpighian tubules 28 4.2 The insect hindgut 30 5 Nitrogenous waste excretion 33 5.1 Uric acid 33 5.2 Ammonia transport in insects 39 5.3 Free amino acids 43 6 Transport and excretion of divalent ions and bicarbonate 46 6.1 Calcium 46 6.2 Magnesium 49 6.3 Sulfate 50 6.4 Bicarbonate 53 7 Excretion and sequestration of toxic metals 57 7.1 Sites and mechanisms of cadmium accumulation and transport 57 7.2 Regulated storage of zinc and copper in Drosophila 60 7.3 Detoxification and excretion of iron and heme 61 8 Transport of organic cations and organic anions 64 8.1 Transport of type I organic cations 65 8.2 Transport of type II organic cations by P-glycoprotein-like mechanisms 72 8.3 Transport of type I organic anions 84 8.4 Transport of type II organic anions by multidrug resistance-associated proteins 94 8.5 Interaction of excretory mechanisms with phases I and II detoxification mechanisms 98 9 Future directions 101 9.1 The impact of genome sequencing projects 101 9.2 Chemical ecology and insect physiology 101 ADVANCES IN INSECT PHYSIOLOGY VOL. 35 Copyright r 2008 by Elsevier Ltd ISBN 978-0-12-374329-9 All rights of reproduction in any form reserved DOI: 10.1016/S0065-2806(08)00001-5 2 MICHAEL O’DONNELL 9.3 Ion channels and insect excretory mechanisms 102 9.4 Diuretic and antidiuretic agents as candidates for development of novel insecticides 103 Acknowledgements 104 References 104 1 Introduction Excretion refers to the processes which remove from the metabolic pool substances which interfere with metabolism. In this chapter I will consider three separate aspects of excretion, as first proposed by Maddrell (1971): (1) removal of molecules which are undesirable or perhaps even poisonous at all except very low concentrations; (2) excretion of molecules which are not toxic but merely useless, and which would become obstructive if allowed to accumulate and (3) excretion of molecules which are useful or essential but are present to excess. This would include excretion of water and physiological ions in some circumstances. In writing this chapter I have attempted to link recent advances in our understanding of the physiology, biochemistry, genetics, molecular biology and chemical ecology of insect excretory mechanisms to the fundamental principles of design established more than 30 years ago. For example, the primary ATP-dependent transporter in insect epithelia was referred to in the literature until the early 1990s as the ‘electrogenic alkali cation pump’. This pump is now known to reflect the integrated actions of two separate transporters, an electrogenic vacuolar-type H+-ATPase and an exchanger of Na+ or K+ and H+ (Maddrell and O’Donnell, 1992; Wieczorek, 1992; Rheault et al., 2007). Similarly, the high osmotic permeability of insect epithelial cells noted in early studies (O’Donnell et al., 1982) is now seen to be based on aquaporins (Echevarria et al., 2001; Kaufmann et al., 2005). A third example is the multialkaloid transporter responsible for elimina- tion of alkaloids such as nicotine, morphine and atropine by insect excretory organs (Maddrell and Gardiner, 1976). Recent studies suggest that this transporter is a P-glycoprotein (P-gp)-like transporter (Gaertner et al., 1998; Leader and O’Donnell, 2005) produced by expression of multidrug resistance (MDR) genes (Tapadia and Lakhotia, 2005). A recurrent theme of this review is that studies of insect excretory mechanisms frequently provide illustrations of the Krogh principle: ‘‘For a large number of problems there will be some animal of choice or a few such animals on which it can be most conveniently studied.’’ In many instances, these examples of the Krogh principle are a consequence of unusual diets, such as blood, or life in extreme environments, as is the case for the tenebrionid beetles of the Namibian desert or mosquito larvae found in saline lakes containing very high levels of magnesium and sulfate. INSECT EXCRETORY MECHANISMS 3 Adaptations to extreme environments, coupled with the large number of unusual food sources exploited by insects and their extraordinary diversity, provides a fertile ground for research into excretory mechanisms. Several reviews in the last decade have analyzed literature relevant to this work. Comprehensive studies of insect diuretic and antidiuretic hormones are provided by Gade et al. (1997) and Coast et al. (2002). A briefer analysis of recent work on endocrine control of salt balance in insects has been written by Coast (2007), and Orchard (2006) has reviewed the orchestration of diuresis and other physiological events in the hemipteran Rhodnius by the amine serotonin. Much of what we know about the functioning of the insect hindgut is due to the extensive work of Phillips and co-workers (Phillips et al., 1996). The dominant role of the vacuolar-type H+-ATPase in driving solute transport across plasma membranes of insect epithelial cells has been reviewed frequently (e.g. Wieczorek et al., 2000; Beyenbach and Wieczorek, 2006). The mechanism and regulation of secretory transport in Malpighian tubules of the yellow fever mosquito Aedes aegypti has been reviewed by Beyenbach (2003). The application of genetic, molecular biological and physiological tools has lead to tremendous advances in our understanding of the mechanisms and control of solute and water transport by the Malpighian tubules of the fruit fly Drosophila melanogaster. This area has been reviewed frequently, primarily by Julian Dow and Shireen Davies (Dow and Davies, 2003, 2006; Davies and Day, 2006). 2 Design principles underlying the insect excretory system The insect excretory system is comprised of the Malpighian tubules and the gut, especially the hindgut (Fig. 1). Each Malpighian tubule consists of a single-layer of squamous epithelial cells which form a blind-ended tube. Tubules range from 2 to 70 mm in length, 2–250 in number and up to 100 mm in diameter (Phillips, 1981). Transport of ions (primarily K+,Na+ and ClÀ) and osmotically obliged water into the tubule lumen produces a near isosmotic secreted fluid. Fluid secretion is accompanied by passive diffusion of small solutes into the lumen, as well as selective secretion of solutes, including toxins. Some KCl and water may be reabsorbed down- stream in a proximal segment of the Malpighian tubule or the anterior hindgut. The bulk of water, ion and metabolite reabsorption occurs downstream in the posterior hindgut, in particular the rectum, resulting in strongly hyperosmotic or hypoosmotic excreta. In many terrestrial species of insect, the hindgut can recover virtually all the water from the gut contents and fluid secreted into the gut by the Malpighian tubules. So effective are these water recovery systems that in the mealworm Tenebrio (Ramsay, 1971) and in the firebrat Thermobia (Noble-Nesbitt, 1970), for 4 MICHAEL O’DONNELL FIG.
Recommended publications
  • Impact Assessment of Pesticides Applied in Vegetable-Producing Areas in the Saharan Zone: the Case of Burkina Faso
    Impact Assessment of Pesticides Applied in Vegetable-Producing Areas in the Saharan Zone: the Case of Burkina Faso THÈSE NO 8167 (2017) PRÉSENTÉE LE 19 DÉCEMBRE 2017 À LA FACULTÉ DE L'ENVIRONNEMENT NATUREL, ARCHITECTURAL ET CONSTRUIT GROUPE CEL PROGRAMME DOCTORAL EN GÉNIE CIVIL ET ENVIRONNEMENT ÉCOLE POLYTECHNIQUE FÉDÉRALE DE LAUSANNE POUR L'OBTENTION DU GRADE DE DOCTEUR ÈS SCIENCES PAR Edouard René Gilbert LEHMANN acceptée sur proposition du jury: Prof. C. Pulgarin, président du jury Dr L. F. De Alencastro, directeur de thèse Prof. R. Zanella, rapporteur Prof. B. Schiffers, rapporteur Dr B. Ferrari, rapporteur Suisse 2017 Acknowledgements Acknowledgements With these words I would like to thank everyone that contributed to the successful delivery of this Doctoral Thesis, and I would like to start with the Swiss Agency for Development and Cooperation (SDC) for funding this research project through the program 3E and for giving us the opportunity to be part of it. I would like especially to thank Dr. Luiz Felippe de Alencastro for the confidence that he has placed in me when giving me the incredible opportunity to participate in this research project. Thank you for coming to me five years ago, that day you probably changed my life. I did a lot and learn a great deal. Thank you for always attentively listening to my endless speeches, for your endless enthusiasm and unwavering support. You guided me through this project and made it a very enriching experience for me, you were a true mentor in every aspect. I know this was a “once in a lifetime” experience and I can never thank you enough.
    [Show full text]
  • Activity and Biological Effects of Neem Products Against Arthropods of Medical and Veterinary Importance
    Journal of the American Mosquito Control Association' 15(2):133-152, 1999 Copyright O 1999 by the American Mosquito Control Association, Inc. ACTIVITY AND BIOLOGICAL EFFECTS OF NEEM PRODUCTS AGAINST ARTHROPODS OF MEDICAL AND VETERINARY IMPORTANCE MIR S. MULLA ENN TIANYUN SU Depdrtment of Entomobgy, University of Califomia, Riverside, CA 92521-O314 ABSTRACT. Botanical insecticides are relatively safe and degradable, and are readily available sources of biopesticides. The most prominent phytochemical pesticides in recent years are those derived from neem trees, which have been studiedlxtensively in the fields of entomology and phytochemistry, and have uses for medicinal and cosmetic purposes. The neem products have been obtained from several species of neem trees in the family Meliaceae. Sii spicies in this family have been the subject of botanical pesticide research. They are ATadirachta indica A. Jrtss, Azadirachta excelsa Jack, Azadirachta siamens Valeton, Melia azedarach L., Melia toosendan Sieb. and Z1cc., and Melia volkensii Giirke. The Meliaceae, especially A. indica (Indian neem tree), contains at least 35 biologically active principles. Azadirachtin is the predominant insecticidal active ingredient in the seed, leaves, and other parts of the neem tree. Azadirachtin and other compounds in neem products exhibit various modes of action against insects such as antifeedancy, growth regulation, fecundity suppression and sterilization, oviposition repellency or attractancy, changes in biological fitness, and blocking development of vector-borne
    [Show full text]
  • A Pesticide Decision-Making Guide to Protect Pollinators in Tree Fruit Orchards
    A Pesticide Decision-Making Guide to Protect Pollinators in Tree Fruit Orchards 2018 Edition By Maria van Dyke, Emma Mullen, Dan Wixted, and Scott McArt Pollinator Network at Cornell, 2018 Cornell University, Department Of Entomology Contents Choosing lower-risk pesticides for pollinators in New York orchards 1 How to use this guide 3 Understanding the terms in this guide 4 EPA Pesticide toxicity standards 4 Synergistic Interactions 4 Systemic Pesticides 4 Adjuvants and/or inert ingredients 5 Tying it all together: adopting an Integrated Pest and Pollinator Management (IPPM) approach 5 IPPM: Putting the “pollinator” in IPM: 6 Table 1: Product formulations and their active ingredients 7 Table 2: Pesticide synergies and acute, chronic, and sublethal toxicities for honey bees and other pollinators 9 Literature cited 24 Appendix A: Pollination contract ______________________________________________________ 28 Acknowledgments This research and development of this guide was supported by the New York State Environmental Protection Fund and New York Farm Viability Institute grant FOC 17-001. The expert advice and consultation provided by Dan Wixted of the Cornell Pesticide Management Education Program was supported by the Crop Protection and Pest Management Extension Implementation Program [grant no. 2017-70006-27142/project accession no. 1014000] from the USDA National Institute of Food and Agriculture. 1 Choosing lower-risk pesticides for pollinators in New York orchards Growers recognize the vital role of pollination and understand that managing pests while protecting pollinators can be a balancing act. both components are essential for a successful harvest, yet they can sometimes be in conflict with one another. Pollinators (mostly bees) are busy pollinating orchard blossoms at the same time growers need to be managing specific pests and diseases.
    [Show full text]
  • Measuring Juvenile Hormone and Ecdysteroid Titers in Insect
    Measuring juvenile hormone and ecdysteroid titers in insect haemolymph simultaneously by LC-MS: The basis for determining the effectiveness of plant-derived alkaloids as insect growth regulators Dissertation zur Erlangung des Doktorgrades der Fakultät für Biologie, Chemie und Geowissenschaften der Universität Bayreuth vorgelegt von Stephanie Westerlund Chemikerin (M.Sc.) aus Dinkelsbühl Bayreuth, 2004 Die vorliegende Arbeit wurde in der Zeit von April 2001 bis März 2004 unter der Leitung von Herrn Prof. Dr. Klaus H. Hoffmann am Lehrstuhl Tierökologie I und Herrn Prof. Dr. Karl-Heinz Seifert am Lehrstuhl Organische Chemie I/2 der Universität Bayreuth angefertigt. Die Untersuchungen wurden im Rahmen des Graduiertenkollegs 678 „Ökologische Bedeutung von Wirk- und Signalstoffen bei Insekten – von der Struktur zur Funktion“ durchgeführt und durch Mittel der Deutschen Forschungsgemeinschaft (DFG) gefördert bzw. durch die Frauenförderung aus dem HWP-Programm „Chancengleichheit für Frauen in Forschung und Lehre“. Vollständiger Abdruck der von der Fakultät für Biologie, Chemie und Geowissenschaften der Universität Bayreuth genehmigten Dissertation zur Erlangung des akademischen Grades Doktor der Naturwissenschaften (Dr. rer. nat.). Tag der Einreichung: 21. April 2004 Tag des Rigorosums: 7. Juli 2004 Prüfungsausschuss: Prof. Dr. K. Dettner Prof. Dr. K. H. Hoffmann (erster Gutachter) Prof. Dr. E. Matzner PD Dr. C. Reinbothe (Vorsitzende) Prof. Dr. K. Seifert (zweiter Gutachter) Dem Andenken meiner Oma Schade niemandem; sondern hilf allen, so gut
    [Show full text]
  • (12) Patent Application Publication (10) Pub. No.: US 2012/0088667 A1 Williams Et Al
    US 20120088667A1 (19) United States (12) Patent Application Publication (10) Pub. No.: US 2012/0088667 A1 Williams et al. (43) Pub. Date: Apr. 12, 2012 (54) SAFENINGAGENT (30) Foreign Application Priority Data (75) Inventors: Richard Williams, Colchester Apr. 7, 2009 (EP) .................................. O9447OO9.3 (GB); Peter Roose, Ghent (BE): Publication Classification Johan Josef De Saegher, Ghent (51) Int. Cl. (BE) AOIN 25/32 (2006.01) AOIP 2L/00 (2006.01) (73) Assignee: TAMINCO, NAAMLOZE AOIPI3/02 (2006.01) VENNOOTSCHAP, Ghent (BE) AOIP3/00 (2006.01) AOIP 7/04 (2006.01) (21) Appl. No.: 13/263,674 (52) U.S. Cl. ......... 504/105:504/112:504/104:504/108; 504/110 (22) PCT Fled: Apr. 7, 2010 (57) ABSTRACT A compound selected from a composition comprising an (86) PCT NO.: PCT/B10/O1034 auxin, an auxin precursor, an auxin metabolite or a derivative of said auxin, auxin precursor or auxin metabolite and S371 (c)(1), acetaminophen or a derivative thereof for use as a plant (2), (4) Date: Dec. 27, 2011 safener. NH, NH NH Br O- O OH NH H N boc Br c. CF OMe S. OMe Patent Application Publication Apr. 12, 2012 Sheet 1 of 16 US 2012/0088667 A1 FIG. 1(a) ON OH On-NHH O OH Nul OH ". Br O OH O NH H N boc CF OMe OMe Patent Application Publication Apr. 12, 2012 Sheet 2 of 16 US 2012/0088667 A1 O OH O OH H 1c. N CN C O r O OH O OH H S1 N DO Nin 1S ON O OH O OH Patent Application Publication Apr.
    [Show full text]
  • A Pesticide Decision-Making Guide to Protect Pollinators in Landscape
    A Pesticide Decision-Making Guide to Protect Pollinators in Landscape, Ornamental and Turf Management 2019 Edition By Maria van Dyke, Emma Mullen, Dan Wixted, and Scott McArt Pollinator Network at Cornell, 2018 Cornell University, Department Of Entomology Download this guide for free from: https://pollinator.cals.cornell.edu/resources/grower-resources/ Contents Choosing lower-risk pesticides for pollinators in landscape, ornamental & turf management ____ 1 How to use this guide 3 Understanding the terms in this guide 4 EPA Pesticide toxicity standards 4 Synergistic Interactions 4 Systemic Pesticides 4 Adjuvants and/or inert ingredients 5 Tying it all together: adopting an Integrated Pest and Pollinator Management (IPPM) approach 5 IPPM: Putting the “pollinator” in IPM: 6 Table 1: Product formulations and their active ingredients 7 Table 2: Pesticide synergies and acute, chronic, and sublethal toxicities for honey bees and other pollinators 10 Literature cited 25 Appendix A: Pollination contract ______________________________________________________ 29 Acknowledgments This research and development of this guide was supported by the New York State Environmental Protection Fund and New York Farm Viability Institute grant FOC 17-001. The expert advice and consultation provided by Dan Wixted of the Cornell Pesticide Management Education Program was supported by the Crop Protection and Pest Management Extension Implementation Program [grant no. 2017-70006-27142/project accession no. 1014000] from the USDA National Institute of Food and Agriculture. 1 Choosing lower-risk pesticides for pollinators in landscape, ornamental & turf management Managing pests on ornamentals, in landscapes, and in nurseries while protecting pollinators can be a balancing act. Pollinators (mostly bees) are busy pollinating blossoms in nurseries and landscapes at the same time growers and landscapers need to be managing specific pests and diseases.
    [Show full text]
  • Pesticidal Plants
    Pesticidal Plants • Philip C. • Philip Stevenson, R. Steven Belmain and Murray B. Isman Pesticidal Plants From Smallholder Use to Commercialisation Edited by Philip C. Stevenson, Steven R. Belmain and Murray B. Isman Printed Edition of the Special Issue Published in Plants www.mdpi.com/journal/plants Pesticidal Plants Pesticidal Plants From Smallholder Use to Commercialisation Special Issue Editors Philip C. Stevenson Steven R. Belmain Murray B. Isman MDPI • Basel • Beijing • Wuhan • Barcelona • Belgrade Special Issue Editors Philip C. Stevenson Steven R. Belmain Murray B. Isman University of Greenwich University of Greenwich University of British Columbia UK UK Canada Editorial Office MDPI St. Alban-Anlage 66 4052 Basel, Switzerland This is a reprint of articles from the Special Issue published online in the open access journal Plants (ISSN 2223-7747) from 2019 to 2020 (available at: https://www.mdpi.com/journal/plants/special issues/Pesticidal). For citation purposes, cite each article independently as indicated on the article page online and as indicated below: LastName, A.A.; LastName, B.B.; LastName, C.C. Article Title. Journal Name Year, Article Number, Page Range. ISBN 978-3-03928-788-8 (Pbk) ISBN 978-3-03928-789-5 (PDF) Cover image courtesy of Philip C. Stevenson. c 2020 by the authors. Articles in this book are Open Access and distributed under the Creative Commons Attribution (CC BY) license, which allows users to download, copy and build upon published articles, as long as the author and publisher are properly credited, which ensures maximum dissemination and a wider impact of our publications. The book as a whole is distributed by MDPI under the terms and conditions of the Creative Commons license CC BY-NC-ND.
    [Show full text]
  • Campo Neem Oil & Extracts
    CAMPO NEEM OIL & EXTRACTS Deodorized / decolorized for oral hygiene / anti-acne / anti perspirant – deodorants Novel functional ingredients for multi- purpose cosmetic formulations CAMPO RESEARCH PTE LTD Level 30, 6 Battery Road, Singapore 049909 Tel: (65) 63833203 / 202 / 63833631 Direct Fax (65) 63833632 / 63834034 Email: [email protected] Website: http///www.campo-research.com CAMPO® Multi-Purpose Cosmetic Base Chemicals & Active Ingredients CAMPO® Novel Functional Active Cosmetic Ingredient & Raw Materials Campo Neem Extract 2 CAMPO NEEM OILS & EXTRACTS Deodorized / Decolorized for Oral hygiene/ Anti-acne/ Anti perspirant – Deodorants Neem Leaf Total Extract Fraction C (vegetable cortisone powder) Neem Vegetal Corti-Like (vegetal cortisone liquid) NEEM LEAF Novel Functional Ingredients for Cosmetic Formulations Campo CD Version 3.7.6ri updated © US Library of Congress, Washington D.C 1989-2017 © 23rd Jan 2017, from 1989, 1990, 1991, 1992,1993,1994,1995,1996, 1997, 1998, 1999, 2000, 2001, 2002, 2003, 2004, 2005, 2006, 2007, 2008, 2009, 2010, 2011, 2012, 2013, 2014, 2015, 2016, 2017 © Campo Research All rights reserved. © US Library of Congress, Washington D.C 1989-2017 © Campo Neem Extract 3 INDEX CAMPO NEEM EXTRACTS CITRO - NEEM Vaipillai Nimba Australian Neem Tree CAMPO NEEM OIL - Deodorized 98 % and Decolorized 95 % MATERIAL SAFETY DATA SHEETS Neem Wax NGP200 MATERIAL SAFETY DATA SHEETS NEEM LEAF TOTAL EXTRACT- powder crystalline Neem Leaf Total Extract Fraction B Neem Leaf Total Extract Fraction C (Vegetable Cortisone Like Powder) Neem Seed-Servative NEEM SEED SERVATIVE (EDIBLE GRADE) NEEM VEGETAL CORTI-LIKE (VEGETAL CORTISONE) IMPORTANT NOTICE Specifications may change without prior notice. Information contained in this technical literature is believed to be accurate and is offered in good faith for the benefit of the customer.
    [Show full text]
  • Università Degli Studi Di Milano Trp Active Compounds from Food Plants and Their Properties As Antimicrobial and Biocides
    UNIVERSITÀ DEGLI STUDI DI MILANO SCUOLA DI DOTTORATO Scienze molecolari e biotecnologie agrarie, alimentari ed ambientali DIPARTIMENTO Scienze Molecolari Agroalimentari CORSO DI DOTTORATO Chimica, Biochimica ed Ecologia degli Antiparassitari XXIV Ciclo TESI DI DOTTORATO DI RICERCA TRP ACTIVE COMPOUNDS FROM FOOD PLANTS AND THEIR PROPERTIES AS ANTIMICROBIAL AND BIOCIDES (AGR/12) DOTTORANDA: CATERINA CALAMELLO Matr. n. R08189 TUTORS: Prof.ssa ANGELA BASSOLI Prof.ssa PAOLA SARDI COORDINATORE: Prof. DANIELE DAFFONCHIO Anno Accademico 2010-2011 UNIVERSITÀ DEGLI STUDI DI MILANO SCUOLA DI DOTTORATO Scienze molecolari e biotecnologie agrarie, alimentari ed ambientali DIPARTIMENTO Scienze Molecolari Agroalimentari CORSO DI DOTTORATO Chimica, Biochimica ed Ecologia degli Antiparassitari XXIV Ciclo TESI DI DOTTORATO DI RICERCA TRP ACTIVE COMPOUNDS FROM FOOD PLANTS AND THEIR PROPERTIES AS ANTIMICROBIAL AND BIOCIDES (AGR/12) DOTTORANDA: CATERINA CALAMELLO Matr. n. R08189 TUTORS: Prof.ssa ANGELA BASSOLI Prof.ssa PAOLA SARDI COORDINATORE: Prof. DANIELE DAFFONCHIO Anno Accademico 2010-2011 To my beloved family Contents 1 INTRODUCTION 3 1.1 Natural products in crop protection 3 1.1.1 Crop protection, a historical overview 4 1.1.2 Problems and limitations of agrochemicals 8 1.1.3 Agrochemicals from natural compounds 9 1.1.3.1 Natural products for plant pathogen management 10 1.1.3.2 Natural products for insect management 16 1.1.3.3 Natural products for weed management 20 1.2 TRP active natural compounds 24 1.2.1 TRP family overview 24 1.2.2 Mammalian TRP
    [Show full text]
  • And Type the TITLE of YOUR WORK in All Caps
    THE EFFECTS OF AZADIRACHTIN, METHOXYFENOZIDE, AND TEBUFENOZIDE ON THE YELLOW FEVER MOSQUITO, AEDES AEGYPTI by DANIEL JACK USRY (Under the Direction of Mark R. Brown) ABSTRACT Mosquito control is important to control the spread of pathogens which are transmitted by the bites of infected mosquitoes. To this end, research has focused on insecticides that are insect specific and have relatively low impact on the environment. Here I report on the plant botanical azadirachtin and the ecdysone agonists methoxyfenozide and tebufenozide. Overall, my results suggest that azadirachtin and tebufenozide are not suitable for use as insecticides, even though they cause mortality at high doses. Methoxyfenozide kills mosquitoes at high doses and reduces the number of eggs oviposited by females. Additionally, methoxyfenozide is able to stimulate egg production in non-bloodfed females. However, it is not able to cause eggs to develop all the way to oviposition. INDEX WORDS: Aedes aegypti, Azadirachtin, Methoxyfenozide, Tebufenozide THE EFFECTS OF AZADIRACHTIN, METHOXYFENOZIDE, AND TEBUFENOZIDE ON THE YELLOW FEVER MOSQUITO, AEDES AEGYPTI by DANIEL JACK USRY B.S., Georgia Southern University, 2009 A Thesis Submitted to the Graduate Faculty of The University of Georgia in Partial Fulfillment of the Requirements for the Degree MASTER OF SCIENCE ATHENS, GEORGIA 2012 © 2012 Daniel Jack Usry All Rights Reserved THE EFFECTS OF AZADIRACHTIN, METHOXYFENOZIDE, AND TEBUFENOZIDE ON THE YELLOW FEVER MOSQUITO, AEDES AEGYPTI by DANIEL JACK USRY Major Professor: Mark R. Brown Committee: Michael R. Strand Donald E. Champagne Electronic Version Approved: Maureen Grasso Dean of the Graduate School The University of Georgia August 2012 DEDICATION I dedicate this to my family.
    [Show full text]
  • Biological Insecticides for the Control of the Cigarette Beetle (Lasioderma Serricorne) and the Tobacco Moth (Ephestia Elute/La)
    Beitdge zurTabakforschung International· Volume 17 ·No 2 ·September 1997 Alternative Forms of Storage Protection: Biological Insecticides for the Control of the Cigarette Beetle (Lasioderma serricorne) and the Tobacco Moth (Ephestia elute/la) by Hans-Jochen Eberhardt Verband der Cigarettenindustrie KOnigswinterer Strafle 550 D-53227 Bonn SUMMARY thuringiensis (B.t.) endotoxin preparations. The insecti­ cidal activity of certain B.t. kurstaki or B.t. tenebrionis A large number of physical and chemical pest control strains against the tobacco moth and cigarette beetle has methods have been developed up to now in order to already been sufficiently documented. Recent research ensure the effective protection of stored tobacco and has also looked at the possibility of using natural sub­ tobacco products. These methods include the use of fu­ stances, such as extracts from the neem tree (Azadirachta migants and insecticides, treatment of baled tobacco in indica), as storage protectants. Another very promising cold chambers, monitoring the extent of infestation with development is based on the autodissemination pheromone traps and, the most important preventive technique, whereby a modified pheromone trap in com­ measure of all, maintaining a strict programme to ensure bination with entomopathogenic viruses or fungi could hygienic storage conditions. To date, very little serious help to achieve a dramatic increase in mortality rates in consideration has been given to the practical use of bio­ stored tobacco pests. The chemical and biological proper­ logically based insecticides in storage pest control. Com­ ties of these bioinsecticides will be presented here and pared with synthetically-produced pesticides, however, their advantages and disadvantages as storage protectants they often have the advantage of being significantly less for tobacco discussed.
    [Show full text]
  • Chemical Class Rotations for Control of Bemisia Tabaci
    Research Article Received: 18 November 2013 Accepted article published: 24 January 2014 Published online in Wiley Online Library: (wileyonlinelibrary.com) DOI 10.1002/ps.3736 Chemical class rotations for control of Bemisia tabaci (Hemiptera: Aleyrodidae) on poinsettia and their effect on cryptic species population composition Cindy L McKenzie,a* Vivek Kumar,b Cristi L Palmer,c Ronald D Oettingd and Lance S Osborneb Abstract BACKGROUND: Bemisia tabaci, a polyphagous insect with over 900 host plants, is an effective vector of more than 100 plant viruses. Being highly fecund, B. tabaci has the potential to develop insecticide resistance rapidly, as demonstrated by reports of use failures with MEAM1 and MED cryptic species (commonly known as biotypes B and Q respectively). Insecticide resistance management is a key component of pest management practices. The research herein studied season-long rotational management programs on poinsettia and their impact on the ratio of MEAM1:MED cryptic species in the surviving treated populations. RESULTS: In all four experiments, only three of the treatments completely eliminated the adult or immature whiteflies, but all significantly reduced the populations. Out of 18 active ingredients tested, dinotefuran (applied as a soil drench) was the most efficacious against both MEAM1 and MED cryptic species compared with the other chemical or biorational insecticides evaluated. Reduced susceptibility of MED was reported against a variety of treatment regimes. CONCLUSION: Rotations can be used to manage MEAM1 and MED cryptic species and maintain a very low population level or completely eliminate Bemisia on poinsettia. It is imperative to continue to emphasize the importance of rotating among different modes of action in pest management programs in order to retain effective chemistries for as long as possible in the market place.
    [Show full text]