Effect of Tetra-Nortriterpenoid on the Fourth and Fifth Larval Instar of Spodoptera Littoralis
Total Page:16
File Type:pdf, Size:1020Kb
Load more
Recommended publications
-
Egyptian Cottonworm Spodoptera Littoralis
Michigan State University’s invasive species factsheets Egyptian cottonworm Spodoptera littoralis The Egyptian cottonworm is a highly polyphagous defoliator of many cultivated plants. Its accidental introduction to Michigan may be a particular concern to vegetable, fruit and ornamental industries. Michigan risk maps for exotic plant pests. Other common names African cotton leafworm, Egyptian cotton leafworm, Mediterranean Brocade moth Systematic position Insecta > Lepidoptera > Noctuidae > Spodoptera littoralis (Boisduval) Global distribution Adult. (Photo: O. Heikinheimo, Bugwood.org) Most parts of Africa. Southern or Mediterranean Europe: Greece, Italy, Malta, Portugal, Spain. Middle East: Israel, Syria, Turkey. Quarantine status The Egyptian cottonworm has been intercepted at least 65 times at U.S. ports of entry since 2004 (Ellis 2004). This insect has been detected in greenhouses in Ohio but was subsequently eradicated (Passoa 2008). It is listed as an exotic organism of high invasive risk to the United States (USDA-APHIS 2008). Plant hosts Larva. (Photo: Biologische Bundesanstalt für Land- und Forstwirtschaft Archive, A wide host range of at least 87 plant species over Biologische Bundesanstalt für Land- und Forstwirtschaft, Bugwood.org) 40 plant families including many vegetable, fruit and ornamental crops. Some examples include alfalfa, white oblique bands; hind wings pale with brown margins. apples, avocados, beets, bell peppers, cabbage, carrots, Larva: Body up to 45 mm long and hairless; newly cauliflower, cereal, clover, corn, cotton, cucurbits, hatched larvae are blackish-grey to dark green; mature eggplants, figs, geraniums, grapes, lettuce, oaks, okra, larvae are reddish-brown or whitish-yellow; larvae have onions, peas, peanuts, pears, pines, poplars, potatoes, dark and light longitudinal bands and two dark, semi- radish, roses, soybeans, spinach, sunflowers, taro, tea, circular spots on their back. -
Impact Assessment of Pesticides Applied in Vegetable-Producing Areas in the Saharan Zone: the Case of Burkina Faso
Impact Assessment of Pesticides Applied in Vegetable-Producing Areas in the Saharan Zone: the Case of Burkina Faso THÈSE NO 8167 (2017) PRÉSENTÉE LE 19 DÉCEMBRE 2017 À LA FACULTÉ DE L'ENVIRONNEMENT NATUREL, ARCHITECTURAL ET CONSTRUIT GROUPE CEL PROGRAMME DOCTORAL EN GÉNIE CIVIL ET ENVIRONNEMENT ÉCOLE POLYTECHNIQUE FÉDÉRALE DE LAUSANNE POUR L'OBTENTION DU GRADE DE DOCTEUR ÈS SCIENCES PAR Edouard René Gilbert LEHMANN acceptée sur proposition du jury: Prof. C. Pulgarin, président du jury Dr L. F. De Alencastro, directeur de thèse Prof. R. Zanella, rapporteur Prof. B. Schiffers, rapporteur Dr B. Ferrari, rapporteur Suisse 2017 Acknowledgements Acknowledgements With these words I would like to thank everyone that contributed to the successful delivery of this Doctoral Thesis, and I would like to start with the Swiss Agency for Development and Cooperation (SDC) for funding this research project through the program 3E and for giving us the opportunity to be part of it. I would like especially to thank Dr. Luiz Felippe de Alencastro for the confidence that he has placed in me when giving me the incredible opportunity to participate in this research project. Thank you for coming to me five years ago, that day you probably changed my life. I did a lot and learn a great deal. Thank you for always attentively listening to my endless speeches, for your endless enthusiasm and unwavering support. You guided me through this project and made it a very enriching experience for me, you were a true mentor in every aspect. I know this was a “once in a lifetime” experience and I can never thank you enough. -
Plant-To-Plant Communication Triggered by Systemin Primes Anti
www.nature.com/scientificreports OPEN Plant-to-plant communication triggered by systemin primes anti- herbivore resistance in tomato Received: 10 February 2017 Mariangela Coppola1, Pasquale Cascone2, Valentina Madonna1, Ilaria Di Lelio1, Francesco Accepted: 27 October 2017 Esposito1, Concetta Avitabile3, Alessandra Romanelli 4, Emilio Guerrieri 2, Alessia Vitiello1, Published: xx xx xxxx Francesco Pennacchio1, Rosa Rao1 & Giandomenico Corrado1 Plants actively respond to herbivory by inducing various defense mechanisms in both damaged (locally) and non-damaged tissues (systemically). In addition, it is currently widely accepted that plant- to-plant communication allows specifc neighbors to be warned of likely incoming stress (defense priming). Systemin is a plant peptide hormone promoting the systemic response to herbivory in tomato. This 18-aa peptide is also able to induce the release of bioactive Volatile Organic Compounds, thus also promoting the interaction between the tomato and the third trophic level (e.g. predators and parasitoids of insect pests). In this work, using a combination of gene expression (RNA-Seq and qRT-PCR), behavioral and chemical approaches, we demonstrate that systemin triggers metabolic changes of the plant that are capable of inducing a primed state in neighboring unchallenged plants. At the molecular level, the primed state is mainly associated with an elevated transcription of pattern -recognition receptors, signaling enzymes and transcription factors. Compared to naïve plants, systemin-primed plants were signifcantly more resistant to herbivorous pests, more attractive to parasitoids and showed an increased response to wounding. Small peptides are nowadays considered fundamental signaling molecules in many plant processes and this work extends the range of downstream efects of this class of molecules to intraspecifc plant-to-plant communication. -
Activity and Biological Effects of Neem Products Against Arthropods of Medical and Veterinary Importance
Journal of the American Mosquito Control Association' 15(2):133-152, 1999 Copyright O 1999 by the American Mosquito Control Association, Inc. ACTIVITY AND BIOLOGICAL EFFECTS OF NEEM PRODUCTS AGAINST ARTHROPODS OF MEDICAL AND VETERINARY IMPORTANCE MIR S. MULLA ENN TIANYUN SU Depdrtment of Entomobgy, University of Califomia, Riverside, CA 92521-O314 ABSTRACT. Botanical insecticides are relatively safe and degradable, and are readily available sources of biopesticides. The most prominent phytochemical pesticides in recent years are those derived from neem trees, which have been studiedlxtensively in the fields of entomology and phytochemistry, and have uses for medicinal and cosmetic purposes. The neem products have been obtained from several species of neem trees in the family Meliaceae. Sii spicies in this family have been the subject of botanical pesticide research. They are ATadirachta indica A. Jrtss, Azadirachta excelsa Jack, Azadirachta siamens Valeton, Melia azedarach L., Melia toosendan Sieb. and Z1cc., and Melia volkensii Giirke. The Meliaceae, especially A. indica (Indian neem tree), contains at least 35 biologically active principles. Azadirachtin is the predominant insecticidal active ingredient in the seed, leaves, and other parts of the neem tree. Azadirachtin and other compounds in neem products exhibit various modes of action against insects such as antifeedancy, growth regulation, fecundity suppression and sterilization, oviposition repellency or attractancy, changes in biological fitness, and blocking development of vector-borne -
A Pesticide Decision-Making Guide to Protect Pollinators in Tree Fruit Orchards
A Pesticide Decision-Making Guide to Protect Pollinators in Tree Fruit Orchards 2018 Edition By Maria van Dyke, Emma Mullen, Dan Wixted, and Scott McArt Pollinator Network at Cornell, 2018 Cornell University, Department Of Entomology Contents Choosing lower-risk pesticides for pollinators in New York orchards 1 How to use this guide 3 Understanding the terms in this guide 4 EPA Pesticide toxicity standards 4 Synergistic Interactions 4 Systemic Pesticides 4 Adjuvants and/or inert ingredients 5 Tying it all together: adopting an Integrated Pest and Pollinator Management (IPPM) approach 5 IPPM: Putting the “pollinator” in IPM: 6 Table 1: Product formulations and their active ingredients 7 Table 2: Pesticide synergies and acute, chronic, and sublethal toxicities for honey bees and other pollinators 9 Literature cited 24 Appendix A: Pollination contract ______________________________________________________ 28 Acknowledgments This research and development of this guide was supported by the New York State Environmental Protection Fund and New York Farm Viability Institute grant FOC 17-001. The expert advice and consultation provided by Dan Wixted of the Cornell Pesticide Management Education Program was supported by the Crop Protection and Pest Management Extension Implementation Program [grant no. 2017-70006-27142/project accession no. 1014000] from the USDA National Institute of Food and Agriculture. 1 Choosing lower-risk pesticides for pollinators in New York orchards Growers recognize the vital role of pollination and understand that managing pests while protecting pollinators can be a balancing act. both components are essential for a successful harvest, yet they can sometimes be in conflict with one another. Pollinators (mostly bees) are busy pollinating orchard blossoms at the same time growers need to be managing specific pests and diseases. -
Can Spiders Effectively Control Pest Populations?
ISSN 1070–1524 Spider Predation in Agroecosystems: Can Spiders Effectively Control Pest Populations? Darlene Maloney Francis A. Drummond and Randy Alford Technical Bulletin 190 August 2003 MAINE AGRICULTURAL AND FOREST EXPERIMENT STATION The University of Maine Spider Predation in Agroecosystems: Can Spiders Effectively Control Pest Populations? Darlene Maloney Graduate Student Francis A. Drummond Professor and Randy Alford Professor Department of Biological Sciences The University of Maine Orono ME 04469 The Maine Agricultural and Forest Experiment Station provides equal program opportunities without regard to race, age, sex or preference, creed, national origin, or disability. CONTENTS SPIDERS AS PREDATORS IN AGRICULTURAL ECOSYSTEMS ......................................................................... 5 REDUCTION OF INSECT PEST DENSITIES BY SPIDERS ................................................................................... 6 Top-Down Effects .................................................................... 8 Wasteful Killing ...................................................................... 12 Spider Assemblages............................................................... 13 Prey Specialization ................................................................ 14 Role of the Generalist Spider ............................................... 16 Functional Response ............................................................. 17 Numerical Response ............................................................. 20 EFFECTS -
Measuring Juvenile Hormone and Ecdysteroid Titers in Insect
Measuring juvenile hormone and ecdysteroid titers in insect haemolymph simultaneously by LC-MS: The basis for determining the effectiveness of plant-derived alkaloids as insect growth regulators Dissertation zur Erlangung des Doktorgrades der Fakultät für Biologie, Chemie und Geowissenschaften der Universität Bayreuth vorgelegt von Stephanie Westerlund Chemikerin (M.Sc.) aus Dinkelsbühl Bayreuth, 2004 Die vorliegende Arbeit wurde in der Zeit von April 2001 bis März 2004 unter der Leitung von Herrn Prof. Dr. Klaus H. Hoffmann am Lehrstuhl Tierökologie I und Herrn Prof. Dr. Karl-Heinz Seifert am Lehrstuhl Organische Chemie I/2 der Universität Bayreuth angefertigt. Die Untersuchungen wurden im Rahmen des Graduiertenkollegs 678 „Ökologische Bedeutung von Wirk- und Signalstoffen bei Insekten – von der Struktur zur Funktion“ durchgeführt und durch Mittel der Deutschen Forschungsgemeinschaft (DFG) gefördert bzw. durch die Frauenförderung aus dem HWP-Programm „Chancengleichheit für Frauen in Forschung und Lehre“. Vollständiger Abdruck der von der Fakultät für Biologie, Chemie und Geowissenschaften der Universität Bayreuth genehmigten Dissertation zur Erlangung des akademischen Grades Doktor der Naturwissenschaften (Dr. rer. nat.). Tag der Einreichung: 21. April 2004 Tag des Rigorosums: 7. Juli 2004 Prüfungsausschuss: Prof. Dr. K. Dettner Prof. Dr. K. H. Hoffmann (erster Gutachter) Prof. Dr. E. Matzner PD Dr. C. Reinbothe (Vorsitzende) Prof. Dr. K. Seifert (zweiter Gutachter) Dem Andenken meiner Oma Schade niemandem; sondern hilf allen, so gut -
(12) Patent Application Publication (10) Pub. No.: US 2012/0088667 A1 Williams Et Al
US 20120088667A1 (19) United States (12) Patent Application Publication (10) Pub. No.: US 2012/0088667 A1 Williams et al. (43) Pub. Date: Apr. 12, 2012 (54) SAFENINGAGENT (30) Foreign Application Priority Data (75) Inventors: Richard Williams, Colchester Apr. 7, 2009 (EP) .................................. O9447OO9.3 (GB); Peter Roose, Ghent (BE): Publication Classification Johan Josef De Saegher, Ghent (51) Int. Cl. (BE) AOIN 25/32 (2006.01) AOIP 2L/00 (2006.01) (73) Assignee: TAMINCO, NAAMLOZE AOIPI3/02 (2006.01) VENNOOTSCHAP, Ghent (BE) AOIP3/00 (2006.01) AOIP 7/04 (2006.01) (21) Appl. No.: 13/263,674 (52) U.S. Cl. ......... 504/105:504/112:504/104:504/108; 504/110 (22) PCT Fled: Apr. 7, 2010 (57) ABSTRACT A compound selected from a composition comprising an (86) PCT NO.: PCT/B10/O1034 auxin, an auxin precursor, an auxin metabolite or a derivative of said auxin, auxin precursor or auxin metabolite and S371 (c)(1), acetaminophen or a derivative thereof for use as a plant (2), (4) Date: Dec. 27, 2011 safener. NH, NH NH Br O- O OH NH H N boc Br c. CF OMe S. OMe Patent Application Publication Apr. 12, 2012 Sheet 1 of 16 US 2012/0088667 A1 FIG. 1(a) ON OH On-NHH O OH Nul OH ". Br O OH O NH H N boc CF OMe OMe Patent Application Publication Apr. 12, 2012 Sheet 2 of 16 US 2012/0088667 A1 O OH O OH H 1c. N CN C O r O OH O OH H S1 N DO Nin 1S ON O OH O OH Patent Application Publication Apr. -
A Pesticide Decision-Making Guide to Protect Pollinators in Landscape
A Pesticide Decision-Making Guide to Protect Pollinators in Landscape, Ornamental and Turf Management 2019 Edition By Maria van Dyke, Emma Mullen, Dan Wixted, and Scott McArt Pollinator Network at Cornell, 2018 Cornell University, Department Of Entomology Download this guide for free from: https://pollinator.cals.cornell.edu/resources/grower-resources/ Contents Choosing lower-risk pesticides for pollinators in landscape, ornamental & turf management ____ 1 How to use this guide 3 Understanding the terms in this guide 4 EPA Pesticide toxicity standards 4 Synergistic Interactions 4 Systemic Pesticides 4 Adjuvants and/or inert ingredients 5 Tying it all together: adopting an Integrated Pest and Pollinator Management (IPPM) approach 5 IPPM: Putting the “pollinator” in IPM: 6 Table 1: Product formulations and their active ingredients 7 Table 2: Pesticide synergies and acute, chronic, and sublethal toxicities for honey bees and other pollinators 10 Literature cited 25 Appendix A: Pollination contract ______________________________________________________ 29 Acknowledgments This research and development of this guide was supported by the New York State Environmental Protection Fund and New York Farm Viability Institute grant FOC 17-001. The expert advice and consultation provided by Dan Wixted of the Cornell Pesticide Management Education Program was supported by the Crop Protection and Pest Management Extension Implementation Program [grant no. 2017-70006-27142/project accession no. 1014000] from the USDA National Institute of Food and Agriculture. 1 Choosing lower-risk pesticides for pollinators in landscape, ornamental & turf management Managing pests on ornamentals, in landscapes, and in nurseries while protecting pollinators can be a balancing act. Pollinators (mostly bees) are busy pollinating blossoms in nurseries and landscapes at the same time growers and landscapers need to be managing specific pests and diseases. -
Pesticidal Plants
Pesticidal Plants • Philip C. • Philip Stevenson, R. Steven Belmain and Murray B. Isman Pesticidal Plants From Smallholder Use to Commercialisation Edited by Philip C. Stevenson, Steven R. Belmain and Murray B. Isman Printed Edition of the Special Issue Published in Plants www.mdpi.com/journal/plants Pesticidal Plants Pesticidal Plants From Smallholder Use to Commercialisation Special Issue Editors Philip C. Stevenson Steven R. Belmain Murray B. Isman MDPI • Basel • Beijing • Wuhan • Barcelona • Belgrade Special Issue Editors Philip C. Stevenson Steven R. Belmain Murray B. Isman University of Greenwich University of Greenwich University of British Columbia UK UK Canada Editorial Office MDPI St. Alban-Anlage 66 4052 Basel, Switzerland This is a reprint of articles from the Special Issue published online in the open access journal Plants (ISSN 2223-7747) from 2019 to 2020 (available at: https://www.mdpi.com/journal/plants/special issues/Pesticidal). For citation purposes, cite each article independently as indicated on the article page online and as indicated below: LastName, A.A.; LastName, B.B.; LastName, C.C. Article Title. Journal Name Year, Article Number, Page Range. ISBN 978-3-03928-788-8 (Pbk) ISBN 978-3-03928-789-5 (PDF) Cover image courtesy of Philip C. Stevenson. c 2020 by the authors. Articles in this book are Open Access and distributed under the Creative Commons Attribution (CC BY) license, which allows users to download, copy and build upon published articles, as long as the author and publisher are properly credited, which ensures maximum dissemination and a wider impact of our publications. The book as a whole is distributed by MDPI under the terms and conditions of the Creative Commons license CC BY-NC-ND. -
The Rice-Cotton Cutworm Spodoptera Litura
The rice-cotton cutworm Spodoptera litura Photo: Natasha Wright, Florida Department of Agriculture and Consumer Services, Bugwood.org, #5190079 1 The Rice-cotton Cutworm • Generalist plant-feeding moth • Not yet established in the U.S. • Potentially high economic impact • Also known as: tobacco cutworm, cotton leafworm, cluster caterpillar, oriental leafworm moth and tropical armyworm Photo: M. Shepard, G. R.Carner, and P.A.C. Ooi, Insects & their Natural Enemies Associated with Vegetables & Soybean in Southeast Asia, Bugwood.org, #5368051 The rice-cotton cutworm (Spodoptera litura) is a polyphagous (feeds on many foods) pest of over 100 different host plants. It has not established in the U.S. (yet), but it is believed that it would cause a large economic impact. At the very least, pest establishment could result in increased insecticide use. It is also known as cluster caterpillar, common cutworm, cotton leafworm, tobacco cutworm, tobacco caterpillar, oriental leafworm moth, rice cutworm, and tropical armyworm. These common names derive from the different geographical regions in which this pest is found and the host plants on which they are found. 2 Hosts include: • Citrus • Crucifers • Soybeans • Onions • Potatoes • Sugarbeets • Sweet potatoes oranges • Cotton • Cauliflower • Apple cotton • Strawberry • Rice • Sugarcane • Roses • Peanuts • Tomato sugar cane tomatoes All photos licensed by Adobe Stock Photos This pest is a generalist on over 100 hosts. It can attack all citrus and their hybrids (Citrus spp.) and all crucifers (Brassica spp.). The host list includes (but is not limited to): Abelmoschus esculentus (okra) Allium cepa (onion) Begonia spp. Beta vulgaris var. saccharifera (sugarbeet) Cicer arietinum (chickpea) Coffea sp. -
The Effects of Spinosad on Beneficial Insects and Mites Used in Integrated Pest Manage- Ment Systems in Greenhouses Miles, M
IOBC / WPRS Working Group „Pesticides and Beneficial Organisms“ OILB / SROP Groupe de Travail „Pesticides et Organismes Utiles“ Proceedings of the meeting at Dębe, Poland 27th – 30th September 2005 editors: Heidrun Vogt & Kevin Brown IOBC wprs Bulletin Bulletin OILB srop Vol. 29 (10) 2006 The content of the contributions is in the responsibility of the authors The IOBC/WPRS Bulletin is published by the International Organization for Biological and Integrated Control of Noxious Animals and Plants, West Palearctic Regional Section (IOBC/WPRS) Le Bulletin OILB/SROP est publié par l‘Organisation Internationale de Lutte Biologique et Intégrée contre les Animaux et les Plantes Nuisibles, section Regionale Ouest Paléarctique (OILB/SROP) Copyright: IOBC/WPRS 2006 The Publication Commission of the IOBC/WPRS: Horst Bathon Luc Tirry Federal Biological Research Center University of Gent for Agriculture and Forestry (BBA) Laboratory of Agrozoology Institute for Biological Control Department of Crop Protection Heinrichstr. 243 Coupure Links 653 D-64287 Darmstadt (Germany) B-9000 Gent (Belgium) Tel +49 6151 407-225, Fax +49 6151 407-290 Tel +32-9-2646152, Fax +32-9-2646239 e-mail: [email protected] e-mail: [email protected] Address General Secretariat: Dr. Phili ppe C. Nicot INRA – Unité de Pathologie Végétale Domaine St Maurice - B.P. 94 F-84143 Monfavet Cedex France ISBN 92-9067-193-7 http://www.iobc-wprs.org Preface This Bulletin contains the contributions presented at the meeting of the IOBC WG „Pesticides and Beneficial Organisms“ held in Dębe near Warsaw, Poland, from 27th to 30th September 2005, in the Training Centre of the Ministry of Environmental Protection.