Significance of Polypyrimidine Tract–Binding Protein 1 Expression In

Total Page:16

File Type:pdf, Size:1020Kb

Significance of Polypyrimidine Tract–Binding Protein 1 Expression In Published OnlineFirst April 22, 2015; DOI: 10.1158/1535-7163.MCT-14-0142 Cancer Biology and Signal Transduction Molecular Cancer Therapeutics Significance of Polypyrimidine Tract–Binding Protein 1 Expression in Colorectal Cancer Hidekazu Takahashi1, Junichi Nishimura1, Yoshinori Kagawa1,2, Yoshihiro Kano3, Yusuke Takahashi1,4, Xin Wu1, Masayuki Hiraki1, Atsushi Hamabe1, Masamitsu Konno3, Naotsugu Haraguchi1, Ichiro Takemasa1, Tsunekazu Mizushima1, Masaru Ishii2, Koshi Mimori4, Hideshi Ishii3, Yuichiro Doki1, Masaki Mori1, and Hirofumi Yamamoto1 Abstract Polypyrimidine tract–binding protein (PTBP1) is an RNA- observed that PTBP1 affects cell invasion, which was partially binding protein with various molecular functions related to correlated to CD44 splicing, and this correlation was also RNA metabolism and a major repressive regulator of alternative confirmed in clinical samples. PTBP1 expression also affected splicing, causing exon skipping in numerous alternatively anchorage-independent growth in colorectal cancer cell lines. spliced pre-mRNAs. Here, we have investigated the role of PTBP1 expression also affected cell proliferation. Using time- PTBP1 in colorectal cancer. PTBP1 expression levels were sig- lapse imaging analysis, PTBP1 was implicated in prolonged nificantly overexpressed in cancerous tissues compared with G2–M phase in HCT116 cells. As for the mechanism of pro- corresponding normal mucosal tissues. We also observed that longed G2–M phase in HCT116 siPTBP1 cells, Western blotting PTBP1 expression levels, c-MYC expression levels, and PKM2: revealed that PTBP1 expression level was correlated to PKM1 ratio were positively correlated in colorectal cancer CDK11p58 expression level, which was reported to play an specimens. Moreover, PTBP1 expression levels were positively important role on progression to complete mitosis. These correlated to poor prognosis and lymph node metastasis. In findings indicated that PTBP1 is a potential therapeutic target analyses of colorectal cancer cells using siRNA for PTBP1, we for colorectal cancer. Mol Cancer Ther; 14(7); 1705–16. Ó2015 AACR. Introduction of colorectal cancer is essential for developing novel therapeutic strategies. Colorectal cancer is a leading cause of cancer-related death in Alternative splicing greatly affects protein levels and functions. the western world and is estimated to be one of the most Cancer-specific abnormal pre-mRNA splicing can affect tumor frequently diagnosed cancers; estimated new cases of colorectal initiation and promotion (4). Alternative RNA splicing can greatly cancer were 142,820 and corresponding expected mortality was affect protein levels and functions. In cancer, abnormal splicing 50,830 in the United States in 2013 (1). Although monoclonal often leads to cancer-promoting splice variants that are translated antibodies, including bevacizumab, an inhibitor of vascular into oncogenes or aberrant tumor suppressors (5). Normal splic- endothelial growth factor, and cetuximab, an epidermal growth ing patterns can be disrupted by either cis-acting mutations of factor receptor inhibitor (2, 3), are currently feasible as novel splicing regulatory elements (5). molecular-based therapies, many patients with colorectal cancer Increases in the splicing factor polypyrimidine tract–binding still die from disease recurrence, mainly because of liver metas- protein (PTBP1, also known as hnRNPI) that are associated with tasis. Therefore, further elucidation of the molecular mechanisms glioma malignancy could have similar oncogenic effects (6). PTBP1 has been reported to play a key role in pre-mRNA splicing in cancer. Actually, PTBP1 have a critical effect on pyruvate kinase 1Department of Gastroenterological Surgery, Osaka University Grad- (PKM) alternative splicing in glioma, and this splicing strongly uate School of Medicine, Osaka, Japan. 2Laboratory of Cellular influences cancer progression (7, 8). PTBP1 also has multiple Dynamics,WPI-Immunology Frontier Research Center, Osaka Univer- sity, Osaka, Japan. 3Department of Frontier-Science for Cancer and functions other than pre-mRNA splicing and affects glioma cell Chemotherapy, Graduate School of Medicine, Osaka, Japan. 4Depart- invasion (7). In ovarian cancer, PTBP1 levels correlate with the ment of Molecular and Cellular Biology, Division of Molecular and degree of malignancy (9). Higher amounts of PTBP1 occur in Surgical Oncology, Kyushu University, Medical Institute of Bioregula- advanced, as compared with benign, ovarian tumors, and PTBP1 tion, Ohita, Japan. increases when ovarian epithelial cells are immortalized (9). Note: Supplementary data for this article are available at Molecular Cancer Removal of PTBP1 from ovarian tumor cells makes cell less Therapeutics Online (http://mct.aacrjournals.org/). proliferated, anchorage-independent growth, and cell invasion. H. Takahashi and J. Nishimura share first authorship of this article. Moreover, PTBP1 can form complexes with focal adhesion-encod- Corresponding Author: Hirofumi Yamamoto, Department of Gastroenterolog- ing transcripts at the cell membrane, which might affect cell ical Surgery, Osaka University Graduate School of Medicine, Yamadaoka 2-2, spreading (10). When taken together, deregulation of PTBP1 Suita, Osaka 565-0871, Japan. Phone: 81-6-6879-3251; Fax: 81-6-6879-3259; could cause multiple changes in gene expression and translation E-mail: [email protected] to promote cancer and targeting PTBP1 might be a potential doi: 10.1158/1535-7163.MCT-14-0142 therapeutic target. However, few findings about PTBP1 have been Ó2015 American Association for Cancer Research. reported in colorectal cancers. www.aacrjournals.org 1705 Downloaded from mct.aacrjournals.org on September 26, 2021. © 2015 American Association for Cancer Research. Published OnlineFirst April 22, 2015; DOI: 10.1158/1535-7163.MCT-14-0142 Takahashi et al. Here, we studied the clinicopathologic significance of PTBP1 cancer at Osaka and Kyushu University as previously described expression and found that it was associated with lymph node (11). Briefly, after deparaffinization, antigen retrieval in citrate metastasis and invasion as well as with disease-free survival. We buffer (pH 6.0), and blocking according to standard protocols, evaluated the significance of other related factors, including the antigen–antibody reaction was carried out overnight at tumor invasion and proliferation abilities, which are directly 4C. Mouse monoclonal antibody against human PTBP1 involved in tumor malignant potentials. (H00005725-M01; Abnova) was used at 3 mg/mL concentration, as was anti-human carbonic anhydrase 9 (CAIX) antibody (3829- Materials and Methods 1; Epitomics) at a 1:250 dilution. For the enzyme antibody technique, the avidin–biotin–peroxidase method (Vectastain Patients and sample collection Elite ABC reagent kit; Vector) was used according to standard A total of 178 patients with colorectal cancer who underwent protocols. Nuclei were stained with hematoxylin. For immuo- surgical treatment at the Kyushu University (Beppu, Japan) and fluorescence evaluation, Alexa Fluor 488–conjugated goat anti- affiliated hospitals between 1992 and 2002 were enrolled in this mouse IgG (1:500) and Alexa Fluor 555–conjugated goat anti- study. Resected tumors and paired non–tumor tissue specimens rabbit IgG (Invitrogen; 1:1,000) were used as secondary antibo- were immediately taken from resected colons and placed in RNA dies. Nuclei were stained with 40,6-diamidino-2-phenylindole– later (Takara), embedded in Tissue Tek OCT medium (Sakura), or containing mounting medium (Invitrogen). frozen in liquid nitrogen and kept at À80 C until RNA extraction. The median follow-up period was 2.93 years. All data pertaining Assessment of tumor budding to the samples, including age, sex, tumor size and depth, lym- Tumor budding was estimated according to the definition phatic invasion, lymph node metastasis, vascular invasion, liver proposed by Ueno and colleagues (12). An isolated cancer cell metastasis, peritoneal dissemination, distant metastasis, clinical or a cluster composed of fewer than five cancer cells was defined as stage, and histologic grade, were taken from clinical and patho- tumor budding. The number of buddings was counted under a logic records. Written informed consent was obtained from all high-power field (Â200) in the invasive front area. patients in accordance with the guidelines approved by the Institutional Research Board. This study was conducted under the supervision of the ethical board of Kyushu University. Transfection of small interfering RNA The small interfering RNA (siRNA) for PTBP1 (Stealth Select RNAi, HSS143520) and negative control siRNA (Negative Control Cell culture Hi GC) were purchased from Invitrogen. siRNA for cMYC and The human colon cancer cell lines HCT116, DLD1, SW480, and negative control (siGENOME nontargeting siRNA) were pur- HT29 were obtained from the American Type Culture Collection chased from Thermo Scientific. Cells were transfected with siRNA in 2001. Stocks were prepared after passage 2 and stored in liquid in 20 nmol/L concentration using Lipofectamine RNAiMAX (Invi- nitrogen. All experiments were performed with cells of passage of trogen) according to the manufacturer's protocols. <8. These cell lines were authenticated by morphologic inspec- tion, short tandem repeat profiling, and Mycoplasma testing by the Invasion assay ATCC. Mycoplasma testing was done also by the authors. Cells were The invasion assay was performed using Transwell cell culture grown in
Recommended publications
  • The PTB Interacting Protein Raver1 Regulates A-Tropomyosin Alternative Splicing
    The EMBO Journal Vol. 22 No. 23 pp. 6356±6364, 2003 The PTB interacting protein raver1 regulates a-tropomyosin alternative splicing Natalia Gromak, Alexis Rideau, alternative splicing, can be achieved by activation or Justine Southby, A.D.J.Scadden, inhibition (Smith and ValcaÂrcel, 2000; Caceres and Clare Gooding, Stefan HuÈ ttelmaier1, Kornblihtt, 2002). Spliceosome assembly can be assisted Robert H.Singer1 and by additional interactions of `SR' splicing factors with Christopher W.J.Smith2 splicing enhancer sequences, which are commonly found within exons (Blencowe, 2000; Cartegni et al., 2002). SR Department of Biochemistry, University of Cambridge, 80 Tennis proteins have a number of distinct roles in splicing and 1 Court Road, Cambridge CB2 1GA, UK and Department of Anatomy have been characterized as both constitutive and alterna- & Structural Biology, Albert Einstein College of Medicine, 1300 Morris Park Avenue, Bronx, NY 10461, USA tive splicing factors (Manley and Tacke, 1996; Graveley, 2000). A number of negative regulators have been 2 Corresponding author identi®ed, many of which are members of the hetero- e-mail: [email protected] geneous nuclear ribonucleoprotein (hnRNP) family Regulated switching of the mutually exclusive exons 2 (Krecic and Swanson, 1999; Smith and ValcaÂrcel, 2000; and3ofa-tropomyosin (TM) involves repression of Dreyfuss et al., 2002). These proteins contain RNA- exon 3 in smooth muscle cells. Polypyrimidine tract- binding domains as well as various accessory domains, but binding protein (PTB) is necessary but not suf®cient they do not contain the arginine-serine rich domains for regulation of TM splicing. Raver1 was identi®ed in characteristic of the SR family.
    [Show full text]
  • An Exon That Prevents Transport of a Mature Mrna
    Proc. Natl. Acad. Sci. USA Vol. 96, pp. 3813–3818, March 1999 Genetics An exon that prevents transport of a mature mRNA MARGARET A. MACMORRIS*, DIEGO A. R. ZORIO*†, AND THOMAS BLUMENTHAL*‡ *Department of Biochemistry and Molecular Genetics, University of Colorado Health Sciences Center, Denver, CO 80262; and †Department of Biology, Indiana University, Bloomington, IN 47405 Communicated by William B. Wood III, University of Colorado, Boulder, CO, January 25, 1999 (received for review November 18, 1998) ABSTRACT In Caenorhabditis elegans, pre-mRNA for the recognizes (6). Here we show that uaf-1 exon 3-containing essential splicing factor U2AF65 sometimes is spliced to pro- RNA is not subject to Smg-mediated decay in spite of its duce an RNA that includes an extra 216-bp internal exon, exon containing a PTC. Although it is not yet understood how the 3. Inclusion of exon 3 inserts an in-frame stop codon, yet this components of the pathway act to recognize and degrade RNA is not subject to SMG-mediated RNA surveillance. To aberrant mRNAs, Smg is likely to operate at the site of protein test whether exon 3 causes RNA to remain nuclear and thereby synthesis. Because the yeast homolog of SMG-2, UPF1, has escape decay, we inserted it into the 3* untranslated region of been localized to the cytoplasm at the site of polyribosomes a gfp reporter gene. Although exon 3 did not affect accumu- (7), an mRNA that fails to leave the nucleus might well be lation or processing of the mRNA, it dramatically suppressed unaffected by the Smg pathway.
    [Show full text]
  • Supplementary Methods
    Supplementary methods Human lung tissues and tissue microarray (TMA) All human tissues were obtained from the Lung Cancer Specialized Program of Research Excellence (SPORE) Tissue Bank at the M.D. Anderson Cancer Center (Houston, TX). A collection of 26 lung adenocarcinomas and 24 non-tumoral paired tissues were snap-frozen and preserved in liquid nitrogen for total RNA extraction. For each tissue sample, the percentage of malignant tissue was calculated and the cellular composition of specimens was determined by histological examination (I.I.W.) following Hematoxylin-Eosin (H&E) staining. All malignant samples retained contained more than 50% tumor cells. Specimens resected from NSCLC stages I-IV patients who had no prior chemotherapy or radiotherapy were used for TMA analysis by immunohistochemistry. Patients who had smoked at least 100 cigarettes in their lifetime were defined as smokers. Samples were fixed in formalin, embedded in paraffin, stained with H&E, and reviewed by an experienced pathologist (I.I.W.). The 413 tissue specimens collected from 283 patients included 62 normal bronchial epithelia, 61 bronchial hyperplasias (Hyp), 15 squamous metaplasias (SqM), 9 squamous dysplasias (Dys), 26 carcinomas in situ (CIS), as well as 98 squamous cell carcinomas (SCC) and 141 adenocarcinomas. Normal bronchial epithelia, hyperplasia, squamous metaplasia, dysplasia, CIS, and SCC were considered to represent different steps in the development of SCCs. All tumors and lesions were classified according to the World Health Organization (WHO) 2004 criteria. The TMAs were prepared with a manual tissue arrayer (Advanced Tissue Arrayer ATA100, Chemicon International, Temecula, CA) using 1-mm-diameter cores in triplicate for tumors and 1.5 to 2-mm cores for normal epithelial and premalignant lesions.
    [Show full text]
  • Proteomics Analysis of Cellular Proteins Co-Immunoprecipitated with Nucleoprotein of Influenza a Virus (H7N9)
    Article Proteomics Analysis of Cellular Proteins Co-Immunoprecipitated with Nucleoprotein of Influenza A Virus (H7N9) Ningning Sun 1,:, Wanchun Sun 2,:, Shuiming Li 3, Jingbo Yang 1, Longfei Yang 1, Guihua Quan 1, Xiang Gao 1, Zijian Wang 1, Xin Cheng 1, Zehui Li 1, Qisheng Peng 2,* and Ning Liu 1,* Received: 26 August 2015 ; Accepted: 22 October 2015 ; Published: 30 October 2015 Academic Editor: David Sheehan 1 Central Laboratory, Jilin University Second Hospital, Changchun 130041, China; [email protected] (N.S.); [email protected] (J.Y.); [email protected] (L.Y.); [email protected] (G.Q.); [email protected] (X.G.); [email protected] (Z.W.); [email protected] (X.C.); [email protected] (Z.L.) 2 Key Laboratory of Zoonosis Research, Ministry of Education, Institute of Zoonosis, Jilin University, Changchun 130062, China; [email protected] 3 College of Life Sciences, Shenzhen University, Shenzhen 518057, China; [email protected] * Correspondence: [email protected] (Q.P.); [email protected] (N.L.); Tel./Fax: +86-431-8879-6510 (Q.P. & N.L.) : These authors contributed equally to this work. Abstract: Avian influenza A viruses are serious veterinary pathogens that normally circulate among avian populations, causing substantial economic impacts. Some strains of avian influenza A viruses, such as H5N1, H9N2, and recently reported H7N9, have been occasionally found to adapt to humans from other species. In order to replicate efficiently in the new host, influenza viruses have to interact with a variety of host factors. In the present study, H7N9 nucleoprotein was transfected into human HEK293T cells, followed by immunoprecipitated and analyzed by proteomics approaches.
    [Show full text]
  • Polypyrimidine Tract Binding Proteins Are Essential for B Cell Development
    bioRxiv preprint doi: https://doi.org/10.1101/769141; this version posted September 14, 2019. The copyright holder for this preprint (which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under aCC-BY-NC 4.0 International license. Polypyrimidine Tract Binding Proteins are essential for B cell development Authors: Elisa Monzón-Casanova1,2*, Louise S. Matheson1, Kristina Tabbada3, Kathi Zarnack4, Christopher W. J. Smith2 and Martin Turner1* Affiliations: 1Laboratory of Lymphocyte Signalling and Development, The Babraham Institute, Cambridge, UK; 2Department of Biochemistry, University of Cambridge, Cambridge, UK; 3Next Generation Sequencing Facility, The Babraham Institute, Cambridge, UK; 4Buchmann Institute for Molecular Life Sciences, Goethe University Frankfurt, Frankfurt am Main, Germany *Corresponding authors: Elisa Monzón-Casanova ([email protected]) and Martin Turner ([email protected]) 1 bioRxiv preprint doi: https://doi.org/10.1101/769141; this version posted September 14, 2019. The copyright holder for this preprint (which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under aCC-BY-NC 4.0 International license. Abstract During B cell development, recombination of immunoglobulin loci is tightly coordinated with the cell cycle to avoid unwanted rearrangements of other genomic locations. Several factors have been identified that suppress proliferation in late-pre-B cells to allow light chain recombination. By comparison, our knowledge of factors limiting proliferation during heavy chain recombination at the pro-B cell stage is very limited.
    [Show full text]
  • Mrna Editing, Processing and Quality Control in Caenorhabditis Elegans
    | WORMBOOK mRNA Editing, Processing and Quality Control in Caenorhabditis elegans Joshua A. Arribere,*,1 Hidehito Kuroyanagi,†,1 and Heather A. Hundley‡,1 *Department of MCD Biology, UC Santa Cruz, California 95064, †Laboratory of Gene Expression, Medical Research Institute, Tokyo Medical and Dental University, Tokyo 113-8510, Japan, and ‡Medical Sciences Program, Indiana University School of Medicine-Bloomington, Indiana 47405 ABSTRACT While DNA serves as the blueprint of life, the distinct functions of each cell are determined by the dynamic expression of genes from the static genome. The amount and specific sequences of RNAs expressed in a given cell involves a number of regulated processes including RNA synthesis (transcription), processing, splicing, modification, polyadenylation, stability, translation, and degradation. As errors during mRNA production can create gene products that are deleterious to the organism, quality control mechanisms exist to survey and remove errors in mRNA expression and processing. Here, we will provide an overview of mRNA processing and quality control mechanisms that occur in Caenorhabditis elegans, with a focus on those that occur on protein-coding genes after transcription initiation. In addition, we will describe the genetic and technical approaches that have allowed studies in C. elegans to reveal important mechanistic insight into these processes. KEYWORDS Caenorhabditis elegans; splicing; RNA editing; RNA modification; polyadenylation; quality control; WormBook TABLE OF CONTENTS Abstract 531 RNA Editing and Modification 533 Adenosine-to-inosine RNA editing 533 The C. elegans A-to-I editing machinery 534 RNA editing in space and time 535 ADARs regulate the levels and fates of endogenous dsRNA 537 Are other modifications present in C.
    [Show full text]
  • Landscape of the Spliced Leader Trans-Splicing Mechanism In
    www.nature.com/scientificreports OPEN Landscape of the spliced leader trans-splicing mechanism in Schistosoma mansoni Received: 12 July 2017 Mariana Boroni1,2, Michael Sammeth 3,4, Sandra Grossi Gava 5, Natasha Andressa Accepted: 12 February 2018 Nogueira Jorge2, Andréa Mara Macedo1, Carlos Renato Machado1, Marina Moraes Mourão5 & Published: xx xx xxxx Glória Regina Franco1 Spliced leader dependent trans-splicing (SLTS) has been described as an important RNA regulatory process that occurs in diferent organisms, including the trematode Schistosoma mansoni. We identifed more than seven thousand putative SLTS sites in the parasite, comprising genes with a wide spectrum of functional classes, which underlines the SLTS as a ubiquitous mechanism in the parasite. Also, SLTS gene expression levels span several orders of magnitude, showing that SLTS frequency is not determined by the expression level of the target gene, but by the presence of particular gene features facilitating or hindering the trans-splicing mechanism. Our in-depth investigation of SLTS events demonstrates widespread alternative trans-splicing (ATS) acceptor sites occurring in diferent regions along the entire gene body, highlighting another important role of SLTS generating alternative RNA isoforms in the parasite, besides the polycistron resolution. Particularly for introns where SLTS directly competes for the same acceptor substrate with cis-splicing, we identifed for the frst time additional and important features that might determine the type of splicing. Our study substantially extends the current knowledge of RNA processing by SLTS in S. mansoni, and provide basis for future studies on the trans-splicing mechanism in other eukaryotes. In contrast to conventional splicing in cis, trans-splicing connects exons of two diferent primary RNA molecules tran- scribed from a priori unrelated genomic loci.
    [Show full text]
  • Identification of Proteins Involved in the Maintenance of Genome Stability
    Identification of Proteins Involved in the Maintenance of Genome Stability by Edith Hang Yu Cheng A thesis submitted in conformity with the requirements for the degree of Doctor of Philosophy Department of Biochemistry University of Toronto ©Copyright by Edith Cheng2015 Identification of Proteins Involved in the Maintenance of Genome Stability Edith Cheng Doctor of Philosophy Department of Biochemistry University of Toronto 2015 Abstract Aberrant changes to the genome structure underlie numerous human diseases such as cancers. The functional characterization ofgenesand proteins that maintain chromosome stability will be important in understanding disease etiology and developing therapeutics. I took a multi-faceted approach to identify and characterize genes involved in the maintenance of genome stability. As biological pathways involved in genome maintenance are highly conserved in evolution, results from model organisms can greatly facilitate functional discovery in humans. In S. cerevisiae, I identified 47 essential gene depletions with elevated levels of spontaneous DNA damage foci and 92 depletions that caused elevated levels of chromosome rearrangements. Of these, a core subset of 15 DNA replication genes demonstrated both phenotypes when depleted. Analysis of rearrangement breakpoints revealed enrichment at yeast fragile sites, Ty retrotransposons, early origins of replication and replication termination sites. Together, thishighlighted the integral role of DNA replicationin genome maintenance. In light of my findings in S. cerevisiae, I identified a list of 153 human proteins that interact with the nascentDNA at replication forks, using a DNA pull down strategy (iPOND) in human cell lines. As a complementary approach for identifying human proteins involved in genome ii maintenance, I usedthe BioID techniqueto discernin vivo proteins proximal to the human BLM- TOP3A-RMI1-RMI2 genome stability complex, which has an emerging role in DNA replication progression.
    [Show full text]
  • The Splicing Factor PTBP1 Promotes Expression of Oncogenic Splice Variants And
    Author Manuscript Published OnlineFirst on July 16, 2018; DOI: 10.1158/1078-0432.CCR-17-3850 Author manuscripts have been peer reviewed and accepted for publication but have not yet been edited. The splicing factor PTBP1 promotes expression of oncogenic splice variants and predicts poor prognosis in patients with non-muscle invasive bladder cancer Pamela Bielli1,2, Valentina Panzeri2,3,4, Rossano Lattanzio5,6, Simona Mutascio1,2, Marco Pieraccioli1,2, Elisabetta Volpe2, Vincenzo Pagliarulo7, Mauro Piantelli5, Antonella Giannantoni8; Savino M. Di Stasi9,10 and Claudio Sette2,4,10 1Department of Biomedicine and Prevention, University of Rome Tor Vergata, Rome, Italy; 2Fondazione Santa Lucia IRCCS, Rome, Italy; 3Department of science medical/chirurgic and translational medicine, University of Rome “Sapienza”, Rome, Italy; 4Institute of Human Anatomy and Cell Biology, Università Cattolica del Sacro Cuore, Rome, Italy; 5Department of Medical, Oral & Biotechnological Sciences, G. d'Annunzio University, Chieti, Italy; 6 Center of Excellence on Aging and Translational Medicine (CeSi-Met), G. d'Annunzio University, Chieti, Italy; 7Department of Emergency and Organ Transplantation, University Aldo Moro , Bari, Italy; 8Department of Surgical and Biomedical Sciences, University of Perugia, Perugia, Italy; 9Department of Experimental Medicine and Surgery, University of Rome Tor Vergata, Rome, Italy. 10These authors equally contributed to the work. Running title: PTBP1 is overexpressed in bladder cancer Keywords: PTBP1, alternative splicing, bladder cancer, risk factor, prognostic marker Conflict of interest statement: The Authors have no conflicts of interest to disclose. Financial Support: The research was supported by the Associazione Italiana Ricerca sul Cancro (AIRC; IG18790) and by Italian Ministry of Health “Ricerca Finalizzata 2011” (GR- 2011-02348423).
    [Show full text]
  • The Splicing Regulator PTBP1 Controls the Activity of the Transcription Factor
    1 The splicing regulator PTBP1 controls the activity of the 2 transcription factor Pbx1 during neuronal differentiation. 3 4 Anthony J Linares1, Chia-Ho Lin2, Andrey Damianov2, Katrina L Adams1,3,4, Bennett G 5 Novitch3,4, Douglas L Black2,4 6 1Molecular Biology Institute Graduate Program, University of California, Los Angeles; 2Department of 7 Microbiology, Immunology and Molecular Genetics, University of California, Los Angeles; 3Department of 8 Neurobiology, David Geffen School of Medicine at UCLA; 4Eli and Edythe Broad Center of Regenerative 9 Medicine and Stem Cell Research, David Geffen School of Medicine at UCLA, Los Angeles, United States. 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 1 27 ABSTRACT 28 29 The RNA-binding proteins PTBP1 and PTBP2 control programs of alternative splicing 30 during neuronal development. PTBP2 was found to maintain embryonic splicing patterns 31 of many synaptic and cytoskeletal proteins during differentiation of neuronal progenitor 32 cells (NPCs) into early neurons. However, the role of the earlier PTBP1 program in 33 embryonic stem cells (ESCs) and NPCs was not clear. We show that PTBP1 controls a 34 program of neuronal gene expression that includes the transcription factor Pbx1. We 35 identify exons specifically regulated by PTBP1 and not PTBP2 as mouse ESCs 36 differentiate into NPCs. We find that PTBP1 represses Pbx1 exon 7 and the expression 37 of the neuronal Pbx1a isoform in ESCs. Using CRISPR-Cas9 to delete regulatory 38 elements for exon 7, we induce Pbx1a expression in ESCs, finding that this activates 39 transcription of neuronal genes.
    [Show full text]
  • Disruption of Nucleocytoplasmic Trafficking As a Cellular Senescence
    www.nature.com/emm ARTICLE OPEN Disruption of nucleocytoplasmic trafficking as a cellular senescence driver Ji-Hwan Park1,14, Sung Jin Ryu2,13,14, Byung Ju Kim3,13,14, Hyun-Ji Cho3, Chi Hyun Park4, Hyo Jei Claudia Choi2, Eun-Jin Jang3, Eun Jae Yang5, Jeong-A Hwang5, Seung-Hwa Woo5, Jun Hyung Lee5, Ji Hwan Park5, Kyung-Mi Choi6, Young-Yon Kwon6, 6 7 3 3 8 9 10 5 ✉ Cheol-Koo Lee , Joon✉ Tae Park , Sung✉ Chun Cho , Yun-Il Lee , Sung✉ Bae Lee , Jeong A. Han , Kyung A. Cho , Min-Sik Kim , Daehee Hwang11 , Young-Sam Lee3,5 and Sang Chul Park3,12 © The Author(s) 2021 Senescent cells exhibit a reduced response to intrinsic and extrinsic stimuli. This diminished reaction may be explained by the disrupted transmission of nuclear signals. However, this hypothesis requires more evidence before it can be accepted as a mechanism of cellular senescence. A proteomic analysis of the cytoplasmic and nuclear fractions obtained from young and senescent cells revealed disruption of nucleocytoplasmic trafficking (NCT) as an essential feature of replicative senescence (RS) at the global level. Blocking NCT either chemically or genetically induced the acquisition of an RS-like senescence phenotype, named nuclear barrier-induced senescence (NBIS). A transcriptome analysis revealed that, among various types of cellular senescence, NBIS exhibited a gene expression pattern most similar to that of RS. Core proteomic and transcriptomic patterns common to both RS and NBIS included upregulation of the endocytosis-lysosome network and downregulation of NCT in senescent cells, patterns also observed in an aging yeast model.
    [Show full text]
  • Roles of PTBP1 in Alternative Splicing, Glycolysis, and Oncogensis*
    122 Zhu et al. / J Zhejiang Univ-Sci B (Biomed & Biotechnol) 2020 21(2):122-136 Journal of Zhejiang University-SCIENCE B (Biomedicine & Biotechnology) ISSN 1673-1581 (Print); ISSN 1862-1783 (Online) www.jzus.zju.edu.cn; www.springerlink.com E-mail: [email protected] Review: Roles of PTBP1 in alternative splicing, glycolysis, and oncogensis* Wei ZHU§, Bo-lun ZHOU§, Li-juan RONG, Li YE, Hong-juan XU, Yao ZHOU, Xue-jun YAN, Wei-dong LIU, Bin ZHU, Lei WANG, Xing-jun JIANG, Cai-ping REN†‡ NHC Key Laboratory of Carcinogenesis (Central South University) and the Key Laboratory of Carcinogenesis and Cancer Invasion of the Chinese Ministry of Education, Cancer Research Institute, Department of Neurosurgery, Xiangya Hospital, Central South University, Changsha 410008, China †E-mail: [email protected] Received July 16, 2019; Revision accepted Oct. 21, 2019; Crosschecked Dec. 17, 2019; Published online Feb. 5, 2020 Abstract: Polypyrimidine tract-binding protein 1 (PTBP1) plays an essential role in splicing and is expressed in almost all cell types in humans, unlike the other proteins of the PTBP family. PTBP1 mediates several cellular processes in certain types of cells, including the growth and differentiation of neuronal cells and activation of immune cells. Its function is regulated by various molecules, including microRNAs (miRNAs), long non-coding RNAs (lncRNAs), and RNA-binding proteins. PTBP1 plays roles in various diseases, particularly in some cancers, including colorectal cancer, renal cell cancer, breast cancer, and glioma. In cancers, it acts mainly as a regulator of glycolysis, apoptosis, prolif- eration, tumorigenesis, invasion, and migration. The role of PTBP1 in cancer has become a popular research topic in recent years, and this research has contributed greatly to the formulation of a useful therapeutic strategy for cancer.
    [Show full text]