Polypyrimidine Tract Binding Protein Blocks the 5′ Splice Site Dependent Assembly of U2AF and the Prespliceosomal E Complex Shalini Sharma1, Arnold M. Falick2 and Douglas L. Black1,3,4 1Howard Hughes Medical Institute, University of California, Los Angeles, MRL5-748, Charles E. Young Drive South, Los Angeles, California, 90095, USA 2HHMI Mass Spectrometry Laboratory, University of California, Berkeley, 17 Barker Hall, Berkeley, California, 94720, USA 3Department of Microbiology, Immunology and Molecular Genetics, University of California, Los Angeles, 1602 Molecular Sciences Building, 405 Hilgard Avenue, Los Angeles, California 90095, USA Running title: Polypyrimidine Tract Binding Protein Blocks E Complex Assembly 4Correspondence:
[email protected], Phone: 310-794-7644 SUMMARY Polypyrimidine tract binding protein (PTB) represses the splicing of many alternatively spliced exons. This repression can sometimes involve the direct occlusion of splice sites by PTB. We show here that PTB prevents splicing of the c-src N1 exon to downstream exon 4 by a different mechanism. PTB does not interfere with U1 snRNP binding to the N1 5′ splice site, but instead prevents formation of the pre-spliceosomal Early (E) complex across the intervening intron. If only the repressed 5′ splice site of the N1 exon is present, the splicing factor U2AF does not assemble on the downstream 3′ splice site of exon 4. When the unregulated 5′ splice site of the upstream exon 3 is included in the RNA, U2AF binding is restored and splicing between exons 3 and 4 proceeds, in spite of the presence of the PTB bound across the N1 exon. Rather than directly blocking the N1 splice sites, PTB is blocking the 5′ splice site dependent assembly of U2AF into the E complex, presumably through an interaction with the U1 snRNP.