F4 URS Protected Species Report 2012
Total Page:16
File Type:pdf, Size:1020Kb
Load more
Recommended publications
-
Common Insects of Freshwater Pond and Their Control ~
COMMON INSECTS OF FRESHWATER POND AND THEIR CONTROL ~ Bulletin No. 54 Krishna Mitra and Kuldip Kumar 11 ~3r.J!I leAR CENTRAL INLAND CAPTURE FISHERIES RESEARCH INSTITUTE (Indfan Council of Agricultural Research) Barrackpore - 743101 West Bengal India. COMMON INSECTS OF FRESHWATER PONDS AND THEIR CONTROL Bulletin No. 54 March 1988 Krishna Mitra and Kuldip Kumar IfII'JrF ICAR CENTRAL INLAND CAPTURE FISHERIES RESEARCH INSTITUTE (Indian Council of Aqricultural Research) Barrackpore - 743101 West Bengal India. CONTENTS Introduction 1 Classification of insects 2 Order EPHEMEROPTERA 2 Family : Baetidae 2 Order ODONATA 3 Family: Libellulidae 4 Aeshnidae 5 Coenagrtonldae 5 Order HEMIPTERA 6 Family: Gerridae 7 Notonectidae 7 Pleidae 8 Nepidae 9 Belostomatidae 10 Cortxtdae 11 Order COLEOPTERA 12 Family : Dytiscidae 13 Hydrophilidae - 14 Gyrinidae 16 Curculionidae 16 Contents (contd.) Order TRICHOPTERA 17 Family: Leptocertdae 17 Order LEPIDOPTERA 18 Family: Pyralidae 18 Order DIPTERA 19 Family: Culicidae 19 Tendipedidae 20 Heleidae 20 Stratlomytdae 21 Tabanidae 21 Muscidae 22 Control 23 Acknowledgements 24 References 25 Enlarged text figures 2.5. ~--~------------------------~---I Foreword The insects which constitute an important component oJ the littoral Jauna oJ aquatic ecosystems play a vital role in the trophic structure and Junctions oJ culturable water bodies. Their primary role as converters oJ plant materials into animal protein and consumers oJ organic wastes oJ the fisti habitat is of great signifzcance Jor the healthy growth of fish populations. Though the insects serve as a source oJ natural food. for fishes, they ofteti impair the fist: productivity in the pond ecosystem by predating upon their young ones. By sharing a common trophic niche with the fist: Juveniles they also compete with them Jor food. -
M54 to M6 Link Road TR010054 Volume 6 6.3 Environmental Statement Appendices Appendix 8.14 Aquatic Invertebrates, Fish and Aquatic Macrophytes
M54 to M6 Link Road TR010054 Volume 6 6.3 Environmental Statement Appendices Appendix 8.14 Aquatic Invertebrates, Fish and Aquatic Macrophytes Regulation 5(2)(a) Planning Act 2008 Infrastructure Planning (Applications: Prescribed Forms and Procedure) Regulations 2009 January 2020 M54 to M6 Link Road Environmental Statement Infrastructure Planning Planning Act 2008 The Infrastructure Planning (Applications: Prescribed Forms and Procedure) Regulations 2009 M54 to M6 Link Road Development Consent Order 202[ ] 6.3 Environmental Statement Appendices 8.14 Aquatic Invertebrates, Fish and Aquatic Macrophytes Regulation Number Regulation 5(2)(a) Planning Inspectorate Scheme TR010054 Reference Application Document Reference 6.3 Author M54 to M6 Link Road Project Team and Highways England Version Date Status of Version 1 January 2020 DCO Application Planning Inspectorate Scheme Ref: TR010054 Application Document Ref: TR010054/APP/6.3 M54 to M6 Link Road Environmental Statement Table of contents Chapter Pages 1 Introduction ............................................................................................................. 1 2 Relevant Legislation and Policy............................................................................. 2 2.2 Planning policy .......................................................................................................... 2 2.3 Priority species .......................................................................................................... 2 3 Methodology ........................................................................................................... -
Insecta Zeitschrift Für Entomologie Und Naturschutz
Insecta Zeitschrift für Entomologie und Naturschutz Heft 9/2004 Insecta Bundesfachausschuss Entomologie Zeitschrift für Entomologie und Naturschutz Heft 9/2004 Impressum © 2005 NABU – Naturschutzbund Deutschland e.V. Herausgeber: NABU-Bundesfachausschuss Entomologie Schriftleiter: Dr. JÜRGEN DECKERT Museum für Naturkunde der Humbolt-Universität zu Berlin Institut für Systematische Zoologie Invalidenstraße 43 10115 Berlin E-Mail: [email protected] Redaktion: Dr. JÜRGEN DECKERT, Berlin Dr. REINHARD GAEDIKE, Eberswalde JOACHIM SCHULZE, Berlin Verlag: NABU Postanschrift: NABU, 53223 Bonn Telefon: 0228.40 36-0 Telefax: 0228.40 36-200 E-Mail: [email protected] Internet: www.NABU.de Titelbild: Die Kastanienminiermotte Cameraria ohridella (Foto: J. DECKERT) siehe Beitrag ab Seite 9. Gesamtherstellung: Satz- und Druckprojekte TEXTART Verlag, ERIK PIECK, Postfach 42 03 11, 42403 Solingen; Wolfsfeld 12, 42659 Solingen, Telefon 0212.43343 E-Mail: [email protected] Insecta erscheint in etwa jährlichen Abständen ISSN 1431-9721 Insecta, Heft 9, 2004 Inhalt Vorwort . .5 SCHULZE, W. „Nachbar Natur – Insekten im Siedlungsbereich des Menschen“ Workshop des BFA Entomologie in Greifswald (11.-13. April 2003) . .7 HOFFMANN, H.-J. Insekten als Neozoen in der Stadt . .9 FLÜGEL, H.-J. Bienen in der Großstadt . .21 SPRICK, P. Zum vermeintlichen Nutzen von Insektenkillerlampen . .27 MARTSCHEI, T. Wanzen (Heteroptera) als Indikatoren des Lebensraumtyps Trockenheide in unterschiedlichen Altersphasen am Beispiel der „Retzower Heide“ (Brandenburg) . .35 MARTSCHEI, T., Checkliste der bis jetzt bekannten Wanzenarten H. D. ENGELMANN Mecklenburg-Vorpommerns . .49 DECKERT, J. Zum Vorkommen von Oxycareninae (Heteroptera, Lygaeidae) in Berlin und Brandenburg . .67 LEHMANN, U. Die Bedeutung alter Funddaten für die aktuelle Naturschutzpraxis, insbesondere für das FFH-Monitoring . -
Crossness Sewage Treatment Works Nature Reserve & Southern Marsh Aquatic Invertebrate Survey
Commissioned by Thames Water Utilities Limited Clearwater Court Vastern Road Reading RG1 8DB CROSSNESS SEWAGE TREATMENT WORKS NATURE RESERVE & SOUTHERN MARSH AQUATIC INVERTEBRATE SURVEY Report number: CPA18054 JULY 2019 Prepared by Colin Plant Associates (UK) Consultant Entomologists 30a Alexandra Rd London N8 0PP 1 1 INTRODUCTION, BACKGROUND AND METHODOLOGY 1.1 Introduction and background 1.1.1 On 30th May 2018 Colin Plant Associates (UK) were commissioned by Biodiversity Team Manager, Karen Sutton on behalf of Thames Water Utilities Ltd. to undertake aquatic invertebrate sampling at Crossness Sewage Treatment Works on Erith Marshes, Kent. This survey was to mirror the locations and methodology of a previous survey undertaken during autumn 2016 and spring 2017. Colin Plant Associates also undertook the aquatic invertebrate sampling of this previous survey. 1.1.2 The 2016-17 aquatic survey was commissioned with the primary objective of establishing a baseline aquatic invertebrate species inventory and to determine the quality of the aquatic habitats present across both the Nature Reserve and Southern Marsh areas of the Crossness Sewage Treatment Works. The surveyors were asked to sample at twenty-four, pre-selected sample station locations, twelve in each area. Aquatic Coleoptera and Heteroptera (beetles and true bugs) were selected as target groups. A report of the previous survey was submitted in Sept 2017 (Plant 2017). 1.1.3 During December 2017 a large-scale pollution event took place and untreated sewage escaped into a section of the Crossness Nature Reserve. The primary point of egress was Nature Reserve Sample Station 1 (NR1) though because of the connectivity of much of the waterbody network on the marsh other areas were affected. -
Position Specificity in the Genus Coreomyces (Laboulbeniomycetes, Ascomycota)
VOLUME 1 JUNE 2018 Fungal Systematics and Evolution PAGES 217–228 doi.org/10.3114/fuse.2018.01.09 Position specificity in the genus Coreomyces (Laboulbeniomycetes, Ascomycota) H. Sundberg1*, Å. Kruys2, J. Bergsten3, S. Ekman2 1Systematic Biology, Department of Organismal Biology, Evolutionary Biology Centre, Uppsala University, Uppsala, Sweden 2Museum of Evolution, Uppsala University, Uppsala, Sweden 3Department of Zoology, Swedish Museum of Natural History, Stockholm, Sweden *Corresponding author: [email protected] Key words: Abstract: To study position specificity in the insect-parasitic fungal genus Coreomyces (Laboulbeniaceae, Laboulbeniales), Corixidae we sampled corixid hosts (Corixidae, Heteroptera) in southern Scandinavia. We detected Coreomyces thalli in five different DNA positions on the hosts. Thalli from the various positions grouped in four distinct clusters in the resulting gene trees, distinctly Fungi so in the ITS and LSU of the nuclear ribosomal DNA, less so in the SSU of the nuclear ribosomal DNA and the mitochondrial host-specificity ribosomal DNA. Thalli from the left side of abdomen grouped in a single cluster, and so did thalli from the ventral right side. insect Thalli in the mid-ventral position turned out to be a mix of three clades, while thalli growing dorsally grouped with thalli from phylogeny the left and right abdominal clades. The mid-ventral and dorsal positions were found in male hosts only. The position on the left hemelytron was shared by members from two sister clades. Statistical analyses demonstrate a significant positive correlation between clade and position on the host, but also a weak correlation between host sex and clade membership. These results indicate that sex-of-host specificity may be a non-existent extreme in a continuum, where instead weak preferences for one host sex may turn out to be frequent. -
Water Bug ID Guide
Water Bug Identification Guide Nepomorpha - Boatmen - 1 Nepidae Aphelocheridae Nepa cinerea Ranatra linearis Aphelocheirus aestivalis Water Scorpion, 20mm Water Stick Insect, 35mm River Saucer bug, 8-10mm ID 1 ID 1 ID 1 Local Common Widely scattered Fast flowing streams under stones/gravel Ponds, Lakes, Canals and at Ponds and Lakes stream edges Naucoridae Pleidae Ilycoris cimicoides Naucoris maculata Plea minutissima Saucer bug, 13.5mm 10mm Least Backswimmer, 2.1-2.7mm ID 1 ID 1 ID 2 Widely scattered Widely scattered NORFOLK ONLY Often amongst submerged weed in a variety of Muddy ponds and stagnant stillwaters canals Notonectidae Corixidae Notonecta glauca Notonecta viridis Notonecta maculata Notonecta obliqua Arctocorisa gemari Arctocorisa carinata Common Backswimmer Peppered Backswimmer Pied Backswimmer 8.8mm 9mm 14-16mm 13-15mm 15mm 15mm No Northern Picture ID 2 ID 2 ID 2 ID 2 ID 3 ID 3 Local Local Very common Common Widely scattered Local Upland limestone lakes, dew In upland peat pools Ubiquitous in all Variety of waters In waters with hard Peat ponds, acid ponds, acid moorland lakes, or with little vegetation ponds, lakes or usually more base substrates, troughs, bog pools and sandy silt ponds canals rich sites concrete, etc. recently clay ponds Corixidae Corixidae Micronecta Micronecta Micronecta Micronecta Glaenocorisa Glaenocorisa scholtzi poweri griseola minutissima propinqua cavifrons propinqua propinqua 2-2.5mm 1.8mm 1.8mm 2mm 8.3mm No NEW RARE Northern Southern Picture ARIVAL ID 2 ID 2 ID 4 ID 4 ID 3 ID 3 Local Common Local Local Margins of rivers open shallow Northern Southern and quiet waters over upland lakes upland lakes silt or sand backwaters Identification difficulties are: ID 1 = id in the field in Northants. -
Actual Problems of Protection and Sustainable Use of the Animal World Diversity
ACADEMY OF SCIENCES OF MOLDOVA DEPARTMENT OF NATURE AND LIFE SCIENCES INSTITUTE OF ZOOLOGY Actual problems of protection and sustainable use of ThE animal world diversity International Conference of Zoologists dedicated to the 50th anniversary from the foundation of Institute of Zoology of ASM Chisinau – 2011 ACTUAL PRObLEMS OF PROTECTION AND SUSTAINAbLE USE OF ThE ANIMAL wORLD DIVERSITY Content CZU 59/599:502.74 (082) D 53 Dumitru Murariu. READING ABOUT SPECIES CONCEPT IN BIOLOGY.......................................................................10 Dan Munteanu. AChievements Of Romania in ThE field Of nature The materials of International Conference of Zoologists „Actual problems of protection and protection and implementation Of European Union’S rules concerning ThE biodiversity conservation (1990-2010)...............................................................................11 sustainable use of animal world diversity” organized by the Institute of Zoology of the Aca- demy of Sciences of Moldova in celebration of the 50th anniversary of its foundation are a gene- Laszlo Varadi. ThE protection and sustainable use Of Aquatic resources.....................................13 ralization of the latest scientific researches in the country and abroad concerning the diversity of aquatic and terrestrial animal communities, molecular-genetic methods in systematics, phylo- Terrestrial Vertebrates.................................................................................................................................................15 -
A Review of the Hemiptera of Great Britain: the Aquatic and Semi-Aquatic Bugs
Natural England Commissioned Report NECR188 A review of the Hemiptera of Great Britain: The Aquatic and Semi-aquatic Bugs Dipsocoromorpha, Gerromorpha, Leptopodomorpha & Nepomorpha Species Status No.24 First published 20 November 2015 www.gov.uk/natural -england Foreword Natural England commission a range of reports from external contractors to provide evidence and advice to assist us in delivering our duties. The views in this report are those of the authors and do not necessarily represent those of Natural England. Background Making good decisions to conserve species should primarily be based upon an objective process of determining the degree of threat to the survival of a species. The recognised international approach to undertaking this is by assigning the species to one of the IUCN threat categories. This report was commissioned to update the national status of aquatic and semi-aquatic bugs using IUCN methodology for assessing threat. It covers all species of aquatic and semi-aquatic bugs (Heteroptera) in Great Britain, identifying those that are rare and/or under threat as well as non-threatened and non-native species. Reviews for other invertebrate groups will follow. Natural England Project Manager - Jon Webb, [email protected] Contractor - A.A. Cook (author) Keywords - invertebrates, red list, IUCN, status reviews, Heteroptera, aquatic bugs, shore bugs, IUCN threat categories, GB rarity status Further information This report can be downloaded from the Natural England website: www.gov.uk/government/organisations/natural-england. For information on Natural England publications contact the Natural England Enquiry Service on 0845 600 3078 or e-mail [email protected]. -
The Effect of Pond Dyes on Mosquitoes and Other Freshwater Invertebrates
The effect of pond dyes on mosquitoes and other freshwater invertebrates A thesis submitted for the degree of Doctor of Philosophy School of Biological Sciences Natali Ortiz Perea January 2018 Declaration I confirm that this is my own work and the use of all material from other sources has been properly and fully acknowledged. Natali Ortiz Perea ii ABSTRACT Freshwater habitats are important because they represent two percent of Earth’s water resources, are highly diverse in aquatic organisms and are the most productive and threatened ecosystem worldwide. Pollution, urbanization and climatic changes are responsible for drastic changes in these ecosystems. The creation of new ponds offers an opportunity to increase biodiversity, landscape connectivity and provide new habitat for organisms. However, new ponds might be a good habitat for mosquitoes to lay eggs. Mosquitoes have worldwide distribution and are responsible for most of the vector-borne diseases, affecting thousands of people and causing millions of deaths. British mosquitoes currently do not carry human diseases, but they are a biting nuisance. Their distribution, abundance, species composition and potential for mosquito disease transmission are intimately linked to the physical environment. Culex pipiens is commonly found in UK gardens and is a potential vector of viruses including the West Nile Virus. However, any environmental factors that significantly change the distribution and population of Cx. pipiens could impact future risks of disease transmission. Pond dyes are a cosmetic product for garden ponds and lakes; they inhibit algal growth and improve the overall appearance of the water body reflecting surrounding planting. The dyes block red light from entering the water, interrupting the process of photosynthesis and therefore inhibiting the growth of certain aquatic plants such as algae. -
A Two Year Study of Water Bugs at Priory Water
LEICESTERSHIRE ENTOMOLOGICAL SOCIETY A Two-year Study of the Water Bugs (Hemiptera: Heteroptera) of Priory Water NR, Leicestershire Tony Cook 1 & Frank Clark 2 LESOPS 27 (2011) ISSN 0957 - 1019 1Barnwood Cottage, Main Street, Slawston, Market Harborough LE16 7UF (tony.cook20@btinternet,com) 2Bank Cottage, 4 Main Street, Houghton on the Hill LE7 9GD ([email protected]) 1 Introduction Water bugs have been the subject of numerous ecological studies, many of which have focused on the distribution of species in relation to particular features of aquatic habitats. Macan (1954) suggests that the Corixidae is an attractive family for ecological studies because most of the species (nearly 40 in the UK) are common and widely distributed but have restricted habitats. The abiotic and biotic habitat characteristics that influence water bug distributions are complex, involving water chemistry, competition and predation among others. Macan (1938) examined the relationship between corixids and the amount of organic material present in the sediment of lakes and ponds in the Lake District and showed some species occurred only in oligotrophic habitats while others were confined to later successional, eutrophic habitats with higher levels of organic material. Looking at this association from a different point of view, Popham (1943) suggested that the background colour of different habitats influenced distribution with lighter coloured species in low organic matter habitats and vice versa . Savage (1982, 1990) investigated the correlation between corixid distribution and the conductivity of water bodies, conductivity being a measure of the concentration of dissolved ions. This varies widely in freshwater habitats along the oligotrophic– eutrophic spectrum, from below 50µS (micro-Siemens) to about 1,000µS. -
Water Quality, Biodiversity and Ecosystem Functioning in Ponds Across an Urban Land-Use Gradient in Birmingham, U.K
Water quality, biodiversity and ecosystem functioning in ponds across an urban land-use gradient in Birmingham, U.K. Ian Adam George Thornhill A thesis submitted to the University of Birmingham for the degree of Doctor of Philosophy School of Geography, Earth and Environmental Sciences College of Life and Environmental Sciences University of Birmingham December 2012 University of Birmingham Research Archive e-theses repository This unpublished thesis/dissertation is copyright of the author and/or third parties. The intellectual property rights of the author or third parties in respect of this work are as defined by The Copyright Designs and Patents Act 1988 or as modified by any successor legislation. Any use made of information contained in this thesis/dissertation must be in accordance with that legislation and must be properly acknowledged. Further distribution or reproduction in any format is prohibited without the permission of the copyright holder. Abstract The ecology of ponds is threatened by urbanisation and as cities expand pond habitats are disappearing at an alarming rate. Pond communities are structured by local (water quality, physical) and regional (land-use, connectivity) processes. Since ca1904 >80% of ponds in Birmingham, U.K., have been lost due to land-use intensification, resulting in an increasingly diffuse network. A survey of thirty urban ponds revealed high spatial and temporal variability in water quality, which frequently failed environmental standards. Most were eutrophic, although macrophyte-rich, well connected ponds supported macroinvertebrate assemblages of high conservation value. Statistically, local physical variables (e.g. shading) explained more variation, both in water quality and macroinvertebrate community composition than regional factors. -
ICRO-INVERTEBRATE SPECIES RANKED by CONSTANCY (% of Ponds Species Occur In) HEMIF»TERA (Water Bugs)
Durham E-Theses Classication and ordination of selected ponds of County Durham Pogson, Andrea How to cite: Pogson, Andrea (1993) Classication and ordination of selected ponds of County Durham, Durham theses, Durham University. Available at Durham E-Theses Online: http://etheses.dur.ac.uk/5635/ Use policy The full-text may be used and/or reproduced, and given to third parties in any format or medium, without prior permission or charge, for personal research or study, educational, or not-for-prot purposes provided that: • a full bibliographic reference is made to the original source • a link is made to the metadata record in Durham E-Theses • the full-text is not changed in any way The full-text must not be sold in any format or medium without the formal permission of the copyright holders. Please consult the full Durham E-Theses policy for further details. Academic Support Oce, Durham University, University Oce, Old Elvet, Durham DH1 3HP e-mail: [email protected] Tel: +44 0191 334 6107 http://etheses.dur.ac.uk CLiiSSIFICATION AND ORDINATION OF SELECTS) PONDS OF COW DURHAM by ANDREA POGSON The copyright of this thesis rests with the author. No quotation from it should be pubhshed without his prior written consent and information derived from it should be acknowledged. A dissertation submitted in partial fulfillment of the requirements for the degree of Master of Science in Advanced Ecology Biological Sciences. The University of Durham 1993 1 8 MAR TO mwn 1 INTRODOCIION 1 2 METHODS 3 2.1 Field Survey. 2.2 Analysis of data.