Shanghai to Beijing Train Schedule
Total Page:16
File Type:pdf, Size:1020Kb
Load more
Recommended publications
-
Beijing Subway Map
Beijing Subway Map Ming Tombs North Changping Line Changping Xishankou 十三陵景区 昌平西山口 Changping Beishaowa 昌平 北邵洼 Changping Dongguan 昌平东关 Nanshao南邵 Daoxianghulu Yongfeng Shahe University Park Line 5 稻香湖路 永丰 沙河高教园 Bei'anhe Tiantongyuan North Nanfaxin Shimen Shunyi Line 16 北安河 Tundian Shahe沙河 天通苑北 南法信 石门 顺义 Wenyanglu Yongfeng South Fengbo 温阳路 屯佃 俸伯 Line 15 永丰南 Gonghuacheng Line 8 巩华城 Houshayu后沙峪 Xibeiwang西北旺 Yuzhilu Pingxifu Tiantongyuan 育知路 平西府 天通苑 Zhuxinzhuang Hualikan花梨坎 马连洼 朱辛庄 Malianwa Huilongguan Dongdajie Tiantongyuan South Life Science Park 回龙观东大街 China International Exhibition Center Huilongguan 天通苑南 Nongda'nanlu农大南路 生命科学园 Longze Line 13 Line 14 国展 龙泽 回龙观 Lishuiqiao Sunhe Huoying霍营 立水桥 Shan’gezhuang Terminal 2 Terminal 3 Xi’erqi西二旗 善各庄 孙河 T2航站楼 T3航站楼 Anheqiao North Line 4 Yuxin育新 Lishuiqiao South 安河桥北 Qinghe 立水桥南 Maquanying Beigongmen Yuanmingyuan Park Beiyuan Xiyuan 清河 Xixiaokou西小口 Beiyuanlu North 马泉营 北宫门 西苑 圆明园 South Gate of 北苑 Laiguangying来广营 Zhiwuyuan Shangdi Yongtaizhuang永泰庄 Forest Park 北苑路北 Cuigezhuang 植物园 上地 Lincuiqiao林萃桥 森林公园南门 Datunlu East Xiangshan East Gate of Peking University Qinghuadongluxikou Wangjing West Donghuqu东湖渠 崔各庄 香山 北京大学东门 清华东路西口 Anlilu安立路 大屯路东 Chapeng 望京西 Wan’an 茶棚 Western Suburban Line 万安 Zhongguancun Wudaokou Liudaokou Beishatan Olympic Green Guanzhuang Wangjing Wangjing East 中关村 五道口 六道口 北沙滩 奥林匹克公园 关庄 望京 望京东 Yiheyuanximen Line 15 Huixinxijie Beikou Olympic Sports Center 惠新西街北口 Futong阜通 颐和园西门 Haidian Huangzhuang Zhichunlu 奥体中心 Huixinxijie Nankou Shaoyaoju 海淀黄庄 知春路 惠新西街南口 芍药居 Beitucheng Wangjing South望京南 北土城 -
8Th Metro World Summit 201317-18 April
30th Nov.Register to save before 8th Metro World $800 17-18 April Summit 2013 Shanghai, China Learning What Are The Series Speaker Operators Thinking About? Faculty Asia’s Premier Urban Rail Transit Conference, 8 Years Proven Track He Huawu Chief Engineer Record: A Comprehensive Understanding of the Planning, Ministry of Railways, PRC Operation and Construction of the Major Metro Projects. Li Guoyong Deputy Director-general of Conference Highlights: Department of Basic Industries National Development and + + + Reform Commission, PRC 15 30 50 Yu Guangyao Metro operators Industry speakers Networking hours President Shanghai Shentong Metro Corporation Ltd + ++ Zhang Shuren General Manager 80 100 One-on-One 300 Beijing Subway Corporation Metro projects meetings CXOs Zhang Xingyan Chairman Tianjin Metro Group Co., Ltd Tan Jibin Chairman Dalian Metro Pak Nin David Yam Head of International Business MTR C. C CHANG President Taoyuan Metro Corp. Sunder Jethwani Chief Executive Property Development Department, Delhi Metro Rail Corporation Ltd. Rachmadi Chief Engineering and Project Officer PT Mass Rapid Transit Jakarta Khoo Hean Siang Executive Vice President SMRT Train N. Sivasailam Managing Director Bangalore Metro Rail Corporation Ltd. Endorser Register Today! Contact us Via E: [email protected] T: +86 21 6840 7631 W: http://www.cdmc.org.cn/mws F: +86 21 6840 7633 8th Metro World Summit 2013 17-18 April | Shanghai, China China Urban Rail Plan 2012 Dear Colleagues, During the "12th Five-Year Plan" period (2011-2015), China's national railway operation of total mileage will increase from the current 91,000 km to 120,000 km. Among them, the domestic urban rail construction showing unprecedented hot situation, a new round of metro construction will gradually develop throughout the country. -
Why Some Airport-Rail Links Get Built and Others Do Not: the Role of Institutions, Equity and Financing
Why some airport-rail links get built and others do not: the role of institutions, equity and financing by Julia Nickel S.M. in Engineering Systems- Massachusetts Institute of Technology, 2010 Vordiplom in Wirtschaftsingenieurwesen- Universität Karlsruhe, 2007 Submitted to the Department of Political Science in partial fulfillment of the requirements for the degree of Master of Science in Political Science at the MASSACHUSETTS INSTITUTE OF TECHNOLOGY February 2011 © Massachusetts Institute of Technology 2011. All rights reserved. Author . Department of Political Science October 12, 2010 Certified by . Kenneth Oye Associate Professor of Political Science Thesis Supervisor Accepted by . Roger Peterson Arthur and Ruth Sloan Professor of Political Science Chair, Graduate Program Committee 1 Why some airport-rail links get built and others do not: the role of institutions, equity and financing by Julia Nickel Submitted to the Department of Political Science On October 12, 2010, in partial fulfillment of the Requirements for the Degree of Master of Science in Political Science Abstract The thesis seeks to provide an understanding of reasons for different outcomes of airport ground access projects. Five in-depth case studies (Hongkong, Tokyo-Narita, London- Heathrow, Chicago- O’Hare and Paris-Charles de Gaulle) and eight smaller case studies (Kuala Lumpur, Seoul, Shanghai-Pudong, Bangkok, Beijing, Rome- Fiumicino, Istanbul-Atatürk and Munich- Franz Josef Strauss) are conducted. The thesis builds on existing literature that compares airport-rail links by explicitly considering the influence of the institutional environment of an airport on its ground access situation and by paying special attention to recently opened dedicated airport expresses in Asia. -
Mitsubishi Electric and Zhuzhou CSR Times Electronic Win Order for Beijing Subway Railcar Equipment
FOR IMMEDIATE RELEASE No. 2496 Product Inquiries: Media Contact: Overseas Marketing Division, Public Utility Systems Group Public Relations Division Mitsubishi Electric Corporation Mitsubishi Electric Corporation Tel: +81-3-3218-1415 Tel: +81-3-3218-3380 [email protected] [email protected] http://global.mitsubishielectric.com/transportation/ http://global.mitsubishielectric.com/news/ Mitsubishi Electric and Zhuzhou CSR Times Electronic Win Order for Beijing Subway Railcar Equipment Tokyo, January 13, 2010 – Mitsubishi Electric Corporation (TOKYO: 6503) announced today that Mitsubishi Electric and Zhuzhou CSR Times Electronic Co., Ltd. have received orders from Beijing MTR Construction Administration Corporation for electric railcar equipment to be used on the Beijing Subway Changping Line. The order, worth approximately 3.6 billion yen, comprises variable voltage variable frequency (VVVF) inverters, traction motors, auxiliary power supplies, regenerative braking systems and other electric equipment for 27 six-coach trains. Deliveries will begin this May. The Changping Line is one of five new subway lines scheduled to start operating in Beijing this year. The 32.7-kilometer line running through the Changping district of northwest Beijing will have 9 stops between Xierqi and Ming Tombs Scenic Area stations. Mitsubishi Electric’s Itami Works will manufacture traction motors for the 162 coaches. Zhuzhou CSR Times Electronic will make the box frames and procure certain components. Zhuzhou Shiling Transportation Equipment Co., Ltd, a joint-venture between the two companies, will assemble all components and execute final testing. Mitsubishi Electric already has received a large number of orders for electric railcar equipment around the world. In China alone, orders received from city metros include products for the Beijing Subway lines 2 and 8; Tianjin Metro lines 1, 2 and 3; Guangzhou Metro lines 4 and 5; and Shenyang Metro Line 1. -
Analysis and Evaluation of the Beijing Metro Project Financing Reforms
Advances in Social Science, Education and Humanities Research, volume 291 International Conference on Management, Economics, Education, Arts and Humanities (MEEAH 2018) Analysis and Evaluation of the Beijing Metro Project Financing Reforms Haibin Zhao1,a, Bingjie Ren2,b, Ting Wang3,c 1Ministry of Transport Research Institute, Chaoyang, Beijing, China,100029; 2Beijing Urban Construction Design & Development Group Co., Limited, Xicheng, Beijing, China,100037; 3School of Civil Engineering, Beijing Jiaotong University, Haidian, Beijing, China, 100044. [email protected], [email protected], [email protected] Keywords: metro; financing; marketisation; reform Abstract. The construction and operation of a metro system are costly, and the sustainable development of a metro system is difficult using government funding alone, particularly for developing countries. The main source for metro system financing in China is, currently, government budget and bank debt. Many cities have begun to seek new ways to attract funds from finance markets, which is increasing the need for the evaluation of metro financing. This study uses Beijing as a case study that utilises various financing modes with impressive results. As participants of the financing reform, the authors collected all the relative government documents and interviewed stakeholders to accomplish this work. This article reviews the development of financing modes for the Beijing Metro system during the last four decades and analyses the role of the government in the reformed financing system within the Chinese social political environment. The study addresses the advantages and challenges of the reforms in this context. To further analyses the technical processes of typical financing modes, the public-private partnership mode of Line 4, the BT mode of Olympic Branch Line, the insurance claim mode of Line 10 and the failure of the market oriented financing for Capital Airport Line are analysed and evaluated in detail. -
Infrastructure of PPP Mode in Chinese-With Beijing Metro Line As an Example Ru Yue Li Southwest Jiao Tong University, Jiao Da RD
DOI: 10.21276/sjet.2017.5.3.7 Scholars Journal of Engineering and Technology (SJET) ISSN 2321-435X (Online) Sch. J. Eng. Tech., 2017; 5(3):117-121 ISSN 2347-9523 (Print) ©Scholars Academic and Scientific Publisher (An International Publisher for Academic and Scientific Resources) www.saspublisher.com Research Article Infrastructure of PPP Mode in Chinese-with Beijing Metro Line as an example Ru Yue Li Southwest Jiao tong University, Jiao Da RD. Jinniu District, Chengdu 610031, China *Corresponding author Ru Yue Li Email: [email protected] Abstract: Public infrastructure has obvious public welfare, social than economic benefits, in the same time, the construction of the huge initial investment alone operating income during the irreparable. Therefore, it is necessary to introduce market competition mechanism in the construction of public infrastructure, and broaden the financing channels and the development of a wide range of investors. Private enterprises to participate in the construction of public infrastructure is a good way, it can effectively alleviate the shortage of construction funds situation. Keywords: PPP mode Infrastructure Beijing Metro Line. PPP MODEL as the whole process of PPP project financing, and that Situation Study in abroad during this period the government and the private sector PPP originated in the United Kingdom, from should assume a shared responsibility and risk. the development of PFI (Private Finance Initiative). It Domestic classification of PPP model is mainly taken means "private financing" and translated as "private Wang Hao approach, through the PPP model is divided finance initiative" in our country .UNDP believes PPP into qualitative analysis class outsourcing, franchising should include an informal dialogue between and privatization category . -
State-Of-The-Art Wheel Detection and Axle Counting Systems
State-of-the-Art Wheel Detection and Axle Counting Systems Gerhard Grundnig © Frauscher Sensortechnik GmbH | 2012 © Frauscher Sensortechnik GmbH | 28 March 2012 Agenda 1. Innovative Wheel Detection and Axle Counting Systems 2. Company overview 3. Case Studies | References 4. Conclusion © Frauscher Sensortechnik GmbH | 28 March 2012 Wheel Detection Field of applications – axle counting systems – level crossings RSR 123 – switching tasks – measuring systems – diameter & speed measurement RSR 122 – customer-specific applications © Frauscher Sensortechnik GmbH | 28 March 2012 RSR 180 Axle Counting Systems Axle counting system ACS2000 (relay interface) for – Main lines – Metro / trams – Regional lines – Industrial lines © Frauscher Sensortechnik GmbH | 28 March 2012 Axle Counting Systems Axle counting system FAdC (serial interface) for – Main lines – Metro / trams – Regional lines – Industrial lines © Frauscher Sensortechnik GmbH | 28 March 2012 Axle Counting Systems • Permanent innovation leads to different axle counting systems – ACS2000: fail-safe relay interface – FAdC: fail-safe serial interface (or fail safe relay interface as an option) – FAdCi: fail-safe serial interface • Every axle counting platform consists of variable components • Based on proven FWD systems (Frauscher Wheel Detection) • Safe determination of clear/occupied (track vacancy) • Exhaustive diagnostic information © Frauscher Sensortechnik GmbH | 28 March 2012 Axle Counting Systems • Easy replacement of existing track circuit • Reliable counting of axles and fail-safe generation of Clear/Occupied message • Customized reset-function • Simple integration into any type of interlocking system • Serial interface affords compact interlocking systems with customer-specific and economic track vacancy detection (FAdC) • Modular and scalable design • Additional functionalities configurable (e.g. counting head control, driving direction, etc.) • Central and distributed architecture © Frauscher Sensortechnik GmbH | 28 March 2012 Axle Counting vs. -
Global Report Global Metro Projects 2020.Qxp
Table of Contents 1.1 Global Metrorail industry 2.2.2 Brazil 2.3.4.2 Changchun Urban Rail Transit 1.1.1 Overview 2.2.2.1 Belo Horizonte Metro 2.3.4.3 Chengdu Metro 1.1.2 Network and Station 2.2.2.2 Brasília Metro 2.3.4.4 Guangzhou Metro Development 2.2.2.3 Cariri Metro 2.3.4.5 Hefei Metro 1.1.3 Ridership 2.2.2.4 Fortaleza Rapid Transit Project 2.3.4.6 Hong Kong Mass Railway Transit 1.1.3 Rolling stock 2.2.2.5 Porto Alegre Metro 2.3.4.7 Jinan Metro 1.1.4 Signalling 2.2.2.6 Recife Metro 2.3.4.8 Nanchang Metro 1.1.5 Power and Tracks 2.2.2.7 Rio de Janeiro Metro 2.3.4.9 Nanjing Metro 1.1.6 Fare systems 2.2.2.8 Salvador Metro 2.3.4.10 Ningbo Rail Transit 1.1.7 Funding and financing 2.2.2.9 São Paulo Metro 2.3.4.11 Shanghai Metro 1.1.8 Project delivery models 2.3.4.12 Shenzhen Metro 1.1.9 Key trends and developments 2.2.3 Chile 2.3.4.13 Suzhou Metro 2.2.3.1 Santiago Metro 2.3.4.14 Ürümqi Metro 1.2 Opportunities and Outlook 2.2.3.2 Valparaiso Metro 2.3.4.15 Wuhan Metro 1.2.1 Growth drivers 1.2.2 Network expansion by 2025 2.2.4 Colombia 2.3.5 India 1.2.3 Network expansion by 2030 2.2.4.1 Barranquilla Metro 2.3.5.1 Agra Metro 1.2.4 Network expansion beyond 2.2.4.2 Bogotá Metro 2.3.5.2 Ahmedabad-Gandhinagar Metro 2030 2.2.4.3 Medellín Metro 2.3.5.3 Bengaluru Metro 1.2.5 Rolling stock procurement and 2.3.5.4 Bhopal Metro refurbishment 2.2.5 Dominican Republic 2.3.5.5 Chennai Metro 1.2.6 Fare system upgrades and 2.2.5.1 Santo Domingo Metro 2.3.5.6 Hyderabad Metro Rail innovation 2.3.5.7 Jaipur Metro Rail 1.2.7 Signalling technology 2.2.6 Ecuador -
Rail Plus Property Development in China: the Pilot Case of Shenzhen
WORKING PAPER RAIL PLUS PROPERTY DEVELOPMENT IN CHINA: THE PILOT CASE OF SHENZHEN LULU XUE, WANLI FANG EXECUTIVE SUMMARY China’s rapid urbanization has increased the demand CONTENTS for both housing and transport, leading to a continuing Executive Summary .......................................1 need for urban transit. Cities face significant challenges 1. Introduction ............................................. 2 in financing the growth of urban transit infrastructure. The current practice of financing urban metro or subway 2. Financing Urban Rail Transit Projects in Chinese projects through municipal fiscal revenues (partly from Cities: The Current Situation ............................. 4 land concession fees) and government-backed bank 3. Implementing R+P in China: Opportunities loans is not only inadequate to meet the demand, but and Challenges ........................................... 6 also exacerbates deep-seated problems like mounting municipal financial liabilities, urban sprawl, and urban 4. Analytical Framework ................................ 10 encroachment on farmland. To address these problems, 5. Shenzhen Case Study ................................ 12 Chinese cities need to diversify the ways in which they 6. Summary and Recommendations ...................29 finance urban metro projects. Appendix............................... ...................... 37 Endnotes 38 In a variety of approaches that aim to alleviate the financ- .................................................. ing problems of local governments, Rail -
A Case Study of Beijing Subway
Available online at www.sciencedirect.com ScienceDirect Procedia Engineering 137 ( 2016 ) 49 – 58 GITSS2015 Evaluating Disruption in Rail Transit Network: A Case Study of Beijing Subway Haodong Yina,b, Baoming Hana,b, Dewei Lib,*, Ying wangb aState key lab of rail traffic control & safety, Beijing Jiaotong University, Beijing, 100044, PR China bSchool of Traffic and Transportation, Beijing Jiaotong University, Beijing, 100044, PR China Abstract Disruption means serious deviation from the planned operations. In this paper, static disruption management problems of rail transit network are discussed: the importance evaluation problem and the disruption impact problem. For importance evaluation problem, betweenness based evaluation indexes of stations, edges and lines are established based on K shortest paths and passenger flow; for disruption impact problems, the global efficiency is adopted to evaluate how well the subway system works before and after the disruptions. And three levels of attack strategies are designed to describe the disruptions. Finally, Beijing subway is studied. The result of case study shows: (1)our proposed importation evaluation model based on expanded betweenness concepts can be used to evaluate the subway’s importance in different levels; (2)removal of even a few lines, stations or edges with a high betweenness will result in a big decline in the efficiency of subway network; (3)Beijing subway network is robust against random disruptions but fragile for intentional attacks. © 2016 PublishedThe Authors. by Elsevier Published Ltd. byThis Elsevier is an open Ltd. access article under the CC BY-NC-ND license Peer-review(http://creativecommons.org/licenses/by-nc-nd/4.0/ under responsibility of the Department). -
Life Cycle Carbon Emission of Monorail Transit and Its Comparison in Operation Stage with Other City Transit Modes
E3S Web of Conferences 272, 01013 (2021) https://doi.org/10.1051/e3sconf/202127201013 ICEPG 2021 Life cycle carbon emission of monorail transit and its comparison in operation stage with other city transit modes Teng Li1, Eryu Zhu1*, Haoran Liu1 1Dept. of Civil Engineering., Beijing Jiaotong University., Shangyuancun 3rd, Beijing, China, 100044 Corresponding author, Eryu Zhu, Professor of Bridge Department, Beijing Jiaotong University, Ph. D, China. Abstract. In this paper, carbon emissions of a monorail transit are calculated using the method of whole life cycle, which can be divided into four stages: material manufacturing stage, construction stage, operation stage and demolition stage. In the operation phase, the units are PKT (Passenger Kilometers Travelled) and VKT (Vehicle Kilometers Travelled), while in other three stages, the unit is 1 km. The results show that the carbon emissions from the 1km length monorail are 6271.204 tons. In addition, in the operation stage, it is found that the PKT index and VKT index of Chongqing monorail transportation are 0.07468 and 3.31933 respectively, far lower than those of subways in the same city. For PKT indicators of other rail transits, from small to large, they are light rail, tram, subway, APM and maglev. As for VKT indicators, from small to large, they are tram, light rail, subway, APM and maglev. The PKT index of Beijing subway is the lowest compared with that of other cities. subway, maglev, APM and trams, to find a lower carbon 1 Introduction emission transit mode, and to facilitate the adjustment of In recent years, with the continuous increase of urban the urban rail transit system and urban sustainable population density, the flow of people and goods between development, and to provide suggestions for government cities and the construction of rail transit are in full swing. -
Space-Time Evolution Analysis of the Nanjing Metro Network Based on a Complex Network
sustainability Article Space-Time Evolution Analysis of the Nanjing Metro Network Based on a Complex Network Wei Yu 1 , Jun Chen 2,* and Xingchen Yan 1 1 College of Automobile and Traffic Engineering, Nanjing Forestry University, Longpan Road 159#, Nanjing 210037, China; [email protected] (W.Y.); [email protected] (X.Y.) 2 School of Transportation, Southeast University, Si Pai Lou 2#, Nanjing 210096, China * Correspondence: [email protected] Received: 11 December 2018; Accepted: 15 January 2019; Published: 19 January 2019 Abstract: Many cities in China have opened a subway, which has become an important part of urban public transport. How the metro line forms the metro network, and then changes the urban traffic pattern, is a problem worthy of attention. From 2005 to 2018, 10 metro lines were opened in Nanjing, which provides important reference data for the study of the spatial and temporal evolution of the Metro network. In this study, using the complex network method, according to the opening sequence of 10 metro lines in Nanjing, space L and space P models are established, respectively. In view of the evolution of metro network parameters, four parameters—network density, network centrality, network clustering coefficient, and network average distance—are proposed for evaluation. In view of the spatial structure change of the metro network, this study combines the concept of node degree in a complex network, analyzes the starting point, terminal point, and intersection point of metro line, and puts forward the concepts of star structure and ring structure. The analysis of the space-time evolution of Nanjing metro network shows that with the gradual opening of metro lines, the metro network presents a more complex structure; the line connection tends to important nodes, and gradually outlines the city’s commercial space pattern.