Prescribed Plant List

Total Page:16

File Type:pdf, Size:1020Kb

Prescribed Plant List PRESCRIBED PLANT LIST Latin Name Common Name Picture Apple-ring acacia, Acacia albida Winterthorn Acacia erioloba Camel thorn Acacia gerrardii Red Thorn Grey camel thorn Acacia haematoxylon (Vaalkameel) Candle thorn Acacia hebeclada (Trassiebos) Latin Name Common Name Picture Acacia hereroensis Bergdorn Acacia karroo Sweet thorn Acacia luederitzii Kalahari Acacia Acacia mellifera Black thorn Acacia robusta River-thorn Page 2 of 11 Latin Name Common Name Picture Acacia senegal Driehaakdoring Acacia tortilis Umbrella-thorn Aloe variegate Kanniedood Buddleja glomerata Sneezebush Cadaba aphylla Swartstorm Page 3 of 11 Latin Name Common Name Picture Carissa haematocarpa Karoo Num-num Catophractes alexandri Ghabbabos Celtis africana Witstinkhout Combretum River bushwillow erythrophyllum Combretum hereroense Mutumba Page 4 of 11 Latin Name Common Name Picture Mountain cabbage tree Cussonia paniculata (Bergkiepersol) Diospyros lycioides Bluebush Dovyalis caffra Kei apple Euclea crispa blue guarri Euclea pseudobenus Wild Ebony Page 5 of 11 Latin Name Common Name Picture Euclea undulate Common Guarri Ficus ilicina Rock-splitting Fig Grewia flava Velvet Raisin Grewia flavescens Sandpaper Raisin Grewia retinervis Mupundu Page 6 of 11 Latin Name Common Name Picture Gumnospora buxifolia Heteromorpha trifoliata parsley tree Lycium sp Matrimony vine Maytenus heterophylla spike-thorn Mundulea sericea Visgif Page 7 of 11 Latin Name Common Name Picture Nymannia capensis Klapperbos Olea Africana Wild Olive Osyris lanceolata Bergbas Parkinsonia africana Green-hair Tree Phaeoptilum spinosum Brosdoring Page 8 of 11 Latin Name Common Name Picture Plumbago capensis Cape Leadwort Rhigozum brevispinosum Gelber Kurzdorn Rhus lancea Karee Rhus leptodictya Rock Karee Rhus pyroides Fire-thorn Rhus Page 9 of 11 Latin Name Common Name Picture Rhus quartiniana River Rhus Rhus tenuinervis Kalahari-taaibos Salvadora persica Mustard bush Bowstring hemp Sanseveria aethiopica (Wildewortel) Schotia afra Karoo Schotia Page 10 of 11 Latin Name Common Name Picture Sutherlandia Cancer bush frutescens/microphylla Tarchonanthus Camphor Bush camphoratus Terminalia sericea Silver Cluster-leaf Vangueria infausta Nombumbu Buffalo thorn (“Wag ‘n Ziziphus mucronata Bietjie”) Page 11 of 11 .
Recommended publications
  • Cheetah Conservation Fund Farmlands Wild and Native Species
    Cheetah Conservation Fund Farmlands Wild and Native Species List Woody Vegetation Silver terminalia Terminalia sericea Table SEQ Table \* ARABIC 3: List of com- Blue green sour plum Ximenia Americana mon trees, scrub, and understory vegeta- Buffalo thorn Ziziphus mucronata tion found on CCF farms (2005). Warm-cure Pseudogaltonia clavata albizia Albizia anthelmintica Mundulea sericea Shepherds tree Boscia albitrunca Tumble weed Acrotome inflate Brandy bush Grevia flava Pig weed Amaranthus sp. Flame acacia Senegalia ataxacantha Wild asparagus Asparagus sp. Camel thorn Vachellia erioloba Tsama/ melon Citrullus lanatus Blue thorn Senegalia erubescens Wild cucumber Coccinea sessilifolia Blade thorn Senegalia fleckii Corchorus asplenifolius Candle pod acacia Vachellia hebeclada Flame lily Gloriosa superba Mountain thorn Senegalia hereroensis Tribulis terestris Baloon thron Vachellia luederitziae Solanum delagoense Black thorn Senegalia mellifera subsp. Detin- Gemsbok bean Tylosema esculentum ens Blepharis diversispina False umbrella thorn Vachellia reficience (Forb) Cyperus fulgens Umbrella thorn Vachellia tortilis Cyperus fulgens Aloe littoralis Ledebouria spp. Zebra aloe Aloe zebrine Wild sesame Sesamum triphyllum White bauhinia Bauhinia petersiana Elephant’s ear Abutilon angulatum Smelly shepherd’s tree Boscia foetida Trumpet thorn Catophractes alexandri Grasses Kudu bush Combretum apiculatum Table SEQ Table \* ARABIC 4: List of com- Bushwillow Combretum collinum mon grass species found on CCF farms Lead wood Combretum imberbe (2005). Sand commiphora Commiphora angolensis Annual Three-awn Aristida adscensionis Brandy bush Grevia flava Blue Buffalo GrassCenchrus ciliaris Common commiphora Commiphora pyran- Bottle-brush Grass Perotis patens cathioides Broad-leaved Curly Leaf Eragrostis rigidior Lavender bush Croton gratissimus subsp. Broom Love Grass Eragrostis pallens Gratissimus Bur-bristle Grass Setaria verticillata Sickle bush Dichrostachys cinerea subsp.
    [Show full text]
  • Seasonal Selection Preferences for Woody Plants by Breeding Herds of African Elephants (Loxodonta Africana)In a Woodland Savanna
    Hindawi Publishing Corporation International Journal of Ecology Volume 2013, Article ID 769587, 10 pages http://dx.doi.org/10.1155/2013/769587 Research Article Seasonal Selection Preferences for Woody Plants by Breeding Herds of African Elephants (Loxodonta africana)in a Woodland Savanna J. J. Viljoen,1 H. C. Reynecke,1 M. D. Panagos,1 W. R. Langbauer Jr.,2 and A. Ganswindt3,4 1 Department of Nature Conservation, Tshwane University of Technology, Private Bag X680, Pretoria 0001, South Africa 2 ButtonwoodParkZoo,NewBedford,MA02740,USA 3 Department of Zoology and Entomology, University of Pretoria, Pretoria 0002, South Africa 4 Department of Production Animal Studies, Faculty of Veterinary Science, University of Pretoria, Onderstepoort 0110, South Africa Correspondence should be addressed to J. J. Viljoen; [email protected] Received 19 November 2012; Revised 25 February 2013; Accepted 25 February 2013 Academic Editor: Bruce Leopold Copyright © 2013 J. J. Viljoen et al. This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited. To evaluate dynamics of elephant herbivory, we assessed seasonal preferences for woody plants by African elephant breeding herds in the southeastern part of Kruger National Park (KNP) between 2002 and 2005. Breeding herds had access to a variety of woody plants, and, of the 98 woody plant species that were recorded in the elephant’s feeding areas, 63 species were utilized by observed animals. Data were recorded at 948 circular feeding sites (radius 5 m) during wet and dry seasons. Seasonal preference was measured by comparing selection of woody species in proportion to their estimated availability and then ranked according to the Manly alpha () index of preference.
    [Show full text]
  • Re-Issue 2018
    SEED LEAFLETS Re-issue 2018 Environment , Forest and Climate Change Commission Õ¢^]ŃΎÜΎÕ0Ύ`+pΎ ¼ČΎ¥@ SEED LEAFLET No. 2 March 2000 Re-issue 2018 Acacia auriculiformis Cunn. ex Benth. Taxonomy and nomenclature Botanical description Family: Fabaceae (Mimosoideae) A large shrub or medium-sized, evergreen tree, usu- Synonyms: Acacia auriculaeformis A. Cunn. ex Benth., ally 8-20 m tall, on good sites up to 35 m. Bark grey Racosperma auriculiforme (A. Cunn. ex Benth.) Pedley. or brown, longitudinally fissured. Leaves (phyllodes) Vernacular/common names: Northern black wattle 8-20 cm long, glabrous and curved, with 3 prominent (Australian trade name); coast wattle, ear pod wattle. nerves (four in A. mangium). Flowers bisexual, creamy yellow, scented, in up to 8.5 cm long spikes. Distribution and habitat Native to Australia, Papua New Guinea and Indo- nesia in hot humid and sub-humid lowlands with mean annual rainfall of 800-2500 mm and mean an- nual temperature of 20-30°C. Often found on river banks and in coastal areas. It is cultivated widely in the tropics within an altitude range of 0-500 (-1000) masl, and even though frost does not occur in its natural range, it tolerates light frost. It is exceptionally tolerant to soil type in regard to fertility, salinity and pH. It can grow on acid mine spoils with pH 3 and on alkaline beach sands with pH 8-9. It does not tolerate shade or strong winds. Isoenzyme analysis has revealed a marked genetic variation with 3 distinct groups corresponding to the geographic distribution in Papua New Guinea, Queensland and Northern Territory.
    [Show full text]
  • Large Tree Mortality in Kruger National Park
    Tough times for large trees: Relative impacts of elephant and fire on large trees in Kruger National Park Graeme Shannon1, Maria Thaker1 Abi Tamim Vanak1, Bruce Page1, Rina Grant2, Rob Slotow1 1University of KwaZulu-Natal, 2Scientific Services, SANParks Shannon G., Thaker M, et al. 2011. Ecosystems 14: 1372-1381 Large trees in savanna ecosystems • Key role in ecosystem functioning – Keystone components – Nutrient pumps – Habitat heterogeneity – Increase biodiversity Damage to large trees: Role of elephant • Foliage utilisation • Breaking of large branches • Debarking • Pushing over Damage to large trees: Role of fire • Removal of lower crown biomass • Damage to tissues • Topkill Effect of elephant and fire: are they additive? • Elephant damage to trees makes them more susceptible to fire • Opening up of canopy increases fuel load – Higher intensity fires Understanding the patterns of damage • Determine impact of elephant, fire (main ecological drivers) and disease on large trees over a 30-month period subsequent to initial description • Particular focus on the independent and combined effects of previous impact on subsequent levels of impact and mortality Surveys of large trees • Transects: 2.5 years apart (Apr 2006, Nov 2008) • 22 Transects (67 km total) • Southern Kruger • N = 2522 trees (> 5 m height) 1st survey of large trees • location of individual trees (≥ 5 m height) • species, dimensions • use/impact by elephant (proportion tree volume removed) • fire damage (proportion tree volume removed) • disease (presence of wood borer,
    [Show full text]
  • Mediterranean Fruit Fly, Ceratitis Capitata (Wiedemann) (Insecta: Diptera: Tephritidae)1 M
    EENY-214 Mediterranean Fruit Fly, Ceratitis capitata (Wiedemann) (Insecta: Diptera: Tephritidae)1 M. C. Thomas, J. B. Heppner, R. E. Woodruff, H. V. Weems, G. J. Steck, and T. R. Fasulo2 Introduction Because of its wide distribution over the world, its ability to tolerate cooler climates better than most other species of The Mediterranean fruit fly, Ceratitis capitata (Wiede- tropical fruit flies, and its wide range of hosts, it is ranked mann), is one of the world’s most destructive fruit pests. first among economically important fruit fly species. Its The species originated in sub-Saharan Africa and is not larvae feed and develop on many deciduous, subtropical, known to be established in the continental United States. and tropical fruits and some vegetables. Although it may be When it has been detected in Florida, California, and Texas, a major pest of citrus, often it is a more serious pest of some especially in recent years, each infestation necessitated deciduous fruits, such as peach, pear, and apple. The larvae intensive and massive eradication and detection procedures feed upon the pulp of host fruits, sometimes tunneling so that the pest did not become established. through it and eventually reducing the whole to a juicy, inedible mass. In some of the Mediterranean countries, only the earlier varieties of citrus are grown, because the flies develop so rapidly that late-season fruits are too heav- ily infested to be marketable. Some areas have had almost 100% infestation in stone fruits. Harvesting before complete maturity also is practiced in Mediterranean areas generally infested with this fruit fly.
    [Show full text]
  • Unravelling the Antibacterial Activity of Terminalia Sericea Root Bark Through a Metabolomic Approach
    molecules Article Unravelling the Antibacterial Activity of Terminalia sericea Root Bark through a Metabolomic Approach Chinedu P Anokwuru 1,2, Sidonie Tankeu 2, Sandy van Vuuren 3 , Alvaro Viljoen 2,4, Isaiah D. I Ramaite 1 , Orazio Taglialatela-Scafati 5 and Sandra Combrinck 2,* 1 Department of Chemistry, University of Venda, Private Bag X5050, Thohoyandou 0950, South Africa; [email protected] (C.P.A.); [email protected] (I.D.I.R.) 2 Department of Pharmaceutical Sciences, Tshwane University of Technology, Private Bag X680, Pretoria 0001, South Africa; [email protected] (S.T.); [email protected] (A.V.) 3 Department of Pharmacy and Pharmacology, Faculty of Health Sciences, University of the Witwatersrand, 7 York Road, Parktown 2193, South Africa; [email protected] 4 SAMRC Herbal Drugs Research Unit, Faculty of Science, Tshwane University of Technology, Private Bag X680, Pretoria 0001, South Africa 5 Department of Pharmacy, University of Naples, Federico II Via D. Montesano 49, 1-80131 Napoli, Italy; [email protected] * Correspondence: [email protected]; Tel./Fax: +27-84-402-7463 Academic Editor: Souvik Kusari Received: 20 July 2020; Accepted: 7 August 2020; Published: 13 August 2020 Abstract: Terminalia sericea Burch. ex. DC. (Combretaceae) is a popular remedy for the treatment of infectious diseases. It is widely prescribed by traditional healers and sold at informal markets and may be a good candidate for commercialisation. For this to be realised, a thorough phytochemical and bioactivity profile is required to identify constituents that may be associated with the antibacterial activity and hence the quality of raw materials and consumer products.
    [Show full text]
  • Topically Applied Terminalia Sericea (Combretaceae)
    South African Journal for Science and Technology ISSN: (Online) 2222-4173, (Print) 0254-3486 Page Page 1 i of 5 ii OorspronklikeInhoudsopgawe Navorsing Topically applied Terminalia sericea (Combretaceae) leaf extract and terminoic acid on infected wounds lead to better wound healing outcomes than gentamicin in an animal model Author: Plants are well-known sources of compounds with biological activity and thus have been 1 Dr Johann Kruger used by mankind for centuries as medicines. Terminalia sericea occurs widely in southern Prof David Katerere2 Prof Jacobus Nicolaas Eloff3 Africa in sandy soils. It has been used traditionally to treat abscesses and wounds. This study investigated the antibacterial properties and wound healing activity of an Affiliations: acetone leaf extract of Terminalia sericea and terminoic acid, an isolated compound. The 1 Owner of a series of Pharmacies in Pretoria backs of 10 Wistar rats were shaved and incisions made in four different areas to which the [email protected] two treatments, a positive control (gentamicin) and no treatment, were applied 48 hours 082 357 1351 after the wounds were superficially infected with Staphyloccocus aureus. The wounds were 2 Tshwane University of Technology monitored for exudate formation, erythema and size, daily for five days. The leaf extract [email protected] and terminoic acid treatment had positive effects on the exudate production and erythema, 084 633 0215 superior to gentamicin treatment and the negative control over the treatment period. 3 Universiteit van Pretoria [email protected] All treatments had an effect on the size of the wounds after five days.
    [Show full text]
  • Proximate Analyses and Amino Acid Composition of Selected Wild Indigenous Fruits of Southern Africa
    plants Article Proximate Analyses and Amino Acid Composition of Selected Wild Indigenous Fruits of Southern Africa Nozipho P. Sibiya 1, Eugenie Kayitesi 2,3 and Annah N. Moteetee 1,* 1 Department of Botany and Plant Biotechnology, APK Campus, University of Johannesburg, P.O. Box 524, Auckland Park, Johannesburg 2006, South Africa; [email protected] 2 Department of Biotechnology and Food Technology, DFC Campus, University of Johannesburg, P.O. Box 17011, Doornfontein, Johannesburg 2028, South Africa; [email protected] 3 Department of Consumer and Food Sciences, University of Pretoria, Pretoria 0028, South Africa * Correspondence: [email protected] Abstract: A literature survey revealed that several wild indigenous Southern African fruits had previously not been evaluated for their proximate and amino acid composition, as well as the total energy value (caloric value). Fourteen species including Carissa macrocarpa, Carpobrotus edulis, Dovyalis caffra, Halleria lucida, Manilkara mochisia, Pappea capensis, Phoenix reclinata, and Syzygium guineense were analyzed in this study. The nutritional values for several species such as C. edulis, H. lucida, P. reclinata, and M. mochisia are being reported here for the first time. The following fruits had the highest proximate values: C. macrocarpa (ash at 20.42 mg/100 g), S. guineense (fat at 7.75 mg/100 g), P. reclinata (fiber at 29.89 mg/100 g), and H. lucida (protein at 6.98 mg/100 g and carbohydrates at 36.98 mg/100 g). Essential amino acids such as histidine, isoleucine, lysine, methionine, phenylalanine, tryptophan, and valine were reported in all studied indigenous fruits. The high protein content in H.
    [Show full text]
  • SABONET Report No 18
    ii Quick Guide This book is divided into two sections: the first part provides descriptions of some common trees and shrubs of Botswana, and the second is the complete checklist. The scientific names of the families, genera, and species are arranged alphabetically. Vernacular names are also arranged alphabetically, starting with Setswana and followed by English. Setswana names are separated by a semi-colon from English names. A glossary at the end of the book defines botanical terms used in the text. Species that are listed in the Red Data List for Botswana are indicated by an ® preceding the name. The letters N, SW, and SE indicate the distribution of the species within Botswana according to the Flora zambesiaca geographical regions. Flora zambesiaca regions used in the checklist. Administrative District FZ geographical region Central District SE & N Chobe District N Ghanzi District SW Kgalagadi District SW Kgatleng District SE Kweneng District SW & SE Ngamiland District N North East District N South East District SE Southern District SW & SE N CHOBE DISTRICT NGAMILAND DISTRICT ZIMBABWE NAMIBIA NORTH EAST DISTRICT CENTRAL DISTRICT GHANZI DISTRICT KWENENG DISTRICT KGATLENG KGALAGADI DISTRICT DISTRICT SOUTHERN SOUTH EAST DISTRICT DISTRICT SOUTH AFRICA 0 Kilometres 400 i ii Trees of Botswana: names and distribution Moffat P. Setshogo & Fanie Venter iii Recommended citation format SETSHOGO, M.P. & VENTER, F. 2003. Trees of Botswana: names and distribution. Southern African Botanical Diversity Network Report No. 18. Pretoria. Produced by University of Botswana Herbarium Private Bag UB00704 Gaborone Tel: (267) 355 2602 Fax: (267) 318 5097 E-mail: [email protected] Published by Southern African Botanical Diversity Network (SABONET), c/o National Botanical Institute, Private Bag X101, 0001 Pretoria and University of Botswana Herbarium, Private Bag UB00704, Gaborone.
    [Show full text]
  • Perennial Edible Fruits of the Tropics: an and Taxonomists Throughout the World Who Have Left Inventory
    United States Department of Agriculture Perennial Edible Fruits Agricultural Research Service of the Tropics Agriculture Handbook No. 642 An Inventory t Abstract Acknowledgments Martin, Franklin W., Carl W. Cannpbell, Ruth M. Puberté. We owe first thanks to the botanists, horticulturists 1987 Perennial Edible Fruits of the Tropics: An and taxonomists throughout the world who have left Inventory. U.S. Department of Agriculture, written records of the fruits they encountered. Agriculture Handbook No. 642, 252 p., illus. Second, we thank Richard A. Hamilton, who read and The edible fruits of the Tropics are nnany in number, criticized the major part of the manuscript. His help varied in form, and irregular in distribution. They can be was invaluable. categorized as major or minor. Only about 300 Tropical fruits can be considered great. These are outstanding We also thank the many individuals who read, criti- in one or more of the following: Size, beauty, flavor, and cized, or contributed to various parts of the book. In nutritional value. In contrast are the more than 3,000 alphabetical order, they are Susan Abraham (Indian fruits that can be considered minor, limited severely by fruits), Herbert Barrett (citrus fruits), Jose Calzada one or more defects, such as very small size, poor taste Benza (fruits of Peru), Clarkson (South African fruits), or appeal, limited adaptability, or limited distribution. William 0. Cooper (citrus fruits), Derek Cormack The major fruits are not all well known. Some excellent (arrangements for review in Africa), Milton de Albu- fruits which rival the commercialized greatest are still querque (Brazilian fruits), Enriquito D.
    [Show full text]
  • The Influence of Ants on the Insect Fauna of Broad
    THE INFLUENCE OF ANTS ON THE INSECT FAUNA OF BROAD - LEAVED, SAVANNA TREES. by SUSAN GRANT Thesis submitted to Rhodes University in partial fulfilment for the degree of Master of Science Department of Zoology and Entomology Rhodes University Grahamstown SOUTH AFRICA May 1984 TO MY PARENTS AND SISTER, ROSEMARY ---- '.,. ... .... ...... ;; ............. .... :.:..:.: " \ ... .:-: ..........~.~ . .... ~ ... .... ......... • " ".! . " \ ......... :. ........ .................... FRONTISPIECE TOP RIGHT - A map of Southern Africa indicating the position of the Nylsvley Provincial Nature Reserve. TOP LEFT One of the dominant ant species, Crematogaster constructor, housed in a carton nest in a Terminalia sericea tree. R BOTTOM RIGHT - A sticky band of Formex which was applied to the trunk of trees to exclude ants. BOTTOM LEFT - Populations of the scale insect Ceroplastes rusci on the leaves of an unbanded Ochna pulchra shrub. CONTENTS Page ACKNOWLEDGEMENTS 1. ABSTRACT 2. INTRODUCTION 1 - 4 3. STUDY AREA 5 - 10 3.1 Abiotic components 3.2 Biotic components 4. GENERAL MATERIALS AND METHODS 11 - 14 4.1 Ant exclusion 4.2 Effect of banding 5. THE RESULTS OF BANDING 15 - 17 5.1 Effect on plant phenology 5.2 Effect on the insect fauna 6. THE ANT COMMUNITY 18 - 29 6.1 The ant species 6.2 Ant distribution and nesting sites 6.3 Field observations 7. SAMPLING OF BANDED AND UNBANDED TREES 30 - 44 7.1 Non-destructive sampling 7.2 Destructive pyrethrum sampling 8. ASSESSMENT OF HERBIVORY 45 - 55 8.1 Damage records on .banded and unbanded trees 9. DISCUSSION 56 - 60 APPENDICES 61 - 81 REFERENCES 82 - 90 ACKNOWLEDGEMENTS I would like to express my sincere thanks to Professor V.C.
    [Show full text]
  • A Review on Ethnomedicinal, Phytochemical, and Pharmacological Significance of Terminalia Sericea Burch
    Review Article A review on ethnomedicinal, phytochemical, and pharmacological significance of Terminalia sericea Burch. Ex DC. Anuja A. Nair, Nishat Anjum, Y. C. Tripathi* ABSTRACT Terminalia sericea is an eminent medicinal plant endemic to Africa distributed across the Northern, Northwest, and Southern parts of the continent. As a multipurpose species, uses of T. sericea range from land improvements to medicine. The plant has been ascribed for its varied medicinal applications and holds a rich history in African traditional medicine. This article aims to provide an updated and comprehensive review on the ethnomedicinal, phytochemical, and pharmacological aspects of T. sericea. A thorough bibliographic investigation was carried out by analyzing worldwide accepted scientific database (PubMed, SciFinder, Scopus, Google, Google Scholar, and Web of Science) and accessible literature including thesis, books, and journals. The present review covers the literature available up to 2017. A critical review of the literature showed that T. sericea has been phytochemically investigated for its chemical constituents, and a diverse group of phytochemicals, namely, pentacyclic triterpenoids, phenolic acids, flavonoids, steroids, and alkaloids has been reported from different parts of the plant. Pharmacological studies of the plants revealed a wide variety of pharmacological properties such as antibacterial, antifungal, antidiabetic, anti-inflammatory, anti-neurodegenerative, anticancer, antioxidant, and other biological activities. Based on the investigative report, it is concluded that T. sericea can a promising candidate in pharmaceutical biology for the development of new drugs and future clinical uses. Its usefulness as a medicinal plant with current widespread traditional use warrants further research, clinical trials, and product development to fully exploit its medicinal value.
    [Show full text]