The Phylocode Applied to <I>Cintractiellales</I>, a New Order

Total Page:16

File Type:pdf, Size:1020Kb

The Phylocode Applied to <I>Cintractiellales</I>, a New Order VOLUME 6 DECEMBER 2020 Fungal Systematics and Evolution PAGES 55–64 doi.org/10.3114/fuse.2020.06.04 The PhyloCode applied to Cintractiellales, a new order of smut fungi with unresolved phylogenetic relationships in theUstilaginomycotina A.R. McTaggart1,2, C.J. Prychid3,4, J.J. Bruhl3, R.G. Shivas5* 1Queensland Alliance for Agriculture and Food Innovation, The University of Queensland, Ecosciences Precinct, GPO Box 267, Brisbane 4001, Australia 2Department of Plant and Soil Sciences, Tree Protection Co-operative Programme (TPCP), Forestry and Agricultural Biotechnology Institute (FABI), Private Bag X20, University of Pretoria, Pretoria, Gauteng, South Africa 3School of Environmental and Rural Science, University of New England, Armidale 2351, New South Wales, Australia 4Current address: Royal Botanic Gardens, Kew, Richmond, Surrey, TW9 3AB, UK 5Centre for Crop Health, University of Southern Queensland, Toowoomba 4350, Queensland, Australia *Corresponding author: [email protected] The first two authors contributed equally to the manuscript Key words: Abstract: The PhyloCode is used to classify taxa based on their relation to a most recent common ancestor as recovered Cyperaceae pathogens from a phylogenetic analysis. We examined the first specimen of Cintractiella (Ustilaginomycotina) collected from fungal systematics Australia and determined its systematic relationship to other Fungi. Three ribosomal DNA loci were analysed both ITS with and without constraint to a phylogenomic hypothesis of the Ustilaginomycotina. Cintractiella did not share a LSU most recent common ancestor with other orders of smut fungi. We used the PhyloCode to define theCintractiellales , new taxa a monogeneric order with four species of Cintractiella, including C. scirpodendri sp. nov. on Scirpodendron ghaeri. obligate biotroph The Cintractiellales may have shared a most recent common ancestor with the Malasseziomycetes, but are otherwise Editor-in-Chief Prof. dr P.W. Crous, Westerdijk Fungal Biodiversity unresolved Institute, P.O. at Box the 85167, rank 3508 of AD class. Utrecht, The Netherlands. E-mail: [email protected] Citation: McTaggart AR, Prychid CJ, Bruhl JJ, et al. (2020). The PhyloCode applied to Cintractiellales, a new order of smut fungi with unresolved phylogenetic relationships in the Ustilaginomycotina. Fungal Systematics and Evolution 6: 55–64. doi: 10.3114/fuse.2020.06.04 Effectively published online: 26 March 2020 Corresponding editor: P.W. Crous INTRODUCTION (i) undiscovered biodiversity (missing data in phylogenetic analyses); (ii) few speciation events, and (iii) many extinctions Higher taxonomic ranks of smut fungi and their asexual yeast- between extant species and their most recent common like morphs (Ustilaginomycotina, Basidiomycota) were first ancestors. Several monogeneric classes and orders are known classified by patterns of teliospore germination (Tulasne & in the Ustilaginomycotina, namely, Malasseziomycetes, Tulasne 1847), later by ultrastructural characters (Bauer et al. Ceraceosorales, Golubeviales, Robbauerales, Uleiellales and 1997), and most recently by their evolutionary relationships Violaceomycetales (Begerow et al. 2006, Wang et al. 2014, Albu based on genes (Begerow et al. 2006, Wang et al. 2015) et al. 2015, Wang et al. 2015, Riess et al. 2016). and genomes (Kijpornyongpan et al. 2018). Confidence Hibbett et al. (2018) used the PhyloCode to define higher in the phylogenetic relationships and taxonomy of the taxonomic ranks of Fungi with known phylogenetic relationships. Ustilaginomycotina has increased as genomes of more taxa are The PhyloCode transcends descriptive taxonomy in that it delimits sequenced (Kijpornyongpan et al. 2018). taxa by their most recent common ancestor in a phylogenetic The smut fungi are evolutionary divergent and polyphyletic analysis, rather than by characters that may be homoplasious or (Begerow et al. 2006, McTaggart et al. 2012). The sexual difficult to recognise. Phylogenetic taxon definitions are suited phenotype of smut fungi, when known, replaces the to monotypic yeasts of the Ustilaginomycotina, as there are reproductive or other organs (leaves, roots) of their host plants few apomorphies, whether morphological or biological, and with powdery masses of fungal spores. Phylogenetic studies their current taxonomies are based on phylogenetic hypotheses have re-classified some traditional groups of smut fungi into (Wang et al. 2014, Wang et al. 2015). higher taxonomic ranks outside of the Ustilaginomycotina, e.g. Species of Cintractiella (Ustilaginomycotina) form foliar the Entorrhizomycota (Entorrhizomycota) (Aime et al. 2006, pseudo-spikelets or modify the reproductive units (see Prychid Bauer et al. 2015) and Microbotryales (Pucciniomycotina) & Bruhl 2013) of some tropical sedges (Cyperaceae, subfamily (Aime et al. 2006). The unresolved relationships between Mapanioideae). Three species of Cintractiella have been some taxa in the Ustilaginomycotina can be explained by described, the type, C. lamii on an unidentified species of Fungal Systematics and Evolution is licensed under a Creative Commons Attribution-NonCommercial-ShareAlike 4.0 International License © 2020 Westerdijk Fungal Biodiversity Institute 55 McTaggart et al. Wallemia sebi 0.99/98/33.3 AGARICOMYCOTINA 1.0/100/100 Tremella mesenterica Cryptococcus neoformans Georgefischeria riveae 1.0/100/100 Tilletiaria anomala Georgefischeriales Phragmotaenium flavum Entyloma calendulae 100/100/100 Entylomatales Editor-in-Chief Entyloma arnoseridis Prof. dr P.W. Crous, Westerdijk Fungal Biodiversity Institute, P.O. Box 85167, 3508 AD Utrecht, The Netherlands. E-mail: [email protected] Rhamphospora nymphaeae 0.98/100/100 Doassansiales 0.99/98/33.3 Doassansia hygrophilae USTILAGINOMYCOTINA 0.98/95/66.7 Laurobasidium hachijoense 0.97/99/100 0.98/100/100 Exobasidium pachysporum 0.97/100/100 Exobasidium vaccinii Exobasidiales 0.97/100/100 Meira miltonrushii Exobasidiomycetes Graphiola phoenicis Robbauera albescens Robbaurerales Golubevia pallescens Golubeviales Erratomyces patelii 1.0/100/100 Conidiosporomyces ayresii 1.0/100/100 0.92/–/0 Tilletiales –/100/100 Ingoldiomyces hyalosporus Tilletia caries Jaminaea rosea 0.99/100/66.7 Volvocisporium triumfetticola Quambalaria cyanescens Microstromatales Microstroma bacarum 0.99/100/66.7 Pseudomicrostroma juglandis Pseudomicrostroma glucosiphilum Cintractiella scirpodendri BRIP 60160 1.0/100/100 Cintractiellales Cintractiella scirpodendri BRIP 59264 Malassezia furfur 1.0/100/100 Malasseziomycetes Malassezia sympodialis 0.95/99/33.3 Malasseziales 0.99/100/100 Malassezia globosa Malassezia restricta 0.95/99/100 Violaceomyces palustris Violaceomycetales Uleiella chilensis Uleiellales Ceraceosorus guamensis 0.96/–/33.3 1.0/100/100 Ceraceosorales Ceraceosorus bombacis Thecaphora amaranthi 0.94/91/66.7 Doassansiopsis limnocharidis 0.94/97/50 Urocystidales 0.97/100/50 Urocystis colchici 1.0/100/33.3 Fereydounia khargensis Ustilaginomycetes 1.0/100/100 Melanotaenium endogenum Melanotaenium euphorbiae 1.0/94/66.7 Anthracoidea karii 1.0/100/100 Testicularia cyperi –/96/100 Cintractia axicola 0.93/97/33.3 Moesziomyces bullatus Ustilago tritici 1.0/100/100 Ustilaginales 1.0/100/66.7 Ustilago hordei 0.96/–/66.7 Melanopsichium pennsylvanicum Incongruent branch with phylogenomic 0.96/98/66.7 Sporisorium scitamineum hypothesis of Kijpornyongpan et al. (2018) Sporisorium reilianum Tranzscheliella hypodytes aLRT>0.9 / UFBoot>95% / gCF –/99/50 Pseudozyma hubeiensis 0.04 Mycosarcoma maydis Fig. 1. Phylogram obtained from a maximum likelihood search in IQTree v. 1.7 beta, with a GTR gamma FreeRate heterogeneity model of evolution and a different rate for each partition of ribosomal DNA. aRLT values (≥ 0.9) and ultrafast bootstrap values (≥ 95 %) from 10 000 replicates, and genealogical concordance factors for three ribosomal DNA loci above nodes. Dashed lines indicate incongruence between the topology obtained from a phylogenomic dataset by Kijpornyongpan et al. (2018). 56 © 2020 Westerdijk Fungal Biodiversity Institute The PhyloCode applied to Cintractiellales Hypolytrum in Irian Jaya, Indonesia (Boedijn 1937); C. diplasiae et al. 2015) with a GTR gamma FreeRate heterogeneity model on Diplasia karataefolia in South America (Piepenbring 2001); of evolution and a different rate for each partition (command and C. kosraensis on Mapania pacifica in the Caroline Islands, -spp -m GTR+R), 10 000 ultrafast bootstraps (Hoang et al. 2018), Federated States of Micronesia (Aime et al. 2018). an approximate likelihood ratio test with 10 000 replicates Boedijn (1937) did not propose a higher taxonomic rank for (Guindon et al. 2010) and genealogical concordance factors Cintractiella. Vánky (2003) established the Cintractiellaceae in calculated from each locus (Minh et al. 2018). the Ustilaginales for two species of Cintractiella. Begerow et We used two approaches to determine the phylogenetic al. (2018) were uncertain of the relationship of Cintractiella to relationships of Cintractiella. A maximum likelihood search Editor-in-Chief Prof. dr P.W. Crous, Westerdijk Fungal Biodiversity Institute, P.O. Box 85167, 3508 AD Utrecht, The Netherlands. E-mail: [email protected] other genera of the Ustilaginomycotina and treated the group on the concatenated alignment i) without constraint, and with an unknown taxonomic affiliation. Our aim was to resolve ii) constrained to the class rank topology recovered by the systematic placement of Cintractiella within Fungi. We used Kijpornyongpan
Recommended publications
  • Exobasidium Darwinii, a New Hawaiian Species Infecting Endemic Vaccinium Reticulatum in Haleakala National Park
    View metadata, citation and similar papers at core.ac.uk brought to you by CORE provided by Springer - Publisher Connector Mycol Progress (2012) 11:361–371 DOI 10.1007/s11557-011-0751-4 ORIGINAL ARTICLE Exobasidium darwinii, a new Hawaiian species infecting endemic Vaccinium reticulatum in Haleakala National Park Marcin Piątek & Matthias Lutz & Patti Welton Received: 4 November 2010 /Revised: 26 February 2011 /Accepted: 2 March 2011 /Published online: 8 April 2011 # The Author(s) 2011. This article is published with open access at Springerlink.com Abstract Hawaii is one of the most isolated archipelagos Exobasidium darwinii is proposed for this novel taxon. This in the world, situated about 4,000 km from the nearest species is characterized among others by the production of continent, and never connected with continental land peculiar witches’ brooms with bright red leaves on the masses. Two Hawaiian endemic blueberries, Vaccinium infected branches of Vaccinium reticulatum. Relevant char- calycinum and V. reticulatum, are infected by Exobasidium acters of Exobasidium darwinii are described and illustrated, species previously recognized as Exobasidium vaccinii. additionally phylogenetic relationships of the new species are However, because of the high host-specificity of Exobasidium, discussed. it seems unlikely that the species infecting Vaccinium calycinum and V. reticulatum belongs to Exobasidium Keywords Exobasidiomycetes . ITS . LSU . vaccinii, which in the current circumscription is restricted to Molecular phylogeny. Ustilaginomycotina
    [Show full text]
  • Axpcoords & Parallel Axparafit: Statistical Co-Phylogenetic Analyses
    BMC Bioinformatics BioMed Central Software Open Access AxPcoords & parallel AxParafit: statistical co-phylogenetic analyses on thousands of taxa Alexandros Stamatakis*1,2, Alexander F Auch3, Jan Meier-Kolthoff3 and Markus Göker4 Address: 1École Polytechnique Fédérale de Lausanne, School of Computer & Communication Sciences, Laboratory for Computational Biology and Bioinformatics STATION 14, CH-1015 Lausanne, Switzerland, 2Swiss Institute of Bioinformatics, 3Center for Bioinformatics (ZBIT), Sand 14, Tübingen, University of Tübingen, Germany and 4Organismic Botany/Mycology, Auf der Morgenstelle 1, Tübingen, University of Tübingen, Germany Email: Alexandros Stamatakis* - [email protected]; Alexander F Auch - [email protected]; Jan Meier- Kolthoff - [email protected]; Markus Göker - [email protected] * Corresponding author Published: 22 October 2007 Received: 26 June 2007 Accepted: 22 October 2007 BMC Bioinformatics 2007, 8:405 doi:10.1186/1471-2105-8-405 This article is available from: http://www.biomedcentral.com/1471-2105/8/405 © 2007 Stamatakis et al.; licensee BioMed Central Ltd. This is an Open Access article distributed under the terms of the Creative Commons Attribution License (http://creativecommons.org/licenses/by/2.0), which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited. Abstract Background: Current tools for Co-phylogenetic analyses are not able to cope with the continuous accumulation of phylogenetic data. The sophisticated statistical test for host-parasite co-phylogenetic analyses implemented in Parafit does not allow it to handle large datasets in reasonable times. The Parafit and DistPCoA programs are the by far most compute-intensive components of the Parafit analysis pipeline.
    [Show full text]
  • Competing Sexual and Asexual Generic Names in <I
    doi:10.5598/imafungus.2018.09.01.06 IMA FUNGUS · 9(1): 75–89 (2018) Competing sexual and asexual generic names in Pucciniomycotina and ARTICLE Ustilaginomycotina (Basidiomycota) and recommendations for use M. Catherine Aime1, Lisa A. Castlebury2, Mehrdad Abbasi1, Dominik Begerow3, Reinhard Berndt4, Roland Kirschner5, Ludmila Marvanová6, Yoshitaka Ono7, Mahajabeen Padamsee8, Markus Scholler9, Marco Thines10, and Amy Y. Rossman11 1Purdue University, Department of Botany and Plant Pathology, West Lafayette, IN 47901, USA; corresponding author e-mail: maime@purdue. edu 2Mycology & Nematology Genetic Diversity and Biology Laboratory, USDA-ARS, Beltsville, MD 20705, USA 3Ruhr-Universität Bochum, Geobotanik, ND 03/174, D-44801 Bochum, Germany 4ETH Zürich, Plant Ecological Genetics, Universitätstrasse 16, 8092 Zürich, Switzerland 5Department of Biomedical Sciences and Engineering, National Central University, 320 Taoyuan City, Taiwan 6Czech Collection of Microoorganisms, Faculty of Science, Masaryk University, 625 00 Brno, Czech Republic 7Faculty of Education, Ibaraki University, Mito, Ibaraki 310-8512, Japan 8Systematics Team, Manaaki Whenua Landcare Research, Auckland 1072, New Zealand 9Staatliches Museum f. Naturkunde Karlsruhe, Erbprinzenstr. 13, D-76133 Karlsruhe, Germany 10Senckenberg Gesellschaft für Naturforschung, Frankfurt (Main), Germany 11Department of Botany & Plant Pathology, Oregon State University, Corvallis, OR 97333, USA Abstract: With the change to one scientific name for pleomorphic fungi, generic names typified by sexual and Key words: asexual morphs have been evaluated to recommend which name to use when two names represent the same genus Basidiomycetes and thus compete for use. In this paper, generic names in Pucciniomycotina and Ustilaginomycotina are evaluated pleomorphic fungi based on their type species to determine which names are synonyms. Twenty-one sets of sexually and asexually taxonomy typified names in Pucciniomycotina and eight sets in Ustilaginomycotina were determined to be congeneric and protected names compete for use.
    [Show full text]
  • <I>Tilletia Indica</I>
    ISPM 27 27 ANNEX 4 ENG DP 4: Tilletia indica Mitra INTERNATIONAL STANDARD FOR PHYTOSANITARY MEASURES PHYTOSANITARY FOR STANDARD INTERNATIONAL DIAGNOSTIC PROTOCOLS Produced by the Secretariat of the International Plant Protection Convention (IPPC) This page is intentionally left blank This diagnostic protocol was adopted by the Standards Committee on behalf of the Commission on Phytosanitary Measures in January 2014. The annex is a prescriptive part of ISPM 27. ISPM 27 Diagnostic protocols for regulated pests DP 4: Tilletia indica Mitra Adopted 2014; published 2016 CONTENTS 1. Pest Information ............................................................................................................................... 2 2. Taxonomic Information .................................................................................................................... 2 3. Detection ........................................................................................................................................... 2 3.1 Examination of seeds/grain ............................................................................................... 3 3.2 Extraction of teliospores from seeds/grain, size-selective sieve wash test ....................... 3 4. Identification ..................................................................................................................................... 4 4.1 Morphology of teliospores ................................................................................................ 4 4.1.1 Morphological
    [Show full text]
  • Mykologie in Tübingen 1974-2011
    Mykologie am Lehrstuhl Spezielle Botanik und Mykologie der Universität Tübingen, 1974-2011 FRANZ OBERWINKLER Kurzfassung Wir beschreiben die mykologischen Forschungsaktivitäten am ehemaligen Lehrstuhl „Spezielle Botanik und Mykologie“ der Universität Tübingen von 1974 bis 2011 und ihrer internationalen Ausstrahlung. Leitschiene unseres gemeinsamen mykologischen Forschungskonzeptes war die Verknüpfung von Gelände- mit Laborarbeiten sowie von Forschung mit Lehre. Dieses Konzept spiegelte sich in einem weit gefächerten Lehrangebot, das insbesondere den Pflanzen als dem Hauptsubstrat der Pilze breiten Raum gab. Lichtmikroskopische Untersuchungen der zellulären Baupläne von Pilzen bildeten das Fundament für unsere Arbeiten: Identifikationen, Ontogeniestudien, Vergleiche von Mikromorphologien, Überprüfen von Kulturen, Präparateauswahl für Elektronenmikroskopie, etc. Bereits an diesen Beispielen wird die Methodenvernetzung erkennbar. In dem zu besprechenden Zeitraum wurden Ultrastrukturuntersuchungen und Nukleinsäuresequenzierungen als revolutionierende Methoden für den täglichen Laborbetrieb verfügbar. Flankiert wurden diese Neuerungen durch ständig verbesserte Datenaufbereitungen und Auswertungsprogramme für Computer. Zusammen mit den traditionellen Anwendungen der Lichtmikroskopie und der Kultivierung von Pilzen stand somit ein effizientes Methodenspektrum zur Verfügung, das für systematische, phylogenetische und ökologische Fragestellungen gleichermaßen eingesetzt werden konnte, insbesondere in der Antibiotikaforschung, beim Studium zellulärer
    [Show full text]
  • The Flora Mycologica Iberica Project Fungi Occurrence Dataset
    A peer-reviewed open-access journal MycoKeys 15: 59–72 (2016)The Flora Mycologica Iberica Project fungi occurrence dataset 59 doi: 10.3897/mycokeys.15.9765 DATA PAPER MycoKeys http://mycokeys.pensoft.net Launched to accelerate biodiversity research The Flora Mycologica Iberica Project fungi occurrence dataset Francisco Pando1, Margarita Dueñas1, Carlos Lado1, María Teresa Telleria1 1 Real Jardín Botánico-CSIC, Claudio Moyano 1, 28014, Madrid, Spain Corresponding author: Francisco Pando ([email protected]) Academic editor: C. Gueidan | Received 5 July 2016 | Accepted 25 August 2016 | Published 13 September 2016 Citation: Pando F, Dueñas M, Lado C, Telleria MT (2016) The Flora Mycologica Iberica Project fungi occurrence dataset. MycoKeys 15: 59–72. doi: 10.3897/mycokeys.15.9765 Resource citation: Pando F, Dueñas M, Lado C, Telleria MT (2016) Flora Mycologica Iberica Project fungi occurrence dataset. v1.18. Real Jardín Botánico (CSIC). Dataset/Occurrence. http://www.gbif.es/ipt/resource?r=floramicologicaiberi ca&amp;v=1.18, http://doi.org/10.15468/sssx1e Abstract The dataset contains detailed distribution information on several fungal groups. The information has been revised, and in many times compiled, by expert mycologist(s) working on the monographs for the Flora Mycologica Iberica Project (FMI). Records comprise both collection and observational data, obtained from a variety of sources including field work, herbaria, and the literature. The dataset contains 59,235 records, of which 21,393 are georeferenced. These correspond to 2,445 species, grouped in 18 classes. The geographical scope of the dataset is Iberian Peninsula (Continental Portugal and Spain, and Andorra) and Balearic Islands. The complete dataset is available in Darwin Core Archive format via the Global Biodi- versity Information Facility (GBIF).
    [Show full text]
  • Blister Blight Disease of Tea: an Enigma Chayanika Chaliha and Eeshan Kalita
    Chapter Blister Blight Disease of Tea: An Enigma Chayanika Chaliha and Eeshan Kalita Abstract Tea is one of the most popular beverages consumed across the world and is also considered a major cash crop in countries with a moderately hot and humid climate. Tea is produced from the leaves of woody, perennial, and monoculture crop tea plants. The tea leaves being the source of production the foliar diseases which may be caused by a variety of bacteria, fungi, and other pests have serious impacts on production. The blis- ter blight disease is one such serious foliar tea disease caused by the obligate biotrophic fungus Exobasidium vexans. E. vexans, belonging to the phylum basidiomycete primarily infects the young succulent harvestable tea leaves and results in ~40% yield crop loss. It reportedly alters the critical biochemical characteristics of tea such as catechin, flavo- noid, phenol, as well as the aroma in severely affected plants. The disease is managed, so far, by administering high doses of copper-based chemical fungicides. Although alternate approaches such as the use of biocontrol agents, biotic and abiotic elicitors for inducing systemic acquired resistance, and transgenic resistant varieties have been tested, they are far from being adopted worldwide. As the research on blister blight disease is chiefly focussed towards the evaluation of defense responses in tea plants, during infection very little is yet known about the pathogenesis and the factors contrib- uting to the disease. The purpose of this chapter is to explore blister blight disease and to highlight the current challenges involved in understanding the pathogen and patho- genic mechanism that could significantly contribute to better disease management.
    [Show full text]
  • Tilletia Indica.Pdf
    Podsumowanie Analizy Zagrożenia Agrofagiem (Ekspres PRA) dla Tilletia indica Obszar PRA: Rzeczpospolita Polska Opis obszaru zagrożenia: Obszar całego kraju Główne wnioski Prawdopodobieństwo wniknięcia T. indica na teren PRA jest ściśle związane z importem zakażonego ziarna. Istnieje ryzyko zadomowienia się patogenu na obszarze PRA i wywoływania szkód w produkcji rolnej. W przypadku sprowadzania z miejsc, gdzie występuje choroba konieczne jest prowadzenie działań fitosanitarnych jak kontrola materiału nasiennego lub ziarna przeznaczonego na inne cele. Wskazane jest także zaniechanie importu w przypadku epidemii na nowym terenie lub z rejonów o silnym natężeniu infekcji. Sprowadzanie ziarna produkowanego poza obszarem występowania T. indica nie wymaga podejmowania specjalnych zabiegów fitosanitarnych. Wszelkie sygnały o obecności agrofaga powinny zostać poddane wnikliwej analizie, a zakażone rośliny lub materiał zniszczone. Ze względu na duże zdolności teliospor do przetrwania w niekorzystnych warunkach zwalczanie chemiczne lub płodozmian mogą okazać się nieskuteczne. Ryzyko fitosanitarne dla zagrożonego obszaru (indywidualna ranga prawdopodobieństwa wejścia, Wysokie Średnie X Niskie zadomowienia, rozprzestrzenienia oraz wpływu w tekście dokumentu) Poziom niepewności oceny: (uzasadnienie rangi w punkcie 18. Indywidualne rangi niepewności dla prawdopodobieństwa wejścia, Wysoka Średnia Niska X zadomowienia, rozprzestrzenienia oraz wpływu w tekście) Inne rekomendacje: 1 Ekspresowa Analiza Zagrożenia Agrofagiem: Tilletia indica Przygotowana przez: dr Katarzyna Pieczul, prof. dr hab. Marek Korbas, mgr Jakub Danielewicz, dr Katarzyna Sadowska, mgr Michał Czyż, mgr Magdalena Gawlak, lic. Agata Olejniczak dr Tomasz Kałuski; Instytut Ochrony Roślin – Państwowy Instytut Badawczy, ul. Węgorka 20, 60-318 Poznań. Data: 10.08.2017 Etap 1 Wstęp Powód wykonania PRA: Tilletia indica jest patogenem porażającym pszenicę i pszenżyto oraz potencjalnie niektóre z gatunków traw dziko rosnących. Patogen stwarza realne zagrożenie dla upraw zbóż na obszarze PRA.
    [Show full text]
  • Chapter 10 • Principles of Conserving the Arctic's Biodiversity
    Chapter 10 Principles of Conserving the Arctic’s Biodiversity Lead Author Michael B. Usher Contributing Authors Terry V.Callaghan, Grant Gilchrist, Bill Heal, Glenn P.Juday, Harald Loeng, Magdalena A. K. Muir, Pål Prestrud Contents Summary . .540 10.1. Introduction . .540 10.2. Conservation of arctic ecosystems and species . .543 10.2.1. Marine environments . .544 10.2.2. Freshwater environments . .546 10.2.3. Environments north of the treeline . .548 10.2.4. Boreal forest environments . .551 10.2.5. Human-modified habitats . .554 10.2.6. Conservation of arctic species . .556 10.2.7. Incorporating traditional knowledge . .558 10.2.8. Implications for biodiversity conservation . .559 10.3. Human impacts on the biodiversity of the Arctic . .560 10.3.1. Exploitation of populations . .560 10.3.2. Management of land and water . .562 10.3.3. Pollution . .564 10.3.4. Development pressures . .566 10.4. Effects of climate change on the biodiversity of the Arctic . .567 10.4.1. Changes in distribution ranges . .568 10.4.2. Changes in the extent of arctic habitats . .570 10.4.3. Changes in the abundance of arctic species . .571 10.4.4. Changes in genetic diversity . .572 10.4.5. Effects on migratory species and their management . .574 10.4.6. Effects caused by non-native species and their management .575 10.4.7. Effects on the management of protected areas . .577 10.4.8. Conserving the Arctic’s changing biodiversity . .579 10.5. Managing biodiversity conservation in a changing environment . .579 10.5.1. Documenting the current biodiversity . .580 10.5.2.
    [Show full text]
  • 9B Taxonomy to Genus
    Fungus and Lichen Genera in the NEMF Database Taxonomic hierarchy: phyllum > class (-etes) > order (-ales) > family (-ceae) > genus. Total number of genera in the database: 526 Anamorphic fungi (see p. 4), which are disseminated by propagules not formed from cells where meiosis has occurred, are presently not grouped by class, order, etc. Most propagules can be referred to as "conidia," but some are derived from unspecialized vegetative mycelium. A significant number are correlated with fungal states that produce spores derived from cells where meiosis has, or is assumed to have, occurred. These are, where known, members of the ascomycetes or basidiomycetes. However, in many cases, they are still undescribed, unrecognized or poorly known. (Explanation paraphrased from "Dictionary of the Fungi, 9th Edition.") Principal authority for this taxonomy is the Dictionary of the Fungi and its online database, www.indexfungorum.org. For lichens, see Lecanoromycetes on p. 3. Basidiomycota Aegerita Poria Macrolepiota Grandinia Poronidulus Melanophyllum Agaricomycetes Hyphoderma Postia Amanitaceae Cantharellales Meripilaceae Pycnoporellus Amanita Cantharellaceae Abortiporus Skeletocutis Bolbitiaceae Cantharellus Antrodia Trichaptum Agrocybe Craterellus Grifola Tyromyces Bolbitius Clavulinaceae Meripilus Sistotremataceae Conocybe Clavulina Physisporinus Trechispora Hebeloma Hydnaceae Meruliaceae Sparassidaceae Panaeolina Hydnum Climacodon Sparassis Clavariaceae Polyporales Gloeoporus Steccherinaceae Clavaria Albatrellaceae Hyphodermopsis Antrodiella
    [Show full text]
  • On the Evolutionary History of Uleiella Chilensis, a Smut Fungus Parasite of Araucaria Araucana in South America: Uleiellales Ord
    RESEARCH ARTICLE On the Evolutionary History of Uleiella chilensis, a Smut Fungus Parasite of Araucaria araucana in South America: Uleiellales ord. nov. in Ustilaginomycetes Kai Riess1, Max E. Schön1, Matthias Lutz1, Heinz Butin2, Franz Oberwinkler1, Sigisfredo Garnica1* 1 Plant Evolutionary Ecology, Institute of Evolution and Ecology, University of Tübingen, Auf der Morgenstelle 5, 72076, Tübingen, Germany, 2 Am Roten Amte 1 H, 38302, Wolfenbüttel, Germany * [email protected] Abstract The evolutionary history, divergence times and phylogenetic relationships of Uleiella chilen- OPEN ACCESS sis (Ustilaginomycotina, smut fungi) associated with Araucaria araucana were analysed. Citation: Riess K, Schön ME, Lutz M, Butin H, DNA sequences from multiple gene regions and morphology were analysed and compared Oberwinkler F, Garnica S (2016) On the Evolutionary to other members of the Basidiomycota to determine the phylogenetic placement of smut History of Uleiella chilensis, a Smut Fungus Parasite of Araucaria araucana in South America: Uleiellales fungi on gymnosperms. Divergence time estimates indicate that the majority of smut fungal ord. nov. in Ustilaginomycetes. PLoS ONE 11(1): orders diversified during the Triassic–Jurassic period. However, the origin and relationships e0147107. doi:10.1371/journal.pone.0147107 of several orders remain uncertain. The most recent common ancestor between Uleiella chi- Editor: Jonathan H. Badger, National Cancer lensis and Violaceomyces palustris has been dated to the Lower Cretaceous. Comparisons
    [Show full text]
  • Culture Inventory
    For queries, contact the SFA leader: John Dunbar - [email protected] Fungal collection Putative ID Count Ascomycota Incertae sedis 4 Ascomycota Incertae sedis 3 Pseudogymnoascus 1 Basidiomycota Incertae sedis 1 Basidiomycota Incertae sedis 1 Capnodiales 29 Cladosporium 27 Mycosphaerella 1 Penidiella 1 Chaetothyriales 2 Exophiala 2 Coniochaetales 75 Coniochaeta 56 Lecythophora 19 Diaporthales 1 Prosthecium sp 1 Dothideales 16 Aureobasidium 16 Dothideomycetes incertae sedis 3 Dothideomycetes incertae sedis 3 Entylomatales 1 Entyloma 1 Eurotiales 393 Arthrinium 2 Aspergillus 172 Eladia 2 Emericella 5 Eurotiales 2 Neosartorya 1 Paecilomyces 13 Penicillium 176 Talaromyces 16 Thermomyces 4 Exobasidiomycetes incertae sedis 7 Tilletiopsis 7 Filobasidiales 53 Cryptococcus 53 Fungi incertae sedis 13 Fungi incertae sedis 12 Veroneae 1 Glomerellales 1 Glomerella 1 Helotiales 34 Geomyces 32 Helotiales 1 Phialocephala 1 Hypocreales 338 Acremonium 20 Bionectria 15 Cosmospora 1 Cylindrocarpon 2 Fusarium 45 Gibberella 1 Hypocrea 12 Ilyonectria 13 Lecanicillium 5 Myrothecium 9 Nectria 1 Pochonia 29 Purpureocillium 3 Sporothrix 1 Stachybotrys 3 Stanjemonium 2 Tolypocladium 1 Tolypocladium 2 Trichocladium 2 Trichoderma 171 Incertae sedis 20 Oidiodendron 20 Mortierellales 97 Massarineae 2 Mortierella 92 Mortierellales 3 Mortiererallales 2 Mortierella 2 Mucorales 109 Absidia 4 Backusella 1 Gongronella 1 Mucor 25 RhiZopus 13 Umbelopsis 60 Zygorhynchus 5 Myrmecridium 2 Myrmecridium 2 Onygenales 4 Auxarthron 3 Myceliophthora 1 Pezizales 2 PeZiZales 1 TerfeZia 1
    [Show full text]