Mykologie in Tübingen 1974-2011
Total Page:16
File Type:pdf, Size:1020Kb
Load more
Recommended publications
-
Axpcoords & Parallel Axparafit: Statistical Co-Phylogenetic Analyses
BMC Bioinformatics BioMed Central Software Open Access AxPcoords & parallel AxParafit: statistical co-phylogenetic analyses on thousands of taxa Alexandros Stamatakis*1,2, Alexander F Auch3, Jan Meier-Kolthoff3 and Markus Göker4 Address: 1École Polytechnique Fédérale de Lausanne, School of Computer & Communication Sciences, Laboratory for Computational Biology and Bioinformatics STATION 14, CH-1015 Lausanne, Switzerland, 2Swiss Institute of Bioinformatics, 3Center for Bioinformatics (ZBIT), Sand 14, Tübingen, University of Tübingen, Germany and 4Organismic Botany/Mycology, Auf der Morgenstelle 1, Tübingen, University of Tübingen, Germany Email: Alexandros Stamatakis* - [email protected]; Alexander F Auch - [email protected]; Jan Meier- Kolthoff - [email protected]; Markus Göker - [email protected] * Corresponding author Published: 22 October 2007 Received: 26 June 2007 Accepted: 22 October 2007 BMC Bioinformatics 2007, 8:405 doi:10.1186/1471-2105-8-405 This article is available from: http://www.biomedcentral.com/1471-2105/8/405 © 2007 Stamatakis et al.; licensee BioMed Central Ltd. This is an Open Access article distributed under the terms of the Creative Commons Attribution License (http://creativecommons.org/licenses/by/2.0), which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited. Abstract Background: Current tools for Co-phylogenetic analyses are not able to cope with the continuous accumulation of phylogenetic data. The sophisticated statistical test for host-parasite co-phylogenetic analyses implemented in Parafit does not allow it to handle large datasets in reasonable times. The Parafit and DistPCoA programs are the by far most compute-intensive components of the Parafit analysis pipeline. -
Evolution of Portulacineae Marked by Gene Tree Conflict and Gene Family Expansion Associated with Adaptation to Harsh Environments
Supplementary Figures Evolution of Portulacineae marked by gene tree conflict and gene family expansion associated with adaptation to harsh environments Ning Wang, Email: [email protected] Stephen A. Smith, E-mail: [email protected] Dendroscope view Limeaceae_Limeum aethiopicum Montiaceae_Phemeranthus parviflorus Basellaceae_Anredera cordifolia Anacampserotaceae_Anacampseros kurtzii Portulacaceae_Portulaca amilis Cactaceae_Leuenbergeria lychnidiflora Cactaceae_Stenocereus yunckeri Cactaceae_Maihuenia poeppigii Cactaceae_Opuntia bravoana Cactaceae_Pereskia grandifolia Talinaceae_Talinum paniculatum A Didiereaceae_Portulacaria afra PhyloPlot view Limeaceae_Limeum aethiopicum Montiaceae_Phemeranthus parviflorus Basellaceae_Anredera cordifolia Anacampserotaceae_Anacampseros kurtzii 0.008 Portulacaceae_Portulaca amilis 0.992 0.118 Cactaceae_Leuenbergeria lychnidiflora Cactaceae_Stenocereus yunckeri 0.24 0.146 0.76 Cactaceae_Maihuenia poeppigii 0.854 0.882 0.364 Cactaceae_Opuntia bravoana 0.636 Cactaceae_Pereskia grandifolia B Talinaceae_Talinum paniculatum Didiereaceae_Portulacaria afra FIG. S1. The phylogenetic network inferred using MPL method in PhyloNet. Taxa were selected from each plant family based on their gene occupancy statistics. A: network visualized in Dendroscope, and B: the same network with inheritance probabilities between hybridization lineages visualized by PhyloPlot that implemented in PhyloNetworks (Solís-Lemus et al. 2017). Anacampserotaceae Basellaceae Anacampseros A. kurtzii Talinopsis frutescens Anredera cordifolia Basella alba filamentosa Bese 400 4000 4000 3000 3000 200 2000 2000 0 0 0 0 0 0.01 1.0 2.0 3.0 0.01 1.0 2.0 3.0 0.01 1.0 2.0 3.0 0.01 1.0 2.0 3.0 0.01 1.0 2.0 3.0 Portulacaceae Portulaca amilis P. cryptopetala P. grandiflora P. molokiniensis P. oleracea P. pilosa 300 500 800 800 200 200 300 150 400 400 100 100 0 0 0 0 0 0 0.01 1.0 2.0 3.0 0.01 1.0 2.0 3.0 0.01 1.0 2.0 3.0 0.01 1.0 2.0 3.0 0.01 1.0 2.0 3.0 0.01 1.0 2.0 3.0 Talinaceae P. -
Journal Citation Reports 2020 Impact Factor Pdf
Journal citation reports 2020 impact factor pdf Continue In order to continue to use our website, we ask you to confirm your identity as a person. Thank you so much for your cooperation. It is a question-and-answer forum for students, teachers and visitors to the general village to exchange articles, answers and notes. Answer now and help others. Answer Now Here's How It Works: Anyone can ask a question Anyone can answer the best answers voted and climb to the top of Basidiomycota includes three subphyla: Ustilaginomycotina (smuts), Pucciniomykotina (rust), and Agarmyicocotina, traditional hymenomicetes or basidiomycetes, such as mushrooms, mushrooms From: Advances in Applied Microbiology, 2014Thomas N. Taylor,... Edith L. Taylor, of Fossil Mushrooms, 2015 Basidiomycota is a monophyletic group with more than 31,000 living species known, approximately one-third of all fungi; however, molecular and genetic studies show that more diversity has yet to be discovered in this group. The group includes mushrooms, smut and rust. Basidiomycota are important contributors to the functioning of ecosystems at several levels and are the main degradors of various wood components, including lignin. The most diagnostic feature of the group is the club structure, the basidia, on which the meyospores (basidiospores) are produced. The group is probably ancient, but early fossil records are difficult to interpret due to lack of diagnostic functions; The oldest compound clip dates from the Mississippi (Lower Carboniferous). The vast majority of the fossil basidiomycota described to date originate from Cenozoic.Thomas J. Volk, in the Encyclopedia of Biodiversity, 2001 Basidiomycota carry their sexual spores externally on a usually club structure called basidiem, which is often carried on or in a fertile body called basidirp or basidiome. -
Ventura County Plant Species of Local Concern
Checklist of Ventura County Rare Plants (Twenty-second Edition) CNPS, Rare Plant Program David L. Magney Checklist of Ventura County Rare Plants1 By David L. Magney California Native Plant Society, Rare Plant Program, Locally Rare Project Updated 4 January 2017 Ventura County is located in southern California, USA, along the east edge of the Pacific Ocean. The coastal portion occurs along the south and southwestern quarter of the County. Ventura County is bounded by Santa Barbara County on the west, Kern County on the north, Los Angeles County on the east, and the Pacific Ocean generally on the south (Figure 1, General Location Map of Ventura County). Ventura County extends north to 34.9014ºN latitude at the northwest corner of the County. The County extends westward at Rincon Creek to 119.47991ºW longitude, and eastward to 118.63233ºW longitude at the west end of the San Fernando Valley just north of Chatsworth Reservoir. The mainland portion of the County reaches southward to 34.04567ºN latitude between Solromar and Sequit Point west of Malibu. When including Anacapa and San Nicolas Islands, the southernmost extent of the County occurs at 33.21ºN latitude and the westernmost extent at 119.58ºW longitude, on the south side and west sides of San Nicolas Island, respectively. Ventura County occupies 480,996 hectares [ha] (1,188,562 acres [ac]) or 4,810 square kilometers [sq. km] (1,857 sq. miles [mi]), which includes Anacapa and San Nicolas Islands. The mainland portion of the county is 474,852 ha (1,173,380 ac), or 4,748 sq. -
Phylogenetic Studies on Nuclear Large Subunit Ribosomal DNA Sequences of Smut Fungi and Related Taxar
2045 Phylogenetic studies on nuclear large subunit ribosomal DNA sequences of smut fungi and related taxar Dominik Begerow, Robert Bauer, and Franz Oberwinkler Abstract: To show phylogenetic relationships among the smut fungi and thcir relatives. we sequenced a part of the nuclear LSU rDNA from 43 different species of smut fungi and related taxa. Our data were combined with the existing sequences of seven further smut fungi and 17 other basidiomycetes. Two sets of sequences were analyzed. The first set with a representative number of simple septate basidiomycetes, complex scptate basidiomycetes, and smut fungi was analyzed with the neighbor-joining method to estimate the general topology of the basidiomycetes phylogeny and the positions of the smut fungi. The tripartite subclassification of the basidiomycetes into the Urediniomycetes, Ustilaginomycetes, and Hymcnomycetes was confirmed and two groups of smut fungi appeared. Thc smut genera Aurantiosporiurn, Microbotrl-unr, Fulvisporium, and Ustilentr-loma are members of the Urediniomycetes, whereas the other smut species tested are members of the Ustilaginomycetes wrth Entorrhiz.a as a basal taxon. The second set of 46 Ustilaginomycetes was analyzed using the neighbor-joining and the maximum parsimony methods to show the inner topology of the Ustilaginomycetes. The results indicated three major lineages among Ustilaginomycetes corresponding to the Entorrhizomycetidae, Exobasidiomycetidae, and Ustilaginomycetidae. The Entorrhizomycetidae are represented by Entorrhiza species. The Ustilaginomycctidae contain at least two groups, thc Urocystales and Ustilaginales. The Exobasidiomycetidae include five orders, i.e., Doassansiales, Entylomatales, Exobasidiales. Georgefischeriales. and Tilletiales, and Graphiola phoenicis and Microstroma juglandis. Our results support a classification mainly based on ultrastructure. The description of the Glomosporiaceae is emended. -
National List of Plant Species That Occur in Wetlands
;>\ ....--'. PB89-169940 BIOLOGICAL REPORT 88(26.9) MAY 1988 NATIONAL LIST OF PLANT SPECIES THAT OCCUR IN WETLANDS: . NORTHWEST (REGION 9) " h d W"ldl"f S· In Cooperation with the National and FIS an I I e ervlce Regional Interagency Review Panels U.S. Department of the Interior REPR~EDBY u.s. DEPARTMENTOF COMMERCE NATIONAL TECHNICAL ItEORMATJON SERVICE SPRINGFIELD. VA 22161 S02n-'Ol RE?ORT DOCUMENTATION 11. REPORT NO. PAG, iBioloqical Report 88(26.9) 4. TItle arld SUbtitle National List of Plant Species That Occur in Wetiands: Northwe~t (Region 9). 7. Autllor(s) Porter B. Reed, Jr. 9. Perfonnlnc O,..nl.etton H..... • nd _ .... National Ecology Research Center U.S. Fish and Wildlife Service 11. <:omncttC) or Gr.ntCG) No. Creekside One Bldg., 2627 Redwing Rd. Fort Collins, CO 80526-2899 CGl 12. SIlO....,.;n. O,..nlUtlon H_ .rld Acid.... 13. TYIMI of Repott & Period e-Nd Department of the Interior U.S. Fish and Wildlife Service Research and Development 14. Washington, DC 20240 The National list of Plant Species That Occur in Wetlands represents the combined efforts of many biologists over the last decade to define the wetland flora of the United States. The U.S. Fish and Wildlife Service initially developed the list in order to provide an appendix to the Classification of Wetlands and Deepwater Habitats of the United States (FWS/OBS 79/31) to assist in the field identification of wetlands. Plant species that occur in wetlands, as used in the National List, are defined as species that have demonstrated an ability to achieve maturity and reproduce in an environment where all or portions of the soil within the root zone become, periodically or continuously, saturated or inundated during the growing season. -
Pilzgattungen Europas
Pilzgattungen Europas - Liste 3: Notizbuchartige Auswahlliste zur Bestimmungsliteratur für Aphyllophorales und Heterobasidiomyceten (ohne cyphelloide Pilze und ohne Rost- und Brandpilze) Bernhard Oertel INRES Universität Bonn Auf dem Hügel 6 D-53121 Bonn E-mail: [email protected] 24.06.2011 Gattungen 1) Hauptliste 2) Liste der heute nicht mehr gebräuchlichen Gattungsnamen (Anhang) 1) Hauptliste Abortiporus Murr. 1904 (muss Loweomyces hier dazugeschlagen werden?): Lebensweise: Z.T. phytoparasitisch an Wurzeln von Bäumen Typus: A. distortus (Schw. : Fr.) Murr. [= Boletus distortus Schw. : Fr.; heute: A. biennis (Bull. : Fr.) Sing.; Anamorfe: Sporotrichopsis terrestris (Schulz.) Stalpers; Synonym der Anamorfe: Ceriomyces terrestris Schulz.] Bestimm. d. Gatt.: Bernicchia (2005), 68 u. 74 (auch Arten- Schlüssel); Bresinsky u. Besl (2003), 64; Hansen u. Knudsen 3 (1997), 220; Jülich (1984), 37-38 u. 328; Pegler (1973), The Fungi 4B, 404; Ryvarden u. Gilbertson (1993), Bd. 1, 70 u. 81 (auch Arten- Schlüssel) Abb.: 2) Lit.: Bollmann, Gminder u. Reil-CD (2007) Fidalgo, O. (1969), Revision ..., Rickia 4, 99-208 Jahn (1963), 65 Lohmeyer, T.R. (2000), Porlinge zwischen Inn und Salzach ..., Mycol. Bavarica 4, 33-47 Moser et al. (1985 ff.), Farbatlas (Gatt.-beschr.) Murrill (1904), Bull. Torrey Bot. Club 31, 421 Ryvarden u. Gilbertson (1993), Bd. 1, 81 s. ferner in 1) Abundisporus Ryv. 1999 [Europa?]: Typus: A. fuscopurpureus (Pers.) Ryv. (= Polyporus fuscopurpureus Pers.) Lit.: Ryvarden, L. ("1998", p. 1999), African polypores ..., Belg. J. Bot. 131 [Heinemann-Festschrift], 150- 155 (S. 154) s. ferner in 1) Acanthobasidium Oberw. 1965 (zu Aleurodiscus?): Typus: A. delicatum (Wakef.) Oberw. ex Jül. (= Aleurodiscus delicatus Wakef.) Bestimm. d. Gatt.: Bernicchia u. -
Re-Thinking the Classification of Corticioid Fungi
mycological research 111 (2007) 1040–1063 journal homepage: www.elsevier.com/locate/mycres Re-thinking the classification of corticioid fungi Karl-Henrik LARSSON Go¨teborg University, Department of Plant and Environmental Sciences, Box 461, SE 405 30 Go¨teborg, Sweden article info abstract Article history: Corticioid fungi are basidiomycetes with effused basidiomata, a smooth, merulioid or Received 30 November 2005 hydnoid hymenophore, and holobasidia. These fungi used to be classified as a single Received in revised form family, Corticiaceae, but molecular phylogenetic analyses have shown that corticioid fungi 29 June 2007 are distributed among all major clades within Agaricomycetes. There is a relative consensus Accepted 7 August 2007 concerning the higher order classification of basidiomycetes down to order. This paper Published online 16 August 2007 presents a phylogenetic classification for corticioid fungi at the family level. Fifty putative Corresponding Editor: families were identified from published phylogenies and preliminary analyses of unpub- Scott LaGreca lished sequence data. A dataset with 178 terminal taxa was compiled and subjected to phy- logenetic analyses using MP and Bayesian inference. From the analyses, 41 strongly Keywords: supported and three unsupported clades were identified. These clades are treated as fam- Agaricomycetes ilies in a Linnean hierarchical classification and each family is briefly described. Three ad- Basidiomycota ditional families not covered by the phylogenetic analyses are also included in the Molecular systematics classification. All accepted corticioid genera are either referred to one of the families or Phylogeny listed as incertae sedis. Taxonomy ª 2007 The British Mycological Society. Published by Elsevier Ltd. All rights reserved. Introduction develop a downward-facing basidioma. -
Fungal Allergy and Pathogenicity 20130415 112934.Pdf
Fungal Allergy and Pathogenicity Chemical Immunology Vol. 81 Series Editors Luciano Adorini, Milan Ken-ichi Arai, Tokyo Claudia Berek, Berlin Anne-Marie Schmitt-Verhulst, Marseille Basel · Freiburg · Paris · London · New York · New Delhi · Bangkok · Singapore · Tokyo · Sydney Fungal Allergy and Pathogenicity Volume Editors Michael Breitenbach, Salzburg Reto Crameri, Davos Samuel B. Lehrer, New Orleans, La. 48 figures, 11 in color and 22 tables, 2002 Basel · Freiburg · Paris · London · New York · New Delhi · Bangkok · Singapore · Tokyo · Sydney Chemical Immunology Formerly published as ‘Progress in Allergy’ (Founded 1939) Edited by Paul Kallos 1939–1988, Byron H. Waksman 1962–2002 Michael Breitenbach Professor, Department of Genetics and General Biology, University of Salzburg, Salzburg Reto Crameri Professor, Swiss Institute of Allergy and Asthma Research (SIAF), Davos Samuel B. Lehrer Professor, Clinical Immunology and Allergy, Tulane University School of Medicine, New Orleans, LA Bibliographic Indices. This publication is listed in bibliographic services, including Current Contents® and Index Medicus. Drug Dosage. The authors and the publisher have exerted every effort to ensure that drug selection and dosage set forth in this text are in accord with current recommendations and practice at the time of publication. However, in view of ongoing research, changes in government regulations, and the constant flow of information relating to drug therapy and drug reactions, the reader is urged to check the package insert for each drug for any change in indications and dosage and for added warnings and precautions. This is particularly important when the recommended agent is a new and/or infrequently employed drug. All rights reserved. No part of this publication may be translated into other languages, reproduced or utilized in any form or by any means electronic or mechanical, including photocopying, recording, microcopy- ing, or by any information storage and retrieval system, without permission in writing from the publisher. -
A Higher-Level Phylogenetic Classification of the Fungi
mycological research 111 (2007) 509–547 available at www.sciencedirect.com journal homepage: www.elsevier.com/locate/mycres A higher-level phylogenetic classification of the Fungi David S. HIBBETTa,*, Manfred BINDERa, Joseph F. BISCHOFFb, Meredith BLACKWELLc, Paul F. CANNONd, Ove E. ERIKSSONe, Sabine HUHNDORFf, Timothy JAMESg, Paul M. KIRKd, Robert LU¨ CKINGf, H. THORSTEN LUMBSCHf, Franc¸ois LUTZONIg, P. Brandon MATHENYa, David J. MCLAUGHLINh, Martha J. POWELLi, Scott REDHEAD j, Conrad L. SCHOCHk, Joseph W. SPATAFORAk, Joost A. STALPERSl, Rytas VILGALYSg, M. Catherine AIMEm, Andre´ APTROOTn, Robert BAUERo, Dominik BEGEROWp, Gerald L. BENNYq, Lisa A. CASTLEBURYm, Pedro W. CROUSl, Yu-Cheng DAIr, Walter GAMSl, David M. GEISERs, Gareth W. GRIFFITHt,Ce´cile GUEIDANg, David L. HAWKSWORTHu, Geir HESTMARKv, Kentaro HOSAKAw, Richard A. HUMBERx, Kevin D. HYDEy, Joseph E. IRONSIDEt, Urmas KO˜ LJALGz, Cletus P. KURTZMANaa, Karl-Henrik LARSSONab, Robert LICHTWARDTac, Joyce LONGCOREad, Jolanta MIA˛ DLIKOWSKAg, Andrew MILLERae, Jean-Marc MONCALVOaf, Sharon MOZLEY-STANDRIDGEag, Franz OBERWINKLERo, Erast PARMASTOah, Vale´rie REEBg, Jack D. ROGERSai, Claude ROUXaj, Leif RYVARDENak, Jose´ Paulo SAMPAIOal, Arthur SCHU¨ ßLERam, Junta SUGIYAMAan, R. Greg THORNao, Leif TIBELLap, Wendy A. UNTEREINERaq, Christopher WALKERar, Zheng WANGa, Alex WEIRas, Michael WEISSo, Merlin M. WHITEat, Katarina WINKAe, Yi-Jian YAOau, Ning ZHANGav aBiology Department, Clark University, Worcester, MA 01610, USA bNational Library of Medicine, National Center for Biotechnology Information, -
Vascular Plant Species with Documented Or Recorded Occurrence in Placer County
A PPENDIX II Vascular Plant Species with Documented or Reported Occurrence in Placer County APPENDIX II. Vascular Plant Species with Documented or Reported Occurrence in Placer County Family Scientific Name Common Name FERN AND FERN ALLIES Azollaceae Mosquito fern family Azolla filiculoides Pacific mosquito fern Dennstaedtiaceae Bracken family Pteridium aquilinum var.pubescens Bracken fern Dryopteridaceae Wood fern family Athyrium alpestre var. americanum Alpine lady fern Athyrium filix-femina var. cyclosorum Lady fern Cystopteris fragilis Fragile fern Polystichum imbricans ssp. curtum Cliff sword fern Polystichum imbricans ssp. imbricans Imbricate sword fern Polystichum kruckebergii Kruckeberg’s hollyfern Polystichum lonchitis Northern hollyfern Polystichum munitum Sword fern Equisetaceae Horsetail family Equisetum arvense Common horsetail Equisetum hyemale ssp. affine Scouring rush Equisetum laevigatum Smooth horsetail Isoetaceae Quillwort family Isoetes bolanderi Bolander’s quillwort Isoetes howellii Howell’s quillwort Isoetes orcuttii Orcutt’s quillwort Lycopodiaceae Club-moss family Lycopodiella inundata Bog club-moss Marsileaceae Marsilea family Marsilea vestita ssp. vestita Water clover Pilularia americana American pillwort Ophioglossaceae Adder’s-tongue family Botrychium multifidum Leathery grapefern Polypodiaceae Polypody family Polypodium hesperium Western polypody Pteridaceae Brake family Adiantum aleuticum Five-finger maidenhair Adiantum jordanii Common maidenhair fern Aspidotis densa Indian’s dream Cheilanthes cooperae Cooper’s -
Notes, Outline and Divergence Times of Basidiomycota
Fungal Diversity (2019) 99:105–367 https://doi.org/10.1007/s13225-019-00435-4 (0123456789().,-volV)(0123456789().,- volV) Notes, outline and divergence times of Basidiomycota 1,2,3 1,4 3 5 5 Mao-Qiang He • Rui-Lin Zhao • Kevin D. Hyde • Dominik Begerow • Martin Kemler • 6 7 8,9 10 11 Andrey Yurkov • Eric H. C. McKenzie • Olivier Raspe´ • Makoto Kakishima • Santiago Sa´nchez-Ramı´rez • 12 13 14 15 16 Else C. Vellinga • Roy Halling • Viktor Papp • Ivan V. Zmitrovich • Bart Buyck • 8,9 3 17 18 1 Damien Ertz • Nalin N. Wijayawardene • Bao-Kai Cui • Nathan Schoutteten • Xin-Zhan Liu • 19 1 1,3 1 1 1 Tai-Hui Li • Yi-Jian Yao • Xin-Yu Zhu • An-Qi Liu • Guo-Jie Li • Ming-Zhe Zhang • 1 1 20 21,22 23 Zhi-Lin Ling • Bin Cao • Vladimı´r Antonı´n • Teun Boekhout • Bianca Denise Barbosa da Silva • 18 24 25 26 27 Eske De Crop • Cony Decock • Ba´lint Dima • Arun Kumar Dutta • Jack W. Fell • 28 29 30 31 Jo´ zsef Geml • Masoomeh Ghobad-Nejhad • Admir J. Giachini • Tatiana B. Gibertoni • 32 33,34 17 35 Sergio P. Gorjo´ n • Danny Haelewaters • Shuang-Hui He • Brendan P. Hodkinson • 36 37 38 39 40,41 Egon Horak • Tamotsu Hoshino • Alfredo Justo • Young Woon Lim • Nelson Menolli Jr. • 42 43,44 45 46 47 Armin Mesˇic´ • Jean-Marc Moncalvo • Gregory M. Mueller • La´szlo´ G. Nagy • R. Henrik Nilsson • 48 48 49 2 Machiel Noordeloos • Jorinde Nuytinck • Takamichi Orihara • Cheewangkoon Ratchadawan • 50,51 52 53 Mario Rajchenberg • Alexandre G.