Adaptation of Cytochrome-B5 Reductase Activity and Methaemoglobinaemia in Areas with a High Nitrate Concentration in Drinking-Water S.K

Total Page:16

File Type:pdf, Size:1020Kb

Adaptation of Cytochrome-B5 Reductase Activity and Methaemoglobinaemia in Areas with a High Nitrate Concentration in Drinking-Water S.K Adaptation of cytochrome-b5 reductase activity and methaemoglobinaemia in areas with a high nitrate concentration in drinking-water S.K. Gupta,1 R.C. Gupta,2 A.K. Seth,3 A.B. Gupta,4 J.K. Bassin,5 & A. Gupta6 An epidemiological investigation was undertaken in India to assess the prevalence of methaemoglobinaemia in areas with high nitrate concentration in drinking-water and the possible association with an adaptation of cytochrome-b5 reductase. Five areas were selected, with average nitrate ion concentrations in drinking-water of 26, 45, 95, 222 and 459 mg/l. These areas were visited and house schedules were prepared in accordance with a statistically designed protocol. A sample of 10% of the total population was selected in each of the areas, matched for age and weight, giving a total of 178 persons in five age groups. For each subject, a detailed history was documented, a medical examination was conducted and blood samples were taken to determine methaemoglobin level and cytochrome-b5 reductase activity. Collected data were subjected to statistical analysis to test for a possible relationship between nitrate concentration, cytochrome-b5 reductase activity and methaemoglobinaemia. High nitrate concentrations caused methaemoglobinaemia in infants and adults. The reserve of cytochrome-b5 reductase activity (i.e. the enzyme activity not currently being used, but which is available when needed; for example, under conditions of increased nitrate ingestion) and its adaptation with increasing water nitrate concentration to reduce methaemoglobin were more pronounced in children and adolescents. Voir page 752 le reÂsume en francËais. En la pa gina 753 figura un resumen en espanÄ ol. Introduction only to their concentration in drinking-water and food, but also to conditions conducive to their Excessive nitrate concentration in drinking-water is reduction to nitrites. reported to have caused methaemoglobinaemia in When nitrates are ingested, reduction to nitrites infants up to 6 months of age (1±5). Maximum occurs in the intestinal tract, although some studies permissible limits for nitrate ion in drinking-water suggest that this may start in the oral cavity (8). Nitrite have been set at 50 mg/l by WHO (6) and 45 mg/l by ions are absorbed into the bloodstream where they the Bureau of Indian Standards (IS-10500) (7). In are converted back to nitrates. During this process, several developing countries, especially India, con- haemoglobin is converted to methaemoglobin. In sumption of water containing high nitrate concen- healthy individuals, absorbed nitrates are rapidly trations, sometimes as high as 500 mg/l, is not excreted by the kidney (9). uncommon. The essential action in the formation of In the body, nitrates are reduced to nitrites, methaemoglobin is the oxidation of the ferrous ion causing methaemoglobinaemia. The reduction usual- of haemoglobin to the ferric ion, which can be brought ly occurs through microbial action. The health risks about by the direct action of oxidants, by the action of from exposure to nitrates are therefore related not hydrogen donors in the presence of oxygen, or by auto- oxidation (10). In the presence of nitrites, oxidation is direct. Normally, the methaemoglobin that is formed is 1 Junior Specialist, Satellite Hospital, Banipark, Jaipur 302 006, India. reduced by the following reaction (11): 3+ 2+ Correspondence to this author at A 31-B, Anita Colony, Bajaj Nagar, Hb +reduced cytochrome b5 ? Hb +oxidized Jaipur 302 015, India. cytochrome b5. 2 Associate Professor, Department of Physiology, SMS Medical College, Reduced cytochrome b5 is regenerated by the Jaipur 302 004, India. enzyme cytochrome-b5 reductase: 3 Scientist and Head, Jaipur Zonal Laboratory, National Environmental Cytochrome-b Engineering Research Institute, CFC-1, Malviya Industrial Area, Jaipur 5 oxidized cytochrome b5+NADH ÐÐÐÐ? 302 017, India. reductase 4 Professor of Environmental Engineering, Malaviya Regional reduced cytochrome b5+NAD Engineering College, Jaipur 302 017, India. 5 Scientist, Jaipur Zonal Laboratory, National Environmental Thus, the enzyme cytochrome-b5 reductase plays a Engineering Research Institute, CFC-1, Malviya Industrial Area, Jaipur vital role in counteracting the effects of nitrate 302 017, India. ingestion. 6 Research Associate, Department of Physiology, SMS Medical College, Infants constitute a vulnerable group for a Jaipur 302 004, India. number of reasons (9): the higher pH of the stomach Ref. No. 0023 (2.0±5.0) permits the growth of nitrate-reducing Bulletin of the World Health Organization, 1999, 77 (9) # World Health Organization 1999 749 Research organisms (Escherichia coli, Salmonella spp. etc.); infants dance with the modified method of Evelyn & Malloy have a higher consumption of water per unit body (13). Cytochrome-b5 reductase activity (NADH- weight; fetal haemoglobin, present in infants up to dependent diaphorase activity, expressed as IU per 6 months of age, is more readily oxidized to gram of haemoglobin) was determined by the methaemoglobin than adult haemoglobin; and the methaemoglobin ferricyanide method (14). development of the NADH-methaemoglobin re- Collected data were subjected to correlation ductase system is incomplete. and regression analysis using Microsoft Excel soft- While a few cases of methaemoglobinaemia in ware to test for correlations between nitrate infants have been reported to be associated with concentration, cytochrome-b5 reductase activity and water nitrate levels of less than 50 mg/l, most cases methaemoglobinaemia. occur at levels of 90 mg/l or more (1±5, 12). The following clinical manifestations at different met- haemoglobin concentrations have been reported (9): Results at <10%, no signs and symptoms; at 10±25%, no symptoms, cyanosis present; at 26±50%, cyanosis, Drinking-water nitrate concentrations of 26, 45, 95, dyspnoea and headache; at 51±60%, dyspnoea even 222 and 459 mg/l, respectively, were found in the on lying, cyanosis and disorientation; and at >60%, five village units. The level of methaemoglobin and lethal consequences. average cytochrome-b5 reductase activity for the Despite the fact that, in several Indian villages, different age groups and nitrate concentrations are people have been consuming water containing high presented in Tables 1 and 2. Figures 1 and 2 show nitrate concentrations, at times up to 500 mg/l, no nitrate concentration versus methaemoglobin level studies have been conducted so far to ascertain the and average cytochrome-b5 reductase activity for the prevalence of clinically manifest methaemoglobinae- five age groups. mia in infants. An epidemiological investigation was Methaemoglobin levels were considerably therefore undertaken in these areas to assess higher than 2% of the total haemoglobin concentra- methaemoglobinaemia at different ages and to tion, the reported mean content of methaemoglobin examine the protective mechanism of cytochrome- in healthy populations (9). High levels of methaemo- globin were not restricted to infants only but were b5 reductase activity. also prevalent in older age groups. High values were observed in all age groups at all nitrate concentra- Materials and methods tions. Maximum levels were observed at 45±95 mg/l in all age groups, with the highest value in infants (age Water analysis was conducted in five selected village group 1). This peak was followed by a decline in units (a part of the village served by a single source of methaemoglobin and then another rising trend as drinking-water) in the State of Rajasthan, India, nitrate concentration increased. where high average nitrate concentrations were Clinical cyanosis was the main presentation in known to occur. Nitrate concentration was deter- age group 1 but it was also present in all other age mined using an ultraviolet spectrophotometric groups. Recurrent respiratory infection (40±82%) screening method (12). The selected village units and recurrent diarrhoea (33±55%) were found in were physically close to each other, lying within a groups 1 and 2 and recurrent stomatitis (17±24%) radius of 2 km. Other environmental, social and was observed in all age groups. nutritional conditions in the selected village units were similar. These village units were visited and house Statistical analysis schedules, recording details about family members, their name, age, sex, weight, etc., were prepared. A Age group 1 sample of 10% of the total population from each There was good correlation between cytochrome-b5 village unit, matched for age and weight, was selected reductase activity and methaemoglobin levels for detailed clinical and biochemical examination. A (0.5699). Cytochrome-b5 reductase activity showed total of 178 persons were selected in five age groups: an initial rising trend with increasing nitrate concen- 41 year of age (group 1), >1±48 years (group 2), tration and methaemoglobin levels but never ex- >8±418 years (group 3), >18 years±445 years ceeded 10 IU/g Hb, indicating a poor reserve of this (group 4), and >45 years of age (group 5). Infants activity in this age group. This may also account for below the age of three months could not be included the poor correlation between nitrate concentration as a separate group for medical and ethical reasons. and cytochrome-b5 reductase activity (0.1179) in this The number of parents willing to permit collection of age group, which has been reported by other workers blood samples from such infants was very small. also. With a further increase in nitrate concentration, For each subject, a detailed
Recommended publications
  • Supplementary Table S4. FGA Co-Expressed Gene List in LUAD
    Supplementary Table S4. FGA co-expressed gene list in LUAD tumors Symbol R Locus Description FGG 0.919 4q28 fibrinogen gamma chain FGL1 0.635 8p22 fibrinogen-like 1 SLC7A2 0.536 8p22 solute carrier family 7 (cationic amino acid transporter, y+ system), member 2 DUSP4 0.521 8p12-p11 dual specificity phosphatase 4 HAL 0.51 12q22-q24.1histidine ammonia-lyase PDE4D 0.499 5q12 phosphodiesterase 4D, cAMP-specific FURIN 0.497 15q26.1 furin (paired basic amino acid cleaving enzyme) CPS1 0.49 2q35 carbamoyl-phosphate synthase 1, mitochondrial TESC 0.478 12q24.22 tescalcin INHA 0.465 2q35 inhibin, alpha S100P 0.461 4p16 S100 calcium binding protein P VPS37A 0.447 8p22 vacuolar protein sorting 37 homolog A (S. cerevisiae) SLC16A14 0.447 2q36.3 solute carrier family 16, member 14 PPARGC1A 0.443 4p15.1 peroxisome proliferator-activated receptor gamma, coactivator 1 alpha SIK1 0.435 21q22.3 salt-inducible kinase 1 IRS2 0.434 13q34 insulin receptor substrate 2 RND1 0.433 12q12 Rho family GTPase 1 HGD 0.433 3q13.33 homogentisate 1,2-dioxygenase PTP4A1 0.432 6q12 protein tyrosine phosphatase type IVA, member 1 C8orf4 0.428 8p11.2 chromosome 8 open reading frame 4 DDC 0.427 7p12.2 dopa decarboxylase (aromatic L-amino acid decarboxylase) TACC2 0.427 10q26 transforming, acidic coiled-coil containing protein 2 MUC13 0.422 3q21.2 mucin 13, cell surface associated C5 0.412 9q33-q34 complement component 5 NR4A2 0.412 2q22-q23 nuclear receptor subfamily 4, group A, member 2 EYS 0.411 6q12 eyes shut homolog (Drosophila) GPX2 0.406 14q24.1 glutathione peroxidase
    [Show full text]
  • And Detoxification (Benzola]Pyrene Quinones/Oxygen Radicals/NADPH-Cytochrome P-450 Reductase) PAUL L
    Proc. Nati. Acad. Sci. USA Vol. 81, pp. 1696-1700, March 1984 Biochemistry Mutagenicity of quinones: Pathways of metabolic activation and detoxification (benzola]pyrene quinones/oxygen radicals/NADPH-cytochrome P-450 reductase) PAUL L. CHESIS*, DAVID E. LEVIN*, MARTYN T. SMITHt, LARS ERNSTERt, AND BRUCE N. AMES* Departments of *Biochemistry and tBiomedical and Environmental Health Sciences, School of Public Health, University of California, Berkeley, CA 94720; and tDepartment of Biochemistry, Arrhenius Laboratory, University of Stockholm, S-10691 Stockholm, Sweden Contributed by Bruce N. Ames, December 12, 1983 ABSTRACT The mutagenicity of various quinones, a class nones might also be mutagenic, and we have tested this pos- of compounds widely distributed in nature, is demonstrated in sibility using the TA104 strain, which is sensitive to a wide the Salmonella TA104 tester strain. The metabolic pathways variety of oxidative mutagens (17). We have also attempted by which four quinones, menadione, benzo[alpyrene 3,6-qui- to characterize the pathways by which several different qui- none, 9,10-phenanthrenequinone, and danthron, caused mu- nones are metabolized and to study the potential mutagenic- tagenicity in this test system were investigated in detail as were ity of the metabolites and side products formed. We there- the detoxification pathways. The two-electron reduction of fore decided to investigate only those quinones that required these quinones by NAD(P)H-quinone oxidoreductase (DT-di- metabolic activation to exhibit mutagenicity. To limit the aphorase) was not mutagenic, whereas the one-electron reduc- scope of this project we also chose not to study quinones tion, catalyzed by NADPH-cytochrome P-450 reductase, was that possess reactive leaving groups.
    [Show full text]
  • Expression in Escherichia Coli of Cytochrome C Reductase Activity from a Maize NADH:Nitrate Reductase Complementary DNA'
    Plant Physiol. (1992) 99, 693-699 Received for publication September 20, 1991 0032-0889/92/99/0693/07/$01 .00/0 Accepted December 11, 1991 Expression in Escherichia coli of Cytochrome c Reductase Activity from a Maize NADH:Nitrate Reductase Complementary DNA' Wilbur H. Campbell Phytotechnology Research Center and Department of Biological Sciences, Michigan Technological University, Houghton, Michigan 49931-1295 ABSTRACT the deduced amino acid sequences of NR to related mam- A cDNA clone was isolated from a maize (Zea mays L. cv malian protein sequences because of its similarity to the Mo- W64AxW183E) scutellum Xgtl 1 library using maize leaf pterin domain of sulfite oxidase, and the C-terminal region NADH:nitrate reductase Zmnrl cDNA clone as a hybridization of NR has sequence homology to NADH:Cyt b5 reductase, probe; it was designated Zmnr1S. ZmnrlS was shown to be an which is a FAD-containing enzyme (3, 22). In between the NADH:nitrate reductase clone by nucleotide sequencing and com- Mo-pterin and FAD domains, NR has similarity to mam- parison of its deduced amino acid sequence to Zmnrl. Zmnr1S, malian Cyt b5. This central Cyt b domain of NR is bridged to which is 1.8 kilobases in length and contains the code for both the other two domains on either side of it by highly variable the cytochrome b and flavin adenine dinucleotide domains of sequence regions that appear to be hinges (3). These hinge nitrate reductase, was cloned into the EcoRI site of the Esche- regions are probably exposed in native NR and susceptible to richia coli expression vector pET5b and expressed.
    [Show full text]
  • Cytochrome C, Cytochrome B5 and Electron Transfer
    Cytochrome c, cytochrome b5: electron transfer and new functions 1 Iron Protoporphyrin IX, heme b Heme a Prosthetic group Heme a is a form of heme found A flat and planar structure. In cytochromes a and a3. -. Itself Toxic O2 , H2O2 are formed. Insoluble 2 Covalent bonds Cytochrome c is a major player in membrane associated electron transport systems in bacteria and mitochondria. 3 Myoglobin, Hemoglobin His E7 Distal side Heme iron His F8 Proximal side Myoglobin has a strong affinity for oxygen Heme is located in the hydrophobic site. when it is in the lungs, and where the pressure is around 100 torr. When it reaches Heme Fe interacts with His. the tissues, where it's around 20 torr, the Coordination bond affinity for oxygen is still quite high. This makes myoglobin less efficient of an oxygen Propionates of heme interact with Arg. transporter than hemoglobin, which loses it's Ionic bond affinity for oxygen as the pressure goes down and releases the oxygen into the tissues. Heme is easily dissociated from the protein. Myoglobin's strong affinity for oxygen means that it keeps the oxygen binded to itself His (E7) is the oxygen binding site. instead of releasing it into the tissues. 4 Sickle cell anemia & malaria resistance In sickle cell hemoglobin (HbS) glutamic acid in position 6 (in beta chain) is mutated to valine. This change allows the deoxygenated form of the hemoglobin to stick to itself. 5 Figure 1. HO-1 Protects against Severe Malaria Using a mouse model for cerebral malaria, Ferreira et al. (2011) suggest a biochemical basis for the link between sickle cell disease and severe malaria.
    [Show full text]
  • Supplementary Material
    Supplementary material: Figure S1. Protein-Protein Interactions of the 127 Dysregulated proteins in brain tissues following IONP exposure. The graph was generated from STRING database. 125 nodes, 183 edges, 2.93 Average node degree, 0.411 Avg. local clustering coefficient, 122 Expected number of edges, PPI enrichment p-value 1.83e-07. 1 Figure S2. Protein-Protein Interactions of the 66 Dysregulated proteins in liver tissues following IONP exposure. The graph was generated from STRING database. 61 nodes, 103 edges, 3.38 Average node degree, 0.412 Avg. local clustering coefficient, 22 Expected number of edges, PPI enrichment p-value < 1.0e-16. 2 Figure S3. Protein-Protein Interactions of the 84 Dysregulated proteins in lung tissues following IONP exposure. The graph was generated from STRING database. 82 nodes, 125 edges, 3.05 Average node degree, 0.422 Avg. local clustering coefficient, 64 Expected number of edges, PPI enrichment p-value 1.07e-11. 3 Table S1. List of all dysregulated proteins in brain tissues following IONP exposure. A) Down regulated proteins and B) Upregulated proteins. Statistically significant iTRAQ ratios (p-value ratio and p-value sample≤0.05) for the 127 proteins that are dysregulated. A) Sequence Peptide Spectral P-Value P-Value Log 10 Accession Name Description Gene Coverage Ratio Count Count Ratio Sample Ratio % P00762 TRY1_RAT Anionic trypsin-1 Prss1 1 8 8.13 0.526 0.001 0.004 -0.279 P08592 A4_RAT Amyloid beta A4 protein App 1 2 1.17 0.546 0.010 0.004 -0.263 Q62696 DLG1_RAT Disks large homolog 1 Dlg1 1 1 1.32
    [Show full text]
  • Ferroptosis-Related Flavoproteins: Their Function and Stability
    International Journal of Molecular Sciences Review Ferroptosis-Related Flavoproteins: Their Function and Stability R. Martin Vabulas Charité-Universitätsmedizin, Institute of Biochemistry, Charitéplatz 1, 10117 Berlin, Germany; [email protected]; Tel.: +49-30-4505-28176 Abstract: Ferroptosis has been described recently as an iron-dependent cell death driven by peroxida- tion of membrane lipids. It is involved in the pathogenesis of a number of diverse diseases. From the other side, the induction of ferroptosis can be used to kill tumor cells as a novel therapeutic approach. Because of the broad clinical relevance, a comprehensive understanding of the ferroptosis-controlling protein network is necessary. Noteworthy, several proteins from this network are flavoenzymes. This review is an attempt to present the ferroptosis-related flavoproteins in light of their involvement in anti-ferroptotic and pro-ferroptotic roles. When available, the data on the structural stability of mutants and cofactor-free apoenzymes are discussed. The stability of the flavoproteins could be an important component of the cellular death processes. Keywords: flavoproteins; riboflavin; ferroptosis; lipid peroxidation; protein quality control 1. Introduction Human flavoproteome encompasses slightly more than one hundred enzymes that par- ticipate in a number of key metabolic pathways. The chemical versatility of flavoproteins relies on the associated cofactors, flavin mononucleotide (FMN) and flavin adenine dinu- cleotide (FAD). In humans, flavin cofactors are biosynthesized from a precursor riboflavin that has to be supplied with food. To underline its nutritional essentiality, riboflavin is called vitamin B2. In compliance with manifold cellular demands, flavoproteins have been accommo- Citation: Vabulas, R.M. dated to operate at different subcellular locations [1].
    [Show full text]
  • Trans-Plasma Membrane Electron Transport System in the Myelin Membrane
    Wilfrid Laurier University Scholars Commons @ Laurier Theses and Dissertations (Comprehensive) 2015 Characterization of the Trans-plasma Membrane Electron Transport System in the Myelin Membrane Afshan Sohail Wilfrid Laurier University, [email protected] Follow this and additional works at: https://scholars.wlu.ca/etd Part of the Biochemistry Commons, Molecular and Cellular Neuroscience Commons, and the Molecular Biology Commons Recommended Citation Sohail, Afshan, "Characterization of the Trans-plasma Membrane Electron Transport System in the Myelin Membrane" (2015). Theses and Dissertations (Comprehensive). 1694. https://scholars.wlu.ca/etd/1694 This Thesis is brought to you for free and open access by Scholars Commons @ Laurier. It has been accepted for inclusion in Theses and Dissertations (Comprehensive) by an authorized administrator of Scholars Commons @ Laurier. For more information, please contact [email protected]. Characterization of the Trans-plasma Membrane Electron Transport System in the Myelin Membrane By Afshan Sohail THESIS Submitted to the Department of Chemistry Faculty of Science In partial fulfillment of the requirements for Master of Science in Chemistry Wilfrid Laurier University 2014 © Afshan Sohail 2014 Abstract Myelination is the key feature of evolution in the nervous system of vertebrates. Myelin is the protrusion of glial cells. More specifically, "oligodendrocytes" in the central nervous system (CNS), and "Schwann" cells in the peripheral nervous system (PNS) form myelin membranes. Myelin remarkably, enhances the propagation of nerve impulses. However, myelin restricts the access of extracellular metabolites to the axons. A pathology called "demyelination" is associated with myelin. The myelin sheath is not only an insulator, but it is itself metabolically active. In this study it is hypothesized that the ratio of NAD(P)+/NAD(P)H and the glycolytic pathway of the myelin sheath is maintained via trans-plasma membrane electron transport system (t-PMET).
    [Show full text]
  • Genomic Evidence of Reactive Oxygen Species Elevation in Papillary Thyroid Carcinoma with Hashimoto Thyroiditis
    Endocrine Journal 2015, 62 (10), 857-877 Original Genomic evidence of reactive oxygen species elevation in papillary thyroid carcinoma with Hashimoto thyroiditis Jin Wook Yi1), 2), Ji Yeon Park1), Ji-Youn Sung1), 3), Sang Hyuk Kwak1), 4), Jihan Yu1), 5), Ji Hyun Chang1), 6), Jo-Heon Kim1), 7), Sang Yun Ha1), 8), Eun Kyung Paik1), 9), Woo Seung Lee1), Su-Jin Kim2), Kyu Eun Lee2)* and Ju Han Kim1)* 1) Division of Biomedical Informatics, Seoul National University College of Medicine, Seoul, Korea 2) Department of Surgery, Seoul National University Hospital and College of Medicine, Seoul, Korea 3) Department of Pathology, Kyung Hee University Hospital, Kyung Hee University School of Medicine, Seoul, Korea 4) Kwak Clinic, Okcheon-gun, Chungbuk, Korea 5) Department of Internal Medicine, Uijeongbu St. Mary’s Hospital, Uijeongbu, Korea 6) Department of Radiation Oncology, Seoul St. Mary’s Hospital, Seoul, Korea 7) Department of Pathology, Chonnam National University Hospital, Kwang-Ju, Korea 8) Department of Pathology, Samsung Medical Center, Sungkyunkwan University School of Medicine, Seoul, Korea 9) Department of Radiation Oncology, Korea Cancer Center Hospital, Korea Institute of Radiological and Medical Sciences, Seoul, Korea Abstract. Elevated levels of reactive oxygen species (ROS) have been proposed as a risk factor for the development of papillary thyroid carcinoma (PTC) in patients with Hashimoto thyroiditis (HT). However, it has yet to be proven that the total levels of ROS are sufficiently increased to contribute to carcinogenesis. We hypothesized that if the ROS levels were increased in HT, ROS-related genes would also be differently expressed in PTC with HT. To find differentially expressed genes (DEGs) we analyzed data from the Cancer Genomic Atlas, gene expression data from RNA sequencing: 33 from normal thyroid tissue, 232 from PTC without HT, and 60 from PTC with HT.
    [Show full text]
  • Structural Basis of Inter-Domain Electron Transfer in Ncb5or, a Redox Enzyme Implicated in Diabetes and Lipid Metabolism
    STRUCTURAL BASIS OF INTER-DOMAIN ELECTRON TRANSFER IN NCB5OR, A REDOX ENZYME IMPLICATED IN DIABETES AND LIPID METABOLISM By Bin Deng Submitted to the graduate degree program in Rehabilitation Science and the Graduate Faculty of the University of Kansas in partial fulfillment of the requirements for the degree of Doctor of Philosophy Hao Zhu, Ph.D. (co-chair, advisor) Irina Smirnova, Ph.D. (co-chair) David Benson, Ph.D. (co-advisor) WenFang Wang, Ph.D. Aron Fenton, Ph.D. Date defended: August 17, 2011 The Dissertation Committee for Bin Deng certifies that this is the approved version of the following dissertation STRUCTURAL BASIS OF INTER-DOMAIN ELECTRON TRANSFER IN NCB5OR, A REDOX ENZYME IMPLICATED IN DIABETES AND LIPID METABOLISM Hao Zhu, Ph.D. (co-chair, advisor) Irina Smirnova, Ph.D. (co-chair) Date approved: August 22, 2011 ii ABSTRACT NADH cytochrome b5 oxidoreductase (Ncb5or) is a multi-domain redox enzyme found in all animal tissues and associated with the endoplasmic reticulum (ER). Ncb5or contains (from N-terminus to C terminus) a novel N-terminal region, the b5 domain (Ncb5or-b5), the CS domain, and the b5R domain (Ncb5or-b5R). Ncb5or-b5, the heme binding domain, is homologous to microsomal cytochrome b5 (Cyb5A) and belongs to cytochrome b5 superfamily. Ncb5or-b5R, the FAD (flavin adenine dinucleotide) binding domain, is homologous to cytochrome b5 reductase (Cyb5R3) and belongs to ferredoxin NADP+ reductase superfamily. Both superfamilies are of great biological significance whose members have important functions. The CS domain can be assigned into the heat shock protein 20 (HSP20, or p23) family, whose members are known to mediate protein-protein interactions.
    [Show full text]
  • View / Download
    Samhan-Arias AK, López-Sánchez C, Marques-da-Silva D, Lagoa R, Garcia-Lopez V, García-Martínez Neuromedicine V, Gutierrez-Merino C, J Neurol Neuromedicine (2016) 1(6): 61-65 www.jneurology.com www.jneurology.com Journal of Neurology & Neuromedicine Mini Review Open Access Biochemical and anatomical basis of brain dysfunctions caused by cytochrome b5 reductase deficiency or dysregulation Alejandro K. Samhan-Arias1*, Carmen López-Sánchez2*, Dorinda Marques-da-Silva1, Ricardo Lagoa1-3, Virginio Garcia-Lopez2,4, Virginio García-Martínez2, Carlos Gutierrez-Merino1# 1Dept. Biochemistry and Molecular Biology, Faculty of Sciences, University of Extremadura, 06006-Badajoz, Spain 2Dept. Human Anatomy and Embryology, Faculty of Medicine, University of Extremadura, 06006-Badajoz, Spain 3ESTG- Polytechnic Institute of Leiria, Leiria, Portugal 4FARMADIEX 06008 Badajoz, Spain Article Info Article Notes ABSTRACT Received: August 29, 2016 Accepted: September 21, 2016 Cytochrome b5 reductase (Cb5R) and cytochrome b5 (Cb5) are coupled redox Keywords: systems with a high potential as biomarkers of health and disease in the brain *Correspondence: Delta9-Tetrahydrocannabinol Dr. Carlos Gutierrez-Merino because they regulate metabolic pathways that are essential to maintain normal Dronabinol Dept. Biochemistry and Molecular Biology, Faculty of Sciences, neuronal function, like lipid biosynthesis, steroid and xenobiotics metabolism, THC University of Extremadura, 06006-Badajoz, Spain, Phone/Fax: neuronal bioenergetics and production of reactive oxygen species. Mutations of Cannabidiol +34924289419. the Cb R reported in humans produce recessive congenital methemoglobinemia CBD 5 E-mail: [email protected] of type II, a disease with severe clinical neurological dysfunctions. The isoform 3 *Both authors have contributed equally to this work and should be of Cb5R (Cb5R3) and Cb5 are highly expressed in pyramidal neurons of the primary considered first authors and secondary motor areas of frontoparietal cerebral cortex, hippocampus, © 2016 Samhan-Arias AK and López-Sánchez C.
    [Show full text]
  • Supplemental Table 1 Proteins Whose Content Is Significantly Modified in Hepatocytes by Aramchol
    Supplemental table 1 Proteins whose content is significantly modified in hepatocytes by Aramchol. See text for experimental details Fold change Accession Protein name P value (Log2) achol/ctrl Fibrosis 6.29E- 0.13 P20152 Vimentin GN = Vim PE = 1 SV = 3 04 2.02E- 0.45 Q8BTM8 Filamin-A GN = Flna PE = 1 SV = 5 02 1.13E- 0.50 Q80X90 Filamin-B GN = Flnb PE = 1 SV = 3 02 Keratin type I cytoskeletal 18 GN = 4.89E- 0.78 P05784 Krt18 PE = 1 SV = 5 02 Translation RNA-binding protein 27 GN = Rbm27 1.08E- Q5SFM8 0.32 PE = 1 SV = 3 02 60S ribosomal protein L22-like 1 3.86E- Q9D7S7 0.42 GN = Rpl22l1 PE = 1 SV = 1 02 Trifunctional purine biosynthetic 2.33E- Q64737 protein adenosine-3 GN = Gart PE = 1 0.50 03 SV = 3 Eukaryotic translation initiation factor 3 3.10E- P23116 0.59 subunit A GN = Eif3a PE = 1 SV = 5 03 Glycine--tRNA ligase GN = Gars PE = 1 6.87E- Q9CZD3 0.63 SV = 1 03 Eukaryotic translation initiation factor 3 4.13E- Q8JZQ9 0.67 subunit B GN = Eif3b PE = 1 SV = 1 02 Elongation factor 1-gamma GN = Eef1g 2.47E- Q9D8N0 0.71 PE = 1 SV = 3 02 Q922B2 Aspartate--tRNA ligase cytoplasmic 2.02E- 0.72 GN = Dars PE = 1 SV = 2 02 Arginine--tRNA ligase cytoplasmic 1.47E- Q9D0I9 0.72 GN = Rars PE = 1 SV = 2 02 RNA-binding protein 25 GN = Rbm25 1.28E- B2RY56 1.92 PE = 1 SV = 2 02 Eukaryotic translation initiation factor 4 7.92E- Q80XI3 3.90 gamma 3 GN = Eif4g3 PE = 1 SV = 2 03 Lipid metabolism Prostaglandin reductase 1 GN = Ptgr1 4.55E- Q91YR9 0.42 PE = 1 SV = 2 02 3.09E- Q9DBG5 Perilipin-3 GN = Plin3 PE = 1 SV = 1 0.51 02 Acyl-CoA dehydrogenase family 3.98E-
    [Show full text]
  • Interactions Between Redox Partners in Various Cytochrome P450 Systems: Functional and Structural Aspects
    CORE Metadata, citation and similar papers at core.ac.uk Provided by Elsevier - Publisher Connector Biochimica et Biophysica Acta 1460 (2000) 353^374 www.elsevier.com/locate/bba Interactions between redox partners in various cytochrome P450 systems: functional and structural aspects David F.V. Lewis a;*, Peter Hlavica b a Molecular Toxicology Group, School of Biological Sciences, University of Surrey, Guildford, Surrey GU2 5XH, UK b Walther Straub-Institute fu«r Pharmakologie and Toxikologie, Universita«tMu«nchen, Nussbaumstrasse 26, D-8033 Mu«nchen, Germany Received 1 December 1999; received in revised form 28 July 2000; accepted 4 August 2000 Abstract The various types of redox partner interactions employed in cytochrome P450 systems are described. The similarities and differences between the redox components in the major categories of P450 systems present in bacteria, mitochondria and microsomes are discussed in the light of the accumulated evidence from X-ray crystallographic and NMR spectroscopic determinations. Molecular modeling of the interactions between the redox components in various P450 mono-oxygenase systems is proposed on the basis of structural and mutagenesis information, together with experimental findings based on chemical modification of key residues likely to be associated with complementary binding sites on certain typical P450 isoforms and their respective redox partners. ß 2000 Elsevier Science B.V. All rights reserved. Keywords: Cytochrome P450; Redox partner interaction; Electron transfer rate 1. Introduction istics in keeping with their functionality as mono- oxygenases, it is apparent that di¡erences exist in Enzymes of the cytochrome P450 (CYP) superfam- their electron transport chains when one compares ily of heme-thiolate proteins are found in most bio- CYP systems from eukaryotic and prokaryotic or- logical species from all ¢ve kingdoms (monera, pro- ganisms [3,4].
    [Show full text]