Rapid in Vivo Detection of Isoniazid-Sensitive Mycobacterium Tuberculosis by Breath Test

Total Page:16

File Type:pdf, Size:1020Kb

Rapid in Vivo Detection of Isoniazid-Sensitive Mycobacterium Tuberculosis by Breath Test ARTICLE Received 19 Mar 2014 | Accepted 14 Aug 2014 | Published 23 Sep 2014 DOI: 10.1038/ncomms5989 Rapid in vivo detection of isoniazid-sensitive Mycobacterium tuberculosis by breath test Seong W. Choi1,*, Mamoudou Maiga2,*, Mariama C. Maiga2, Viorel Atudorei3, Zachary D. Sharp3, William R. Bishai2 & Graham S. Timmins1 There is urgent need for rapid, point-of-care diagnostic tools for tuberculosis (TB) and drug sensitivity. Current methods based on in vitro growth take weeks, while DNA amplification can neither differentiate live from dead organisms nor determine phenotypic drug resistance. Here we show the development and evaluation of a rapid breath test for isoniazid (INH)-sensitive TB based on detection of labelled N2 gas formed specifically from labelled INH by mycobacterial KatG enzyme. In vitro data show that the assay is specific, dependent on mycobacterial abundance and discriminates between INH-sensitive and INH-resistant 15 (S315T mutant KatG) TB. In vivo, the assay is rapid with maximal detection of N2 in exhaled 15 breath of infected rabbits within 5–10 min. No increase in N2 is detected in uninfected 15 animals, and the increases in N2 are dependent on infection dose. This test may allow rapid detection of INH-sensitive TB. 1 Department of Pharmaceutical Sciences, College of Pharmacy, University of New Mexico, Albuquerque, New Mexico 87131, USA. 2 Department of Medicine, Center for Tuberculosis Research, Johns Hopkins University, Baltimore, Maryland 21231, USA. 3 Department of Earth and Planetary Sciences, College of Pharmacy, University of New Mexico, Albuquerque, New Mexico 87131, USA. * These author contributed equally to this work. Correspondence and requests for materials should be addressed to G.S.T. (email: [email protected]). NATURE COMMUNICATIONS | 5:4989 | DOI: 10.1038/ncomms5989 | www.nature.com/naturecommunications 1 & 2014 Macmillan Publishers Limited. All rights reserved. ARTICLE NATURE COMMUNICATIONS | DOI: 10.1038/ncomms5989 acterially activated prodrugs are unusually well represented a O 15NH 15NH O O 15 among the first- and second-line TB drugs. These include 15NH NH C Bnot only established drugs such as isoniazid (INH)1, 2 2 3 KatG Beta ethionamide or pyrazinamide but also newly approved and H15N 4 + 15 developing agents such as the nitroimidazoles delamanid and scission NH PA824 (ref. 5). The selectivity of these agents arises from their N N N 15 · · specific activation by mycobacterial enzymes, usually to reactive N2-INH (1)IN-Hydrazyl INAcyl Diazene (2) intermediates, and is underlined by the major mode of resistance to these agents, with mutations in genes of their activating b –OOC H –OOC H 6 7 enzymes such as katG for INH , ethA for ethionamide , pncA + N + N2H2 2 8 9 – for pyrazinamide and ddn for nitroimidazoles . Since gene H COO– H COO inactivation may occur through a multiplicity of single-nucleotide polymorphisms (SNPs) or insertion/deletion (indel) events, c 2 N2H2 N2H4 + N2 nucleic acid amplification and SNP-indel detection approaches provide only partially predictive drug susceptibility data. Beyond Figure 1 | Production of N2 from KatG activation of isoniazid. 10–14 15 single-gene mutational resistance, multiple other alleles and (a) Production of labelled diazene from N2-hydrazyl-labelled INH; 15,16 other drugs may influence enzymatic activity of prodrug (b) oxidation of diazene to N2 by reaction with unsaturated carbon conversion, factors that may also limit nucleic acid-based bonds such as fumarate shown, rate constant 8 Â 102 M À 1 s À 1 (ref. 20); techniques for drug susceptibility testing. Despite the (c) disproportionation of diazene to N2 and hydrazine rate constant importance of prodrug activation, studies have been limited to 2.2 Â 104 M À 1 s À 1 (ref. 21). in vitro samples or bacterial culture, and at present there are no POC techniques to directly measure prodrug conversion and 15 of d N2 of 250 would indicate a 25% increase in the absolute enzymatic activity. 15 amount of N2 in a sample. This same principle is exploited by The mycobacterial enzyme KatG, which is responsible for INH other isotope ratio breath diagnostics including the urease breath activation, produces a range of INH-derived radicals that react test for Helicobacter pylori infection. with cellular components, especially the isonicotinoyl acyl radical 15 þ þ In this report, we describe the detection of N2 products of that adds covalently to NAD and NADP . The adducts INH activation that are specific for mycobacterial KatG, and test formed by these radicals are potent inhibitors of the key their specificity against other important lung bacterial pathogens mycobacterial targets. The first target of such inhibition to be that possess related peroxidase enzymes. By measuring the elucidated was 2-trans-enoyl-acyl carrier protein reductase 15 15 þ increase over baseline d N2 upon addition of the N2-hydrazyl (InhA) that binds INacyl-NAD adducts, tightly inhibiting - 17 INH (a method termed INH N here), we hypothesized that mycolic acid synthesis . Although other targets or reactive 15 IRMS detection of this N2 may allow sensitive measurement of species may play roles, the importance of these alternative INH activation by KatG. mechanisms compared with the widely accepted inhibition of InhA remains unclear18. The detection of degradation products of the INacyl-NAD þ Results adduct, such as 4-isonicotinoylnicotinamide in urine or other In vitro cultures of M. tuberculosis H37Rv or M. bovis Bacillus 15 fluids held great promise as a measure of INH prodrug Calmette–Gue´rin (BCG) were treated with N2-hydrazyl INH in conversion in TB, and hence determining KatG activity19. sealed tubes and portions of headspace gas collected, filtered and À 115 However, this appears to lack specificity for Mycobacterium analysed. Treatment with 1 mg ml N2-hydrazyl INH resulted 15 tuberculosis as 4-isonicotinoylnicotinamide was found in urine of in marked increases in d N2 that were dependent upon bacterial uninfected mice treated with INH, and in urine of TB patients density (CFU ml À 1; Fig. 2a). Next, we determined the correlation 19 15 15 even when they were culture-negative after treatment . between the accumulated d N2 and the dose of N2-hydrazyl Mycobacterial KatG activates INH by oxidation to a hydrazyl INH administered (Fig. 2b), and these experiments showed 15 radical that undergoes beta scission to form isonicotinoyl acyl sensitive IRMS detection of headspace d N2 following 15 À 1 radical. The other product of this beta-scission reaction, diazene, N2-hydrazyl INH doses of 0.1 mg ml , a concentration we has received little to no attention in the literature. To study diazene subsequently used throughout. The generation of headspace 15 production in KatG-expressing mycobacteria, we used doubly d N2 occurred rapidly (Fig. 2c), and plateau levels were reached 15 B N2-hydrazyl-labelled INH (1) to produce doubly labelled diazene in 1 h. Similar data were also observed with M. bovis BCG (Fig. 1a). Under physiologic conditions, this diazene rapidly (Fig. 3), another KatG-expressing mycobacterial species, although 20 15 undergoes either oxidation by unsaturated bonds (Fig. 1b) or generally lower levels of N2 production were observed 15 bimolecular disproportionation (Fig. 1c) to produce N2 (ref. 21). compared with M. tuberculosis H37Rv. These data confirmed Diazene is widely used synthetically in the stereospecific reduction our ability to measure mycobacterial KatG activity quantitatively 22 15 of a wide range of carbon–carbon double bonds . with IRMS monitoring of conversion of N2-hydrazyl INH to 15 15 This N2 produced from INH-derived diazene may be readily N2 using in vitro cultures of mycobacteria. 15 detected by isotope ratio mass spectrometry (IRMS), and its We then evaluated the specificity of our N2-hydrazyl INH 15 15 abundance is reported as d N2 where to N2 detection method for mycobacterial KatG activity. hÀÁ As may be seen in Fig. 4a, the common respiratory pathogens 15 15 15 14 14 d N2 ¼1;000Â N N= N N Staphylococcus aureus, Pseudomonas aeruginosa and Escherichia samplei 15 15 ÀÁÀÁcoli did not produce N2 when treated with N2-hydrazyl INH. 15 15 =14 14 = 15 15 =14 14 15 15 À N N N N standard N N N N standard To determine whether our N2-hydrazyl INH to N2 detection method for INH prodrug conversion was specific for the 15 14 15 Atmospheric N is much lower in abundance than N mycobacterial KatG, we tested the production of N2 using an B 15 B ( 0.36%), hence N2 is very low in abundance ( 13 p.p.m.); M. tuberculosis strain harbouring a mutated KatG. This strain 15 therefore, even small amounts of N2 generation may be detected possessed the M. tuberculosis katG-S315T mutation that is known 15 through changes in d N2. For example, an increase in the value to profoundly decrease INH activation and result in drug 2 NATURE COMMUNICATIONS | 5:4989 | DOI: 10.1038/ncomms5989 | www.nature.com/naturecommunications & 2014 Macmillan Publishers Limited. All rights reserved. NATURE COMMUNICATIONS | DOI: 10.1038/ncomms5989 ARTICLE a * a 200 * * 3,000 * 150 * 2 2 N 2,000 N * 15 15 δ * δ 100 1,000 * gas gas 50 0 Increase in headspace Increase in headspace 0 0 105 106 107 108 0 105 106 107 108 CFU ml–1 CFU ml–1 b b 250 200 * * 200 2 2 N 150 N 100 15 15 δ δ 100 gas gas 0 50 * Increase in headspace Increase in headspace 0 0 1E–3 0.01 0.1 011E–3 0.01 0.1 15 –1 N2-hydrazyl-INH (mg ml ) 15 –1 N2-hydrazyl-INH (mg ml ) c * c 150 * 200 * 2 N 2 100 15 N δ 100 15 δ gas 50 gas 0 Increase in headspace Increase in headspace 0 01234 Incubation time (h) 0.00 0.25 0.50 0.75 1.00 15 Incubation time (h) Figure 2 | CFU, dose and time dependence of N2 production by 15 15 M.
Recommended publications
  • Analysis of Mutations Leading to Para-Aminosalicylic Acid Resistance in Mycobacterium Tuberculosis
    www.nature.com/scientificreports OPEN Analysis of mutations leading to para-aminosalicylic acid resistance in Mycobacterium tuberculosis Received: 9 April 2019 Bharati Pandey1, Sonam Grover2, Jagdeep Kaur1 & Abhinav Grover3 Accepted: 31 July 2019 Thymidylate synthase A (ThyA) is the key enzyme involved in the folate pathway in Mycobacterium Published: xx xx xxxx tuberculosis. Mutation of key residues of ThyA enzyme which are involved in interaction with substrate 2′-deoxyuridine-5′-monophosphate (dUMP), cofactor 5,10-methylenetetrahydrofolate (MTHF), and catalytic site have caused para-aminosalicylic acid (PAS) resistance in TB patients. Focusing on R127L, L143P, C146R, L172P, A182P, and V261G mutations, including wild-type, we performed long molecular dynamics (MD) simulations in explicit solvent to investigate the molecular principles underlying PAS resistance due to missense mutations. We found that these mutations lead to (i) extensive changes in the dUMP and MTHF binding sites, (ii) weak interaction of ThyA enzyme with dUMP and MTHF by inducing conformational changes in the structure, (iii) loss of the hydrogen bond and other atomic interactions and (iv) enhanced movement of protein atoms indicated by principal component analysis (PCA). In this study, MD simulations framework has provided considerable insight into mutation induced conformational changes in the ThyA enzyme of Mycobacterium. Antimicrobial resistance (AMR) threatens the efective treatment of tuberculosis (TB) caused by the bacteria Mycobacterium tuberculosis (Mtb) and has become a serious threat to global public health1. In 2017, there were reports of 5,58000 new TB cases with resistance to rifampicin (frst line drug), of which 82% have developed multidrug-resistant tuberculosis (MDR-TB)2. AMR has been reported to be one of the top health threats globally, so there is an urgent need to proactively address the problem by identifying new drug targets and understanding the drug resistance mechanism3,4.
    [Show full text]
  • Antimicrobial Resistance Benchmark 2020 Antimicrobial Resistance Benchmark 2020
    First independent framework for assessing pharmaceutical company action Antimicrobial Resistance Benchmark 2020 Antimicrobial Resistance Benchmark 2020 ACKNOWLEDGEMENTS The Access to Medicine Foundation would like to thank the following people and organisations for their contributions to this report.1 FUNDERS The Antimicrobial Resistance Benchmark research programme is made possible with financial support from UK AID and the Dutch Ministry of Health, Welfare and Sport. Expert Review Committee Research Team Reviewers Hans Hogerzeil - Chair Gabrielle Breugelmans Christine Årdal Gregory Frank Fatema Rafiqi Karen Gallant Nina Grundmann Adrián Alonso Ruiz Hans Hogerzeil Magdalena Kettis Ruth Baron Hitesh Hurkchand Joakim Larsson Dulce Calçada Joakim Larsson Marc Mendelson Moska Hellamand Marc Mendelson Margareth Ndomondo-Sigonda Kevin Outterson Katarina Nedog Sarah Paulin (Observer) Editorial Team Andrew Singer Anna Massey Deirdre Cogan ACCESS TO MEDICINE FOUNDATION Rachel Jones The Access to Medicine Foundation is an independent Emma Ross non-profit organisation based in the Netherlands. It aims to advance access to medicine in low- and middle-income Additional contributors countries by stimulating and guiding the pharmaceutical Thomas Collin-Lefebvre industry to play a greater role in improving access to Alex Kong medicine. Nestor Papanikolaou Address Contact Naritaweg 227-A For more information about this publication, please contact 1043 CB, Amsterdam Jayasree K. Iyer, Executive Director The Netherlands [email protected] +31 (0) 20 215 35 35 www.amrbenchmark.org 1 This acknowledgement is not intended to imply that the individuals and institutions referred to above endorse About the cover: Young woman from the Antimicrobial Resistance Benchmark methodology, Brazil, where 40%-60% of infections are analyses or results.
    [Show full text]
  • Updated WHO MDR-TB Treatment Guidelines and the Use of New Drugs in Children
    Updated WHO MDR-TB treatment guidelines and the use of new drugs in children Annual meeting of the Childhood TB subgroup Liverpool, UK, 26 October 2016 Dr Malgosia Grzemska WHO/HQ, Global TB Programme Outline • Latest epidemiological data • Existing guidelines • 2016 update of the DR-TB treatment guidelines • New recommendations for treatment of RR-TB and MDR- TB in children • Delamanid guideline for use in children and adolescents • Research gaps • Conclusions The Global Burden of TB - 2015 Estimated number Estimated number of cases of deaths 10,4 million 1.8 million* All forms of TB • 1 million Children (10%) • 210,000 children (170,000 HIV negative and 40,000 HIV- positive) HIV-associated TB 1.2 million (11%) 390,000 Multidrug-resistant TB 480,000 190,000 +100,000 RR cases Childhood TB: MDRTB estimates Dodd P., Sismanidis B., Seddon J., Lancet Inf Dis, 21 June 2016: Global burden of drug-resistant tuberculosis in children: a mathematical modelling study • It is estimated that over 67 million children are infected with TB and therefore at risk of developing disease in the future; – 5 mln with INH resistance; 2 mln with MDR; 100,000 with XDR • Every year 25,000 children develop MDRTB and 1200 XDR TB MDR-TB in children • MDR-TB in children is mainly the result of transmission of a strain of M. tuberculosis that is MDR from an adult source case , and therefore often not suspected unless a history of contact with an adult pulmonary MDR-TB case is known. • Referral to a specialist is advised for treatment.
    [Show full text]
  • Ehealth DSI [Ehdsi V2.2.2-OR] Ehealth DSI – Master Value Set
    MTC eHealth DSI [eHDSI v2.2.2-OR] eHealth DSI – Master Value Set Catalogue Responsible : eHDSI Solution Provider PublishDate : Wed Nov 08 16:16:10 CET 2017 © eHealth DSI eHDSI Solution Provider v2.2.2-OR Wed Nov 08 16:16:10 CET 2017 Page 1 of 490 MTC Table of Contents epSOSActiveIngredient 4 epSOSAdministrativeGender 148 epSOSAdverseEventType 149 epSOSAllergenNoDrugs 150 epSOSBloodGroup 155 epSOSBloodPressure 156 epSOSCodeNoMedication 157 epSOSCodeProb 158 epSOSConfidentiality 159 epSOSCountry 160 epSOSDisplayLabel 167 epSOSDocumentCode 170 epSOSDoseForm 171 epSOSHealthcareProfessionalRoles 184 epSOSIllnessesandDisorders 186 epSOSLanguage 448 epSOSMedicalDevices 458 epSOSNullFavor 461 epSOSPackage 462 © eHealth DSI eHDSI Solution Provider v2.2.2-OR Wed Nov 08 16:16:10 CET 2017 Page 2 of 490 MTC epSOSPersonalRelationship 464 epSOSPregnancyInformation 466 epSOSProcedures 467 epSOSReactionAllergy 470 epSOSResolutionOutcome 472 epSOSRoleClass 473 epSOSRouteofAdministration 474 epSOSSections 477 epSOSSeverity 478 epSOSSocialHistory 479 epSOSStatusCode 480 epSOSSubstitutionCode 481 epSOSTelecomAddress 482 epSOSTimingEvent 483 epSOSUnits 484 epSOSUnknownInformation 487 epSOSVaccine 488 © eHealth DSI eHDSI Solution Provider v2.2.2-OR Wed Nov 08 16:16:10 CET 2017 Page 3 of 490 MTC epSOSActiveIngredient epSOSActiveIngredient Value Set ID 1.3.6.1.4.1.12559.11.10.1.3.1.42.24 TRANSLATIONS Code System ID Code System Version Concept Code Description (FSN) 2.16.840.1.113883.6.73 2017-01 A ALIMENTARY TRACT AND METABOLISM 2.16.840.1.113883.6.73 2017-01
    [Show full text]
  • Six-Month Response to Delamanid Treatment in MDR TB Patients
    RESEARCH LETTERS antimicrobial drug prophylaxis is not known (5), and 7. Public Health Agency of Canada. Guidelines for the prevention and guidelines vary among countries. In the United Kingdom, control of invasive group A streptococcal disease. October 2006 [cited 2017 April 4th]. https://eportal.mountsinai.ca/Microbiology/ prophylaxis is recommended for exposed mothers or babies protocols/pdf/GAS%20guidelines%202006.pdf during the neonatal period, for symptomatic close contacts, 8. Direction générale de la Santé. Notification from the French High or for the entire household if there is >1 case (6). In Cana- Council for Public Hygiene (Communicable Diseases section) da, prophylaxis is recommended for persons who had close concerning conduct to be taken in cases of one or more invasive group A streptococcal disease of community origin. Session of contact with a person with a confirmed severe case dur- November 18th, 2005 [in French] [cited 2016 Dec 26]. ing a specified period (7); in France and the United States, http://www.hcsp.fr/docspdf/cshpf/a_mt_181105_streptococcus.pdf prophylaxis is recommended for close contacts with risk 9. Prevention of Invasive Group A Streptococcal Infections factors for invasive infections (8,9). In the cases we report Workshop Participants. Prevention of invasive group A streptococcal disease among household contacts of case patients here, the second case-patient did not receive prophylaxis and among postpartum and postsurgical patients: recommendations because of the short period between the 2 cases. from the Centers for Disease Control and Prevention. Clin Infect Both case-patients received NSAIDs during the onset Dis. 2002;35:950–9. Erratum in: Clin Infect Dis.
    [Show full text]
  • Estonian Statistics on Medicines 2016 1/41
    Estonian Statistics on Medicines 2016 ATC code ATC group / Active substance (rout of admin.) Quantity sold Unit DDD Unit DDD/1000/ day A ALIMENTARY TRACT AND METABOLISM 167,8985 A01 STOMATOLOGICAL PREPARATIONS 0,0738 A01A STOMATOLOGICAL PREPARATIONS 0,0738 A01AB Antiinfectives and antiseptics for local oral treatment 0,0738 A01AB09 Miconazole (O) 7088 g 0,2 g 0,0738 A01AB12 Hexetidine (O) 1951200 ml A01AB81 Neomycin+ Benzocaine (dental) 30200 pieces A01AB82 Demeclocycline+ Triamcinolone (dental) 680 g A01AC Corticosteroids for local oral treatment A01AC81 Dexamethasone+ Thymol (dental) 3094 ml A01AD Other agents for local oral treatment A01AD80 Lidocaine+ Cetylpyridinium chloride (gingival) 227150 g A01AD81 Lidocaine+ Cetrimide (O) 30900 g A01AD82 Choline salicylate (O) 864720 pieces A01AD83 Lidocaine+ Chamomille extract (O) 370080 g A01AD90 Lidocaine+ Paraformaldehyde (dental) 405 g A02 DRUGS FOR ACID RELATED DISORDERS 47,1312 A02A ANTACIDS 1,0133 Combinations and complexes of aluminium, calcium and A02AD 1,0133 magnesium compounds A02AD81 Aluminium hydroxide+ Magnesium hydroxide (O) 811120 pieces 10 pieces 0,1689 A02AD81 Aluminium hydroxide+ Magnesium hydroxide (O) 3101974 ml 50 ml 0,1292 A02AD83 Calcium carbonate+ Magnesium carbonate (O) 3434232 pieces 10 pieces 0,7152 DRUGS FOR PEPTIC ULCER AND GASTRO- A02B 46,1179 OESOPHAGEAL REFLUX DISEASE (GORD) A02BA H2-receptor antagonists 2,3855 A02BA02 Ranitidine (O) 340327,5 g 0,3 g 2,3624 A02BA02 Ranitidine (P) 3318,25 g 0,3 g 0,0230 A02BC Proton pump inhibitors 43,7324 A02BC01 Omeprazole
    [Show full text]
  • Treatment of Drug-Resistant Tuberculosis an Official ATS/CDC/ERS/IDSA Clinical Practice Guideline Payam Nahid, Sundari R
    AMERICAN THORACIC SOCIETY DOCUMENTS Treatment of Drug-Resistant Tuberculosis An Official ATS/CDC/ERS/IDSA Clinical Practice Guideline Payam Nahid, Sundari R. Mase, Giovanni Battista Migliori, Giovanni Sotgiu, Graham H. Bothamley, Jan L. Brozek, Adithya Cattamanchi, J. Peter Cegielski, Lisa Chen, Charles L. Daley, Tracy L. Dalton, Raquel Duarte, Federica Fregonese, C. Robert Horsburgh, Jr., Faiz Ahmad Khan, Fayez Kheir, Zhiyi Lan, Alfred Lardizabal, Michael Lauzardo, Joan M. Mangan, Suzanne M. Marks, Lindsay McKenna, Dick Menzies, Carole D. Mitnick, Diana M. Nilsen, Farah Parvez, Charles A. Peloquin, Ann Raftery, H. Simon Schaaf, Neha S. Shah, Jeffrey R. Starke, John W. Wilson, Jonathan M. Wortham, Terence Chorba, and Barbara Seaworth; on behalf of the American Thoracic Society, U.S. Centers for Disease Control and Prevention, European Respiratory Society, and Infectious Diseases Society of America THIS OFFICIAL CLINICAL PRACTICE GUIDELINE WAS APPROVED BY THE AMERICAN THORACIC SOCIETY, THE EUROPEAN RESPIRATORY SOCIETY, AND THE INFECTIOUS DISEASES SOCIETY OF AMERICA SEPTEMBER 2019, AND WAS CLEARED BY THE U.S. CENTERS FOR DISEASE CONTROL AND PREVENTION SEPTEMBER 2019 Background: The American Thoracic Society, U.S. Centers for was judged to be very low, because the data came Disease Control and Prevention, European Respiratory Society, and from observational studies with significant loss to follow-up Infectious Diseases Society of America jointly sponsored this new and imbalance in background regimens between comparator practice guideline on the treatment of drug-resistant tuberculosis groups. Good practices in the management of MDR-TB are (DR-TB). The document includes recommendations on the described. On the basis of the evidence review, a clinical strategy treatment of multidrug-resistant TB (MDR-TB) as well as tool for building a treatment regimen for MDR-TB is also isoniazid-resistant but rifampin-susceptible TB.
    [Show full text]
  • MDR-TB): Evidence and Perspectives
    Editorial Classification of drugs to treat multidrug-resistant tuberculosis (MDR-TB): evidence and perspectives Adrian Rendon1,2*, Simon Tiberi3*, Anna Scardigli4*, Lia D’Ambrosio5,6*, Rosella Centis5, Jose A. Caminero7, Giovanni Battista Migliori5 1Center for Research, Prevention and Treatment of Respiratory Infections, University Hospital Dr José Eleuterio Gonzalez, Monterrey, N.L., Mexico; 2Latin American Thoracic Association (ALAT); 3Division of Infection, Barts Health NHS Trust, London, UK; 4The Global Fund to Fight Aids, Tuberculosis and Malaria, Geneva, Switzerland; 5Maugeri Institute, IRCCS, Tradate, Italy; 6Public Health Consulting Group, Lugano, Switzerland; 7Pneumology Department, University Hospital of Gran Canaria “Dr. Negrin”, Las Palmas Gran Canaria, Spain *These authors contributed equally to this work. Correspondence to: Giovanni Battista Migliori. Maugeri Institute, IRCCS, Via Roncaccio 16, 21049 Tradate, Italy. Email: [email protected]. Submitted Aug 30, 2016. Accepted for publication Sep 05, 2016. doi: 10.21037/jtd.2016.10.14 View this article at: http://dx.doi.org/10.21037/jtd.2016.10.14 Multidrug-resistant (MDR) tuberculosis (TB) (defined Rationale basis of anti-TB treatment as resistance to at least isoniazid and rifampicin), has a The historical principles, derived from randomized clinical relevant epidemiological impact, with 480, 000 cases and trials (RCTs), are still valid: (I) combining different effective 190,000 deaths notified in 2014; 10% of them meet the drugs to prevent the selection of resistant mutants of M. criteria for extensively drug-resistant (XDR)-TB [MDR- tuberculosis; and (II) prolonging the treatment to sterilise the TB with additional resistance to any fluoroquinolone, infected tissues and, therefore, prevent relapse (1,9,10). and to at least one injectable second-line drugs (SLDs)] At least four drugs likely to be effective compose (capreomycin, kanamycin or amikacin) (1,2).
    [Show full text]
  • BMJ Open Is Committed to Open Peer Review. As Part of This Commitment We Make the Peer Review History of Every Article We Publish Publicly Available
    BMJ Open is committed to open peer review. As part of this commitment we make the peer review history of every article we publish publicly available. When an article is published we post the peer reviewers’ comments and the authors’ responses online. We also post the versions of the paper that were used during peer review. These are the versions that the peer review comments apply to. The versions of the paper that follow are the versions that were submitted during the peer review process. They are not the versions of record or the final published versions. They should not be cited or distributed as the published version of this manuscript. BMJ Open is an open access journal and the full, final, typeset and author-corrected version of record of the manuscript is available on our site with no access controls, subscription charges or pay-per-view fees (http://bmjopen.bmj.com). If you have any questions on BMJ Open’s open peer review process please email [email protected] BMJ Open Pediatric drug utilization in the Western Pacific region: Australia, Japan, South Korea, Hong Kong and Taiwan Journal: BMJ Open ManuscriptFor ID peerbmjopen-2019-032426 review only Article Type: Research Date Submitted by the 27-Jun-2019 Author: Complete List of Authors: Brauer, Ruth; University College London, Research Department of Practice and Policy, School of Pharmacy Wong, Ian; University College London, Research Department of Practice and Policy, School of Pharmacy; University of Hong Kong, Centre for Safe Medication Practice and Research, Department
    [Show full text]
  • List Item European Medicines Agency Recommends Two
    22 November 2013 EMA/717915/2013 Press Office Press release European Medicines Agency recommends two new treatment options for tuberculosis Both medicines target multidrug-resistant forms of the disease The European Medicines Agency's Committee for Medicinal Products for Human Use (CHMP) has recommended the authorisation of Deltyba (delamanid) and Para-aminosalicylic acid Lucane (para- aminosalicylic acid), two treatment options for use in combination with other medicines against multidrug-resistant tuberculosis. Multidrug-resistant tuberculosis is defined as tuberculosis caused by Mycobacterium tuberculosis that is resistant to at least isoniazid and rifampicin, which are two anti-tuberculosis medicines used in standard treatment. Approximately 450,000 cases of multidrug-resistant tuberculosis occur globally every year, which corresponds to approximately 5% of the world’s annual burden of tuberculosis. In the European Union, tuberculosis is an orphan indication. It was estimated in 2011 to occur in 2.3 out of 10,000 people. Multidrug-resistant tuberculosis is associated with a very high mortality rate and poses a significant public-health threat as individuals infected with drug-resistant strains are unable to receive adequate treatment and can potentially spread their infection. Conditional marketing authorisation recommended for Deltyba The CHMP recommended granting a conditional marketing authorisation for Deltyba (delamanid), for the treatment of adult patients with pulmonary infections due to multidrug-resistant tuberculosis when an effective treatment regimen cannot otherwise be devised for reasons of resistance or tolerability. The Committee considered that Deltyba responds to the high unmet need for new treatment options for pulmonary multidrug-resistant tuberculosis. The data supplied by the applicant show that the medicine’s benefits outweigh its risks but are not yet comprehensive, therefore the CHMP concluded that additional studies on the long-term effectiveness of Deltyba should be conducted.
    [Show full text]
  • Treatment of Multidrug-Resistant and Extensively Drug-Resistant Tuberculosis in Children: the Role of Bedaquiline and Delamanid
    microorganisms Review Treatment of Multidrug-Resistant and Extensively Drug-Resistant Tuberculosis in Children: The Role of Bedaquiline and Delamanid Francesco Pecora, Giulia Dal Canto, Piero Veronese and Susanna Esposito * Pediatric Clinic, Department of Medicine and Surgery, Pietro Barille Children’s Hospital, University Hospital of Parma, 43126 Parma, Italy; [email protected] (F.P.); [email protected] (G.D.C.); [email protected] (P.V.) * Correspondence: [email protected] Abstract: Multidrug-resistant (MDR) tuberculosis (TB) has been emerging at an alarming rate over the last few years. It has been estimated that about 3% of all pediatric TB is MDR, meaning about 30,000 cases each year. Although most children with MDR-TB can be successfully treated, up to five years ago effective treatment was associated with a high incidence of severe adverse effects and patients with extensively drug-resistant (XDR) TB had limited treatment options and no standard regimen. The main objective of this manuscript is to discuss our present knowledge of the management of MDR- and XDR-TB in children, focusing on the characteristics and available evidence on the use of two promising new drugs: bedaquiline and delamanid. PubMed was used to search for all of the studies published up to November 2020 using key words such as “bedaquiline” and “delamanid” and “children” and “multidrug-resistant tuberculosis” and “extensively drug-resistant tuberculosis”. The search was limited to articles published in English and providing evidence-based Citation: Pecora, F.; Dal Canto, G.; data. Although data on pediatric population are limited and more studies are needed to confirm Veronese, P.; Esposito, S.
    [Show full text]
  • WO 2018/048944 Al 15 March 2018 (15.03.2018) W !P O PCT
    (12) INTERNATIONAL APPLICATION PUBLISHED UNDER THE PATENT COOPERATION TREATY (PCT) (19) World Intellectual Property Organization International Bureau (10) International Publication Number (43) International Publication Date WO 2018/048944 Al 15 March 2018 (15.03.2018) W !P O PCT (51) International Patent Classification: A61K38/1 7 (2006.01) C07K 14/575 (2006.01) A61P 3/00 (2006.01) A61K 38/22 (2006.01) (21) International Application Number: PCT/US2017/050334 (22) International Filing Date: 06 September 2017 (06.09.2017) (25) Filing Language: English (26) Publication Language: English (30) Priority Data: 62/383,957 06 September 2016 (06.09.2016) US (71) Applicant: LA JOLLA PHARMCEUTICAL COMPA¬ NY [US/US]; 10182 Telesis Court, 6th Floor, San Diego, CA 92121 (US). (72) Inventors: TD3MARSH, George; 45 Tintern Lane, Porto- la Valley, CA 94028 (US). CHAWLA, Lakhmir; 10586 Abalone Landing Ter, San Diego, CA 92 130 (US). = (74) Agent: HALSTEAD, David, P. et al; Foley Hoag LLP, = 155 Seaport Boulevard, Boston, MA 02210-2600 (US). (81) Designated States (unless otherwise indicated, for every kind of national protection available): AE, AG, AL, AM, = AO, AT, AU, AZ, BA, BB, BG, BH, BN, BR, BW, BY, BZ, = CA, CH, CL, CN, CO, CR, CU, CZ, DE, DJ, DK, DM, DO, = DZ, EC, EE, EG, ES, FI, GB, GD, GE, GH, GM, GT, HN, = HR, HU, ID, IL, IN, IR, IS, JO, JP, KE, KG, KH, KN, KP, = KR, KW,KZ, LA, LC, LK, LR, LS, LU, LY,MA, MD, ME, = MG, MK, MN, MW, MX, MY, MZ, NA, NG, NI, NO, NZ, = OM, PA, PE, PG, PH, PL, PT, QA, RO, RS, RU, RW, SA, = SC, SD, SE, SG, SK, SL, SM, ST, SV, SY, TH, TJ, TM, TN, ≡ TR, TT, TZ, UA, UG, US, UZ, VC, VN, ZA, ZM, ZW.
    [Show full text]