Deciphering the Ovarian Proteomic Impacts of Obesity

Total Page:16

File Type:pdf, Size:1020Kb

Deciphering the Ovarian Proteomic Impacts of Obesity Iowa State University Capstones, Theses and Graduate Theses and Dissertations Dissertations 2019 Deciphering the ovarian proteomic impacts of obesity Kendra Leah Clark Iowa State University Follow this and additional works at: https://lib.dr.iastate.edu/etd Part of the Genetics Commons Recommended Citation Clark, Kendra Leah, "Deciphering the ovarian proteomic impacts of obesity" (2019). Graduate Theses and Dissertations. 17659. https://lib.dr.iastate.edu/etd/17659 This Dissertation is brought to you for free and open access by the Iowa State University Capstones, Theses and Dissertations at Iowa State University Digital Repository. It has been accepted for inclusion in Graduate Theses and Dissertations by an authorized administrator of Iowa State University Digital Repository. For more information, please contact [email protected]. Deciphering the ovarian proteomic impacts of obesity by Kendra Leah Clark A dissertation submitted to the graduate faculty in partial fulfillment of the requirements for the degree of DOCTOR OF PHILOSOPHY Major: Genetics and Genomics Program of Study Committee: Aileen F. Keating, Major Professor Jeffrey J. Essner Donald S. Sakaguchi Jason W. Ross Geetu Tuteja The student author, whose presentation of the scholarship herein was approved by the program of study committee, is solely responsible for the content of this dissertation. The Graduate College will ensure this dissertation is globally accessible and will not permit alterations after a degree is conferred. Iowa State University Ames, Iowa 2019 Copyright © Kendra Leah Clark, 2019. All rights reserved. ii DEDICATION I dedicate this thesis to my children; whose presence gave me reason. Additionally, I dedicate this work to all the people out there with questionable pasts that everyone gave up on but who never gave up on themselves. iii TABLE OF CONTENTS Page ABSTRACT vi CHAPTER 1. GENERAL INTRODUCTION 1 Dissertation Organization 1 Ovarian development, structure, and function 1 Folliculogenesis 3 Steroidogenesis 6 Hypothalamic pituitary gonadal axis 8 Ovarian gap junctions 10 Obesity 13 Gestational diabetes mellitus 15 Chemical-induced ovotoxicity 16 Chemotherapeutics 19 DNA damage response 21 Follicular apoptosis and atresia 24 Summary 28 References 29 Figures and figure legends 46 CHAPTER 2. DEVELOPMENTAL ORIGINS OF OVARIAN DISORDER: IMPACT OF MATERNAL LEAN GESTATIONAL DIABETES ON THE OFFSPRING OVARIAN PROTEOME IN MICE 51 Abstract 51 Introduction 52 Materials and methods 54 Results 60 Discussion 65 References 71 Figures and figure legends 77 Supplemental figures and legends 84 CHAPTER 3. OBESITY INDUCES BASAL OVARIAN DNA DAMAGE AND REDUCES ATM PHOSPHORYLATION 97 Abstract 97 Introduction 98 Materials and methods 100 iv Results 104 Discussion 106 References 111 Figures and figure legends 117 Supplemental figures and legends 124 CHAPTER 4: ATAXIA TELANGIECTASIA MUTATED COORDINATES THE OVARIAN DNA REPAIR AND ATRESIA-INITIATING REPSONSE TO PHOSPHORAMIDE MUSTARD 128 Abstract 128 Introduction 129 Materials and methods 131 Results 137 Discussion 143 References 152 Figures and figure legends 161 Supplemental figures and legends 168 CHAPTER 5. LEAN MATERNAL GESTATIONAL DIABETES AND HYPERPHAGIA-INDUCED OBESITY IMPACTS OVARIAN GAP JUNCTION PROTEIN EXPRESSION 202 Abstract 202 Introduction 203 Materials and methods 206 Results 209 Discussion 210 Conclusions 214 Declaration of interest 215 Funding 215 Author contribution statement 215 References 215 Figures and figure legends 221 CHAPTER 6. GENERAL CONCLUSIONS 225 Dissertation Summary 225 Future outlook 229 Conclusion 230 References 231 v APPENDIX. ISOLATION AND CULTURE OF PRIMARY EMBRYONIC ZEBRAFISH NEURAL TISSUE 233 ACKNOWLEDGEMENTS 270 vi ABSTRACT The ovary is the female reproductive organ responsible for the production of both the female gamete, the oocyte, and two major female sex hormones, estradiol and progesterone. During embryonic development, oocytes are formed from primordial germ cells and eventually become surrounded by squamous granulosa cells in a follicular structure, termed primordial. The oocyte numbers encased in primordial follicles are finite at birth and remain arrested in the diplotene stage of meiosis until ovulation or they degenerate through atresia. Once the pool of primordial follicles is depleted, ovarian senescence occurs. We hypothesized that the maternal metabolic changes that occur during lean gestational diabetes mellitus would impact offspring ovarian function both basally and in response to a dietary stressor later in life. We observed impacts on follicle numbers and alterations in the ovarian proteome, suggesting possible impacts on fertility and oocyte quality in relation to in utero and metabolic stressors. Additionally, we hypothesized that the ovarian DNA damage response is altered during obesity in adulthood. An elevated response in markers of DNA damage was observed, indicating that the metabolic status of the ovary during obesity initiates a low-level DNA damage response. Intercellular communication is also affected by a metabolic syndrome such as obesity or GDM exposure, with reduction of the gap junction protein Connexin-43 expression in antral follicles from ovaries that experienced obesity. Finally, to elucidate the molecular mechanisms behind the induction of the DNA damage response in the ovary after phosphoramide mustard exposure, we hypothesized that the DNA damage response would be blunted due to reduced abundance of the ATM protein. Using an Atm +/- mouse model to investigate impacts on folliculogenesis and the ovarian proteome, we determined that vii Atm haploinsufficiency results in an irregular DNA damage response, alters the ovarian proteome, and impacts the rate of follicle loss after phosphoramide mustard exposure. Taken together, these findings demonstrate that the DNA damage response is initiated in the ovary during times of metabolic stress and in the absence of Atm , unhealthy follicles remain in the ovary, potentially contributing to poor oocyte quality or infertility. 1 CHAPTER 1. GENERAL INTRODUCTION Dissertation Organization This dissertation includes four manuscripts relevant to this doctoral work, which have either been published or submitted for publication in peer-reviewed journals. These manuscripts establish the foundation of the dissertation work and are preceded by a general introduction describing the significance of the research topic and review of the literature, and proceeded by a discussion of general findings, conclusions, and future considerations. In addition, portions of the literature review section of the dissertation have been published as an invited review and an additional manuscript published outside of the scope of the dissertation is included in the appendix. Literature Review Parts of the literature review are adapted from: Clark KL , S Ganesan, AF Keating. 2018. Impact of toxicant exposures on ovarian gap junctions. Reprod. Toxicol . 81: 140-146. Ovarian development, structure, and function Early in mammalian embryonic development, the highly specialized primordial germ cells (PGCs), originate from the post implantation epiblast in response to extra- embryonic signaling from bone morphogenic proteins BMP4, BMP2, and BMP8B [1-3]. The proteins then bind with receptors that phosphorylate mothers against decapentaplegic 2 homologs SMAD1 and SMAD5, which then dimerize with SMAD4, leading to translocation into the nucleus to initiate the transcriptional regulators of the PCGs – PR domain zinc finger protein 1 (BLIMP1), PR domain zinc finger protein 14 (PRDM14), and transcription factor AP-2 gamma (AP2 γ) [4-6]. The PGCs then migrate from the posterior primitive streak into the endoderm, through the hindgut, and into the dorsal mesentery before arriving at the genital ridge [7, 8]. Once at the genital ridge, cell migration is complete and the PGCs associate with the somatic cells of the gonad and eventually acquire their respective sex-specific morphologies and functions. Some of these cells will serve as germline stem cells, which undergo meiosis to produce the female or male gametes. In the female, the PGCs divide synchronously with incomplete cytokinesis to form a cluster of cells connected by intracellular bridges, forming a multi-nucleated germ cell nest [9, 10]. Coordinated somatic cell migration and germ cell apoptosis contribute to the packaging of individual germ cell nuclei, which become surrounded by flattened pre-granulosa cells to form the finite primordial follicle pool [9, 10]. The early mammalian gonad is bipotential, composed of undifferentiated precursor cells that can follow one of two possible fates, male or female. The Wolffian (mesonephric) ducts are the progenitors for the male reproductive tract and the Müllerian (paramesonephric) ducts are the precursors of the female reproductive tract [11]. Sex determination is triggered by the expression and proper function of the testes determining gene sex-determining region Y ( Sry) in the presence of the Y chromosome, which signals cells to produce testosterone and anti-Müllerian hormone (AMH), resulting in the degeneration of the Müllerian ducts and differentiation of the testes [12, 13]. Conversely, the lack of Sry expression results in the regression of the Wolffian ducts and the 3 differentiation into the female reproductive tract [14]. The exact mechanisms behind early ovarian development are not well understood, though wingless-type MMTV integration site family member 4 ( Wnt4), nuclear receptor subfamily 0, group B, member 1 (Dax1), and forkhead
Recommended publications
  • KO Kidney.Xlsx
    Supplemental Table 18: Dietary Impact on the CGL KO Kidney Sulfhydrome DR/AL Accession Molecular Cysteine Spectral Protein Name Number Alternate ID Weight Residues Count Ratio P‐value Ig gamma‐2A chain C region, A allele P01863 (+1) Ighg 36 kDa 10 C 5.952 0.03767 Heterogeneous nuclear ribonucleoprotein M Q9D0E1 (+1) Hnrnpm 78 kDa 6 C 5.000 0.00595 Phospholipase D3 O35405 Pld3 54 kDa 8 C 4.167 0.04761 Ig kappa chain V‐V region L7 (Fragment) P01642 Gm10881 13 kDa 2 C 2.857 0.01232 UPF0160 protein MYG1, mitochondrial Q9JK81 Myg1 43 kDa 7 C 2.333 0.01613 Copper homeostasis protein cutC homolog Q9D8X1 Cutc 29 kDa 7 C 10.333 0.16419 Corticosteroid‐binding globulin Q06770 Serpina6 45 kDa 3 C 10.333 0.16419 28S ribosomal protein S22, mitochondrial Q9CXW2 Mrps22 41 kDa 2 C 7.333 0.3739 Isoform 3 of Agrin A2ASQ1‐3 Agrn 198 kDa 2 C 7.333 0.3739 3‐oxoacyl‐[acyl‐carrier‐protein] synthase, mitochondrial Q9D404 Oxsm 49 kDa 11 C 7.333 0.3739 Cordon‐bleu protein‐like 1 Q3UMF0 (+3)Cobll1 137 kDa 10 C 5.833 0.10658 ADP‐sugar pyrophosphatase Q9JKX6 Nudt5 24 kDa 5 C 4.167 0.15819 Complement C4‐B P01029 C4b 193 kDa 29 C 3.381 0.23959 Protein‐glutamine gamma‐glutamyltransferase 2 P21981 Tgm2 77 kDa 20 C 3.381 0.23959 Isochorismatase domain‐containing protein 1 Q91V64 Isoc1 32 kDa 5 C 3.333 0.10588 Serpin B8 O08800 Serpinb8 42 kDa 11 C 2.903 0.06902 Heterogeneous nuclear ribonucleoprotein A0 Q9CX86 Hnrnpa0 31 kDa 3 C 2.667 0.5461 Proteasome subunit beta type‐8 P28063 Psmb8 30 kDa 5 C 2.583 0.36848 Ig kappa chain V‐V region MOPC 149 P01636 12 kDa 2 C 2.583 0.36848
    [Show full text]
  • Type of the Paper (Article
    Supplementary Material A Proteomics Study on the Mechanism of Nutmeg-induced Hepatotoxicity Wei Xia 1, †, Zhipeng Cao 1, †, Xiaoyu Zhang 1 and Lina Gao 1,* 1 School of Forensic Medicine, China Medical University, Shenyang 110122, P. R. China; lessen- [email protected] (W.X.); [email protected] (Z.C.); [email protected] (X.Z.) † The authors contributed equally to this work. * Correspondence: [email protected] Figure S1. Table S1. Peptide fraction separation liquid chromatography elution gradient table. Time (min) Flow rate (mL/min) Mobile phase A (%) Mobile phase B (%) 0 1 97 3 10 1 95 5 30 1 80 20 48 1 60 40 50 1 50 50 53 1 30 70 54 1 0 100 1 Table 2. Liquid chromatography elution gradient table. Time (min) Flow rate (nL/min) Mobile phase A (%) Mobile phase B (%) 0 600 94 6 2 600 83 17 82 600 60 40 84 600 50 50 85 600 45 55 90 600 0 100 Table S3. The analysis parameter of Proteome Discoverer 2.2. Item Value Type of Quantification Reporter Quantification (TMT) Enzyme Trypsin Max.Missed Cleavage Sites 2 Precursor Mass Tolerance 10 ppm Fragment Mass Tolerance 0.02 Da Dynamic Modification Oxidation/+15.995 Da (M) and TMT /+229.163 Da (K,Y) N-Terminal Modification Acetyl/+42.011 Da (N-Terminal) and TMT /+229.163 Da (N-Terminal) Static Modification Carbamidomethyl/+57.021 Da (C) 2 Table S4. The DEPs between the low-dose group and the control group. Protein Gene Fold Change P value Trend mRNA H2-K1 0.380 0.010 down Glutamine synthetase 0.426 0.022 down Annexin Anxa6 0.447 0.032 down mRNA H2-D1 0.467 0.002 down Ribokinase Rbks 0.487 0.000
    [Show full text]
  • (10) Patent No.: US 8119385 B2
    US008119385B2 (12) United States Patent (10) Patent No.: US 8,119,385 B2 Mathur et al. (45) Date of Patent: Feb. 21, 2012 (54) NUCLEICACIDS AND PROTEINS AND (52) U.S. Cl. ........................................ 435/212:530/350 METHODS FOR MAKING AND USING THEMI (58) Field of Classification Search ........................ None (75) Inventors: Eric J. Mathur, San Diego, CA (US); See application file for complete search history. Cathy Chang, San Diego, CA (US) (56) References Cited (73) Assignee: BP Corporation North America Inc., Houston, TX (US) OTHER PUBLICATIONS c Mount, Bioinformatics, Cold Spring Harbor Press, Cold Spring Har (*) Notice: Subject to any disclaimer, the term of this bor New York, 2001, pp. 382-393.* patent is extended or adjusted under 35 Spencer et al., “Whole-Genome Sequence Variation among Multiple U.S.C. 154(b) by 689 days. Isolates of Pseudomonas aeruginosa” J. Bacteriol. (2003) 185: 1316 1325. (21) Appl. No.: 11/817,403 Database Sequence GenBank Accession No. BZ569932 Dec. 17. 1-1. 2002. (22) PCT Fled: Mar. 3, 2006 Omiecinski et al., “Epoxide Hydrolase-Polymorphism and role in (86). PCT No.: PCT/US2OO6/OOT642 toxicology” Toxicol. Lett. (2000) 1.12: 365-370. S371 (c)(1), * cited by examiner (2), (4) Date: May 7, 2008 Primary Examiner — James Martinell (87) PCT Pub. No.: WO2006/096527 (74) Attorney, Agent, or Firm — Kalim S. Fuzail PCT Pub. Date: Sep. 14, 2006 (57) ABSTRACT (65) Prior Publication Data The invention provides polypeptides, including enzymes, structural proteins and binding proteins, polynucleotides US 201O/OO11456A1 Jan. 14, 2010 encoding these polypeptides, and methods of making and using these polynucleotides and polypeptides.
    [Show full text]
  • Supplementary Materials
    Electronic Supplementary Material (ESI) for New Journal of Chemistry. This journal is © The Royal Society of Chemistry and the Centre National de la Recherche Scientifique 2017 Supplementary Materials Dihydro-2H-thiopyran-3(4H)-one-1,1-dioxide - a versatile building block for the synthesis of new thiopyran-based heterocyclic systems Vitalii A. Palchykov,*a Roman M. Chabanenko,a Valeriy V. Konshin,b Victor V. Dotsenko,b,c Sergey G. Krivokolysko,b Elena A. Chigorina,d Yuriy I. Horak,e Roman Z. Lytvyn,e Andriy A. Vakhula,e Mykola D. Obushake and Alexander V. Mazepaf aDepartment of Organic Chemistry, Oles Honchar Dnipro National University, 72 Gagarina Av, 49010 Dnipro, Ukraine bDepartment of Chemistry & High Technologies, Kuban State University, 149 Stavropolskaya St, 350040 Krasnodar, Russian Federation сDepartment of Chemistry, North Caucasus Federal University, 1a Pushkin St, 355009 Stavropol, Russian Federation dFederal State Unitary Enterprise «State Scientific Research Institute of Chemical Reagents and High Purity Chemical Substances» (FSUE «IREA»), 3 Bogorodsky val St, 107076 Moscow, Russian Federation eDepartment of Organic Chemistry, Ivan Franko National University of Lviv, 6 Kyryla i Mefodiya St, 79005 Lviv, Ukraine fA. V. Bogatsky Physico-Chemical Institute, National Academy of Sciences of Ukraine, 86 Lustdorfskaya Rd, 65080 Odessa, Ukraine *E-mail: [email protected] 1 CONTENTS: Page: 1 H and 13C NMR spectra of compound 2a (400/100 MHz, DMSO-d6)................................ 4 IR spectrum of compound 2a ............................................................................................. 4 Mass spectrum (EI) of compound 2a ................................................................................. 5 1 H-1H COSY spectrum of compound 2a (400 MHz, DMSO-d6) .......................................... 5 NOESY spectrum of compound 2a (400 MHz, DMSO-d6) ................................................. 6 1 H-13C HSQC spectrum of compound 2a (400/100 MHz, DMSO-d6) ................................
    [Show full text]
  • O O2 Enzymes Available from Sigma Enzymes Available from Sigma
    COO 2.7.1.15 Ribokinase OXIDOREDUCTASES CONH2 COO 2.7.1.16 Ribulokinase 1.1.1.1 Alcohol dehydrogenase BLOOD GROUP + O O + O O 1.1.1.3 Homoserine dehydrogenase HYALURONIC ACID DERMATAN ALGINATES O-ANTIGENS STARCH GLYCOGEN CH COO N COO 2.7.1.17 Xylulokinase P GLYCOPROTEINS SUBSTANCES 2 OH N + COO 1.1.1.8 Glycerol-3-phosphate dehydrogenase Ribose -O - P - O - P - O- Adenosine(P) Ribose - O - P - O - P - O -Adenosine NICOTINATE 2.7.1.19 Phosphoribulokinase GANGLIOSIDES PEPTIDO- CH OH CH OH N 1 + COO 1.1.1.9 D-Xylulose reductase 2 2 NH .2.1 2.7.1.24 Dephospho-CoA kinase O CHITIN CHONDROITIN PECTIN INULIN CELLULOSE O O NH O O O O Ribose- P 2.4 N N RP 1.1.1.10 l-Xylulose reductase MUCINS GLYCAN 6.3.5.1 2.7.7.18 2.7.1.25 Adenylylsulfate kinase CH2OH HO Indoleacetate Indoxyl + 1.1.1.14 l-Iditol dehydrogenase L O O O Desamino-NAD Nicotinate- Quinolinate- A 2.7.1.28 Triokinase O O 1.1.1.132 HO (Auxin) NAD(P) 6.3.1.5 2.4.2.19 1.1.1.19 Glucuronate reductase CHOH - 2.4.1.68 CH3 OH OH OH nucleotide 2.7.1.30 Glycerol kinase Y - COO nucleotide 2.7.1.31 Glycerate kinase 1.1.1.21 Aldehyde reductase AcNH CHOH COO 6.3.2.7-10 2.4.1.69 O 1.2.3.7 2.4.2.19 R OPPT OH OH + 1.1.1.22 UDPglucose dehydrogenase 2.4.99.7 HO O OPPU HO 2.7.1.32 Choline kinase S CH2OH 6.3.2.13 OH OPPU CH HO CH2CH(NH3)COO HO CH CH NH HO CH2CH2NHCOCH3 CH O CH CH NHCOCH COO 1.1.1.23 Histidinol dehydrogenase OPC 2.4.1.17 3 2.4.1.29 CH CHO 2 2 2 3 2 2 3 O 2.7.1.33 Pantothenate kinase CH3CH NHAC OH OH OH LACTOSE 2 COO 1.1.1.25 Shikimate dehydrogenase A HO HO OPPG CH OH 2.7.1.34 Pantetheine kinase UDP- TDP-Rhamnose 2 NH NH NH NH N M 2.7.1.36 Mevalonate kinase 1.1.1.27 Lactate dehydrogenase HO COO- GDP- 2.4.1.21 O NH NH 4.1.1.28 2.3.1.5 2.1.1.4 1.1.1.29 Glycerate dehydrogenase C UDP-N-Ac-Muramate Iduronate OH 2.4.1.1 2.4.1.11 HO 5-Hydroxy- 5-Hydroxytryptamine N-Acetyl-serotonin N-Acetyl-5-O-methyl-serotonin Quinolinate 2.7.1.39 Homoserine kinase Mannuronate CH3 etc.
    [Show full text]
  • 12) United States Patent (10
    US007635572B2 (12) UnitedO States Patent (10) Patent No.: US 7,635,572 B2 Zhou et al. (45) Date of Patent: Dec. 22, 2009 (54) METHODS FOR CONDUCTING ASSAYS FOR 5,506,121 A 4/1996 Skerra et al. ENZYME ACTIVITY ON PROTEIN 5,510,270 A 4/1996 Fodor et al. MICROARRAYS 5,512,492 A 4/1996 Herron et al. 5,516,635 A 5/1996 Ekins et al. (75) Inventors: Fang X. Zhou, New Haven, CT (US); 5,532,128 A 7/1996 Eggers Barry Schweitzer, Cheshire, CT (US) 5,538,897 A 7/1996 Yates, III et al. s s 5,541,070 A 7/1996 Kauvar (73) Assignee: Life Technologies Corporation, .. S.E. al Carlsbad, CA (US) 5,585,069 A 12/1996 Zanzucchi et al. 5,585,639 A 12/1996 Dorsel et al. (*) Notice: Subject to any disclaimer, the term of this 5,593,838 A 1/1997 Zanzucchi et al. patent is extended or adjusted under 35 5,605,662 A 2f1997 Heller et al. U.S.C. 154(b) by 0 days. 5,620,850 A 4/1997 Bamdad et al. 5,624,711 A 4/1997 Sundberg et al. (21) Appl. No.: 10/865,431 5,627,369 A 5/1997 Vestal et al. 5,629,213 A 5/1997 Kornguth et al. (22) Filed: Jun. 9, 2004 (Continued) (65) Prior Publication Data FOREIGN PATENT DOCUMENTS US 2005/O118665 A1 Jun. 2, 2005 EP 596421 10, 1993 EP 0619321 12/1994 (51) Int. Cl. EP O664452 7, 1995 CI2O 1/50 (2006.01) EP O818467 1, 1998 (52) U.S.
    [Show full text]
  • (12) United States Patent (10) Patent No.: US 8,561,811 B2 Bluchel Et Al
    USOO8561811 B2 (12) United States Patent (10) Patent No.: US 8,561,811 B2 Bluchel et al. (45) Date of Patent: Oct. 22, 2013 (54) SUBSTRATE FOR IMMOBILIZING (56) References Cited FUNCTIONAL SUBSTANCES AND METHOD FOR PREPARING THE SAME U.S. PATENT DOCUMENTS 3,952,053 A 4, 1976 Brown, Jr. et al. (71) Applicants: Christian Gert Bluchel, Singapore 4.415,663 A 1 1/1983 Symon et al. (SG); Yanmei Wang, Singapore (SG) 4,576,928 A 3, 1986 Tani et al. 4.915,839 A 4, 1990 Marinaccio et al. (72) Inventors: Christian Gert Bluchel, Singapore 6,946,527 B2 9, 2005 Lemke et al. (SG); Yanmei Wang, Singapore (SG) FOREIGN PATENT DOCUMENTS (73) Assignee: Temasek Polytechnic, Singapore (SG) CN 101596422 A 12/2009 JP 2253813 A 10, 1990 (*) Notice: Subject to any disclaimer, the term of this JP 2258006 A 10, 1990 patent is extended or adjusted under 35 WO O2O2585 A2 1, 2002 U.S.C. 154(b) by 0 days. OTHER PUBLICATIONS (21) Appl. No.: 13/837,254 Inaternational Search Report for PCT/SG2011/000069 mailing date (22) Filed: Mar 15, 2013 of Apr. 12, 2011. Suen, Shing-Yi, et al. “Comparison of Ligand Density and Protein (65) Prior Publication Data Adsorption on Dye Affinity Membranes Using Difference Spacer Arms'. Separation Science and Technology, 35:1 (2000), pp. 69-87. US 2013/0210111A1 Aug. 15, 2013 Related U.S. Application Data Primary Examiner — Chester Barry (62) Division of application No. 13/580,055, filed as (74) Attorney, Agent, or Firm — Cantor Colburn LLP application No.
    [Show full text]
  • New Aliphatic Alcohols from Seeds of Momordica Charantia Linn. and Prediction of Their Biological Activity
    Available online at www.derpharmachemica.com ISSN 0975-413X Der Pharma Chemica, 2018, 10(10): 1-25 CODEN (USA): PCHHAX (http://www.derpharmachemica.com/archive.html) New Aliphatic Alcohols from Seeds of Momordica charantia Linn. and Prediction of their Biological Activity Deepti Katiyar1*, Vijender Singh2, Mohammed Ali3 1Department of Pharmacognosy, KIET School of Pharmacy, Ghaziabad, UP, India 2School of Pharmacy, Sharda University, Greater Noida, UP, India 3Department of Pharmacognosy and Phytochemistry, Faculty of Pharmacy, Jamia Hamdard, New Delhi, India ABSTRACT Momordica charantia is a very well-known traditional medicinal herb. The current research investigation aimed towards the isolation, characterization and prediction of biological activity spectra of the phytoconstituents from the seeds of Momordica charantia Linn. (Cucurbitaceae). The Ethanolic extract of Momordica charantia seeds led to isolate two new aliphatic alcohols: n-nonatriacontan-19α-ol &n- henetetracontan-19α-ol and four known compounds: n-tetracosane, n-pentacosane, n-pentatriacontane, n-heptatriacontan-15α-ol. These isolated phytomolecules can act as the marker compounds in order to establish the identity, quality and purity of the drug. The observations of the in silico profiling of these compounds shall be very useful for the upcoming reaearchers for establishing them as pharmacologically active moieties. Keywords: n-nonatriacontan-19α-ol, n-henetetracontan-19α-ol, n-tetracosane, n-pentacosane, n-pentatriacontane, n-heptatriacontan-15α-ol. INTRODUCTION Momordica charantia Linn. (Family: Cucurbitaceae) is commonly known as karela in hindi; bitter gourd, bitter cucumber, bitter melon or balsam pear in English and karavella in Sanskrit [1]. It is a monoecious annual climber which grows upto 5 m in height cultivated in East Africa, South America, China, Malaya and India upto an altitude of 1500 m and it also grows wildely in tropical and sub-tropical Africa, Asia, America and Caribbean [2].
    [Show full text]
  • POLSKIE TOWARZYSTWO BIOCHEMICZNE Postępy Biochemii
    POLSKIE TOWARZYSTWO BIOCHEMICZNE Postępy Biochemii http://rcin.org.pl WSKAZÓWKI DLA AUTORÓW Kwartalnik „Postępy Biochemii” publikuje artykuły monograficzne omawiające wąskie tematy, oraz artykuły przeglądowe referujące szersze zagadnienia z biochemii i nauk pokrewnych. Artykuły pierwszego typu winny w sposób syntetyczny omawiać wybrany temat na podstawie możliwie pełnego piśmiennictwa z kilku ostatnich lat, a artykuły drugiego typu na podstawie piśmiennictwa z ostatnich dwu lat. Objętość takich artykułów nie powinna przekraczać 25 stron maszynopisu (nie licząc ilustracji i piśmiennictwa). Kwartalnik publikuje także artykuły typu minireviews, do 10 stron maszynopisu, z dziedziny zainteresowań autora, opracowane na podstawie najnow­ szego piśmiennictwa, wystarczającego dla zilustrowania problemu. Ponadto kwartalnik publikuje krótkie noty, do 5 stron maszynopisu, informujące o nowych, interesujących osiągnięciach biochemii i nauk pokrewnych, oraz noty przybliżające historię badań w zakresie różnych dziedzin biochemii. Przekazanie artykułu do Redakcji jest równoznaczne z oświadczeniem, że nadesłana praca nie była i nie będzie publikowana w innym czasopiśmie, jeżeli zostanie ogłoszona w „Postępach Biochemii”. Autorzy artykułu odpowiadają za prawidłowość i ścisłość podanych informacji. Autorów obowiązuje korekta autorska. Koszty zmian tekstu w korekcie (poza poprawieniem błędów drukarskich) ponoszą autorzy. Artykuły honoruje się według obowiązujących stawek. Autorzy otrzymują bezpłatnie 25 odbitek swego artykułu; zamówienia na dodatkowe odbitki (płatne) należy zgłosić pisemnie odsyłając pracę po korekcie autorskiej. Redakcja prosi autorów o przestrzeganie następujących wskazówek: Forma maszynopisu: maszynopis pracy i wszelkie załączniki należy nadsyłać w dwu egzem­ plarzach. Maszynopis powinien być napisany jednostronnie, z podwójną interlinią, z marginesem ok. 4 cm po lewej i ok. 1 cm po prawej stronie; nie może zawierać więcej niż 60 znaków w jednym wierszu nie więcej niż 30 wierszy na stronie zgodnie z Normą Polską.
    [Show full text]
  • All Enzymes in BRENDA™ the Comprehensive Enzyme Information System
    All enzymes in BRENDA™ The Comprehensive Enzyme Information System http://www.brenda-enzymes.org/index.php4?page=information/all_enzymes.php4 1.1.1.1 alcohol dehydrogenase 1.1.1.B1 D-arabitol-phosphate dehydrogenase 1.1.1.2 alcohol dehydrogenase (NADP+) 1.1.1.B3 (S)-specific secondary alcohol dehydrogenase 1.1.1.3 homoserine dehydrogenase 1.1.1.B4 (R)-specific secondary alcohol dehydrogenase 1.1.1.4 (R,R)-butanediol dehydrogenase 1.1.1.5 acetoin dehydrogenase 1.1.1.B5 NADP-retinol dehydrogenase 1.1.1.6 glycerol dehydrogenase 1.1.1.7 propanediol-phosphate dehydrogenase 1.1.1.8 glycerol-3-phosphate dehydrogenase (NAD+) 1.1.1.9 D-xylulose reductase 1.1.1.10 L-xylulose reductase 1.1.1.11 D-arabinitol 4-dehydrogenase 1.1.1.12 L-arabinitol 4-dehydrogenase 1.1.1.13 L-arabinitol 2-dehydrogenase 1.1.1.14 L-iditol 2-dehydrogenase 1.1.1.15 D-iditol 2-dehydrogenase 1.1.1.16 galactitol 2-dehydrogenase 1.1.1.17 mannitol-1-phosphate 5-dehydrogenase 1.1.1.18 inositol 2-dehydrogenase 1.1.1.19 glucuronate reductase 1.1.1.20 glucuronolactone reductase 1.1.1.21 aldehyde reductase 1.1.1.22 UDP-glucose 6-dehydrogenase 1.1.1.23 histidinol dehydrogenase 1.1.1.24 quinate dehydrogenase 1.1.1.25 shikimate dehydrogenase 1.1.1.26 glyoxylate reductase 1.1.1.27 L-lactate dehydrogenase 1.1.1.28 D-lactate dehydrogenase 1.1.1.29 glycerate dehydrogenase 1.1.1.30 3-hydroxybutyrate dehydrogenase 1.1.1.31 3-hydroxyisobutyrate dehydrogenase 1.1.1.32 mevaldate reductase 1.1.1.33 mevaldate reductase (NADPH) 1.1.1.34 hydroxymethylglutaryl-CoA reductase (NADPH) 1.1.1.35 3-hydroxyacyl-CoA
    [Show full text]
  • Online Data Supplement
    Online Data Supplement Protein O-GlcNAcylation is essential for the maintenance of renal energy homeostasis and function via lipolysis during fasting and diabetes Sho Sugahara,1 Shinji Kume,1 Masami Chin-Kanasaki,1,2 Isssei Tomita,1 Mako Yasuda-Yamahara,1 Kosuke Yamahara,1 Naoko Takeda,1 Norihisa Osawa,1 Motoko Yanagita,3 Shin-ichi Araki,1,2 Hiroshi Maegawa1 1Department of Medicine, Shiga University of Medical Science, Otsu, Shiga, Japan 2Division of Blood Purification, Shiga University of Medical Science Hospital, Otsu, Shiga, Japan 3Department of Nephrology, Graduate School of Medicine, Kyoto University Hospital, Kyoto, Japan Contents 1. Supplemental Table 1. List of antibodies used in this study 2. Supplemental Table 2. List of primer sets used in this study 3. Supplemental Table 3. Fold changes in expression levels of proteins associated with fatty acid metabolism in the proteomic analysis using renal cortex samples obtained from Ogty/f mice (control) and PTEC-Ogty/- mice (Knockout) 4. Supplemental Figure 1. Fatty acid transport into cells during feeding and fasting 5. Supplemental Figure 2. Full gel scan images for the immune blots of the indicated figure number Supplemental Table 1. List of antibodies used in this study. Antibody Company Catalog No. Cre recombinase Cell Signaling #12830 O-GlcNAc transferase (Ogt) Abcam #ab96718 RL2 (O-GlcNAcylation) Abcam #ab2739 Cleaved caspase 3 Cell Signaling #9661 Poly(ADP-ribose)polymerase (PARP) Cell Signaling #9542 β actin Sigma Aldrich #123M4876 Carboxylesterase 1 (CES1) Abcam #ab45957 Phosphorylated hormone sensitive lipase (pHSLser563) Cell Signaling #4139 Hormone sensitive lipase (HSL) Cell Signaling #4107 Adipose triglyceride lipase (ATGL) Cell Signaling #2138 Perilipin Cell Signaling #9349 Peroxisome proliferator-activated receptor-α (PPARα) Santa Cruz #sc-9000 Farnesoid X receptor (FXR) Abcam #ab28480 Fibronectin Millipore #AB2033 F4/80 BIO-RAD #MCA497GA Lipoprotein lipase (LPL) Abcam #ab21356 Lotus Tetragonolobus lectin (LTL) Vector Laboratories #B-1325 Supplemental Table 2.
    [Show full text]
  • Varied Doses and Chemical Forms of Selenium Supplementation Differentially Affect Mouse Intestinal Physiology
    Electronic Supplementary Material (ESI) for Food & Function. This journal is © The Royal Society of Chemistry 2019 Varied doses and chemical forms of selenium supplementation differentially affect mouse intestinal physiology Qixiao Zhai 1,2,4#, Yue Xiao1,2#, Peng Li 2,3, Fengwei Tian 1,2,4, Jianxin Zhao 1,2, Hao Zhang 1,2,3, Wei Chen 1,2,3,5* 1 State Key Laboratory of Food Science and Technology, Jiangnan University, Wuxi, Jiangsu 214122, P. R. China 2 School of Food Science and Technology, Jiangnan University, Wuxi, Jiangsu 214122, P. R. China 3 National Engineering Research Center for Functional Food, Jiangnan University, Wuxi, Jiangsu 214122, P. R. China 4 International Joint Research Laboratory for Probiotics at Jiangnan University, Wuxi, Jiangsu 214122 China 5 Beijing Innovation Center of Food Nutrition and Human Health, Beijing Technology and Business University (BTBU), Beijing 100048, P. R. China # These authors contributed equally to this work. * Correspondence: Wei Chen. Tel: 86-510-85912155; Fax: 86-510-85912155 E-mail address: [email protected] Postal address: No 1800 Lihu Avenue, Binhu District, Wuxi, Jiangsu, 214122, P.R. China Supplementary materials Materials and Methods Fecal metabolomic analysis Sample collection and metabolite extraction Fresh fecal samples were collected in a 1.5-ml tube, immediately frozen in liquid nitrogen, and then stored at −80 °C. The fecal samples (60 mg) were mixed with 600-μL pre-cooled mixture of methanol and ultra-pure water (4:1, v/v) and subjected to ice-based sonication (500 W; 6 s on, 6 s off) for 10 min to extract metabolites.
    [Show full text]