<<

Deflection Responses from PMHS Side Impact Loading in Oblique Side Impact Sled Tests N. Yoganandan  Dummies designed for pure lateral loading  Oblique loading identified in field data John R. Humm  Did full‐scale vehicle tests with PMHS Frank A. Pintar  Designed sled tests using these data  Issue of load‐wall for oblique loading Medical College of Wisconsin Milwaukee, WI

Load‐walls Used in Literature PMHS

Modular Scalable Load‐wall Sled Tests Load‐wall Features & PMHS Alignment

Tri‐axial load cells Slotted posts (superior) Vertical adjustability Lateral Pelvis (inferior) Leg plate adjustability for all the five modular plates

1 Alignment –Top View Test Matrix

 Sled ΔV: 6.7 m/s (24 km/h)  Abdomen chestband – tenth  Thorax chestband – xyphoid process  Regional deflections: maximum, angle  Compare with the lateral impact dataset

Front View Top View

8000 8000 201 201 6000 202 6000 202 239 239 4000 241 4000 241 243 243 2000 2000

0 0

‐20008000 ‐2000 201 25000 25 75 125 175 25 75 125 175 201 202 6000 Time (msec) 20000 Time (msec) 202 239 239 15000 4000 241 241 243 10000 243 2000 5000

0 0

‐2000 ‐5000 25 75 125 175 25 75 125 175 Time (msec) Time (msec)

2 Time of Attainment of Peak Force (ms) Peak Force (N)

Peak Normalized Force (%) Deflection Contours

Thorax Abdomen

Deflection Contours Spine‐ Method

Sternum STERNUM Sternum

L0

0.5 L0 0.5 L0

SPINE SPINE Spine Spine

3 Bilateral Method Spine Box Method

Right L Right Left 0

Left 0.5 L 0 0.5 L0

Left Right Left Right Spine Spine Spine Spine

Vertebra Method Method

STERNUM

Vertebra Method Peak Deflections

4 Sternum Deflections (mm) Use Spine‐sternum Method

Mid thorax Sternum Sternum Vertebral body Spine

L0

0.5 L0 0.5 L0

Spine Spine

Peak Deflection Vector Mean Peak Deflection (mm) Peak Angulation Peak Deflection

D0

Dt

Time of Attainment of Deflection (ms) Mean Peak Deflection Angle (degree)

5 and AIS

ID AIS Summary Left rib fractures left 2‐3; 4‐5; right rib fractures 1 4 1, 4, 5; and pleural trauma Left rib fractures 2‐5 and 8‐9; and L2, L4 2 3 transverse process fractures 3 3Left rib fractures 2‐4 and 9‐10; and 12 Left rib fractures 2‐6; 8‐10, right rib 5; 4 4 laceration of the spleen 5 3Left rib fractures 2‐4 and 9

Comparison with Pure Lateral Tests

Peak Deflections –Pure Lateral Impact Non‐modular Oblique Load‐wall Tests

14 30 - 70% 12 10 8 6 4 2 0 -2 0 50 100 150 200 250 300 maximum 14 Normalized 12 10 8 30% 70% 6 chthest 4 2 0 deflection -2 75% 0 50 100 150 200 250 300 25% 25 - 75% 14 12 10 8 6 4 2 0 -2 0 50 100 150 200 250 300

Maltese et al. 1997‐2003

6 Non‐modular Oblique Load‐wall Tests Pure Lateral Deflection Contours

Sternum

A A Upper thorax Lower thorax Abdomen Oblique Loading Deflection Contours

Spine Upper thorax Lower thorax Abdomen

Comparison of Peak Deflections (mm) Deflection Angles (deg)

Thorax Deflection Probability Curves Scaling – Mean AIS Scores in Oblique Side Impact (mm) 3.4

2.8

2.0

Modular oblique Non‐modular oblique Pure lateral

7 Abdomen Deflection Probability Curves Deflection Probability Curves in Oblique Side Impact (mm) in Oblique Side Impacts (mm)

Summary Acknowledgments  Designed modular and size‐scaled load‐walls  Conducted antero‐lateral oblique load tests Rodney Rudd  Thoracic and abdomen deflections (mm, deg)  Compared with pure lateral impact sled tests Stephen Ridella  Analysis of deflection data from 15 PMHS tests  Lower thorax deflections are greater in oblique US DOT NHTSA  Abdomen deflections are also greater in oblique DTNH22‐07‐H‐00173  Deflection angulations are also different in oblique VA Medical Research  Oblique loadingdifferent from pure lateral impact  Oblique injury criteria  different from pure lateral

8