PMHS Anthropometry
Total Page:16
File Type:pdf, Size:1020Kb
Deflection Responses from PMHS Side Impact Loading in Oblique Side Impact Sled Tests N. Yoganandan Dummies designed for pure lateral loading Oblique loading identified in field data John R. Humm Did full‐scale vehicle tests with PMHS Frank A. Pintar Designed sled tests using these data Issue of load‐wall for oblique loading Medical College of Wisconsin Milwaukee, WI Load‐walls Used in Literature PMHS Anthropometry Modular Scalable Load‐wall Sled Tests Load‐wall Features & PMHS Alignment Tri‐axial load cells Shoulder Thorax Slotted posts Abdomen Pelvis (superior) Vertical adjustability Lateral Pelvis (inferior) Leg plate adjustability for all the five modular plates 1 Alignment –Top View Test Matrix Sled ΔV: 6.7 m/s (24 km/h) Abdomen chestband – tenth rib Thorax chestband – xyphoid process Regional deflections: maximum, angle Compare with the lateral impact dataset Front View Top View 8000 8000 201 201 6000 202 6000 202 239 239 4000 241 4000 241 243 243 2000 2000 0 0 ‐20008000 ‐2000 201 25000 25 75 125 175 25 75 125 175 201 202 6000 Time (msec) 20000 Time (msec) 202 239 239 15000 4000 241 241 243 10000 243 2000 5000 0 0 ‐2000 ‐5000 25 75 125 175 25 75 125 175 Time (msec) Time (msec) 2 Time of Attainment of Peak Force (ms) Peak Force (N) Peak Normalized Force (%) Deflection Contours Thorax Abdomen Deflection Contours Spine‐sternum Method Sternum STERNUM Sternum L0 0.5 L0 0.5 L0 SPINE SPINE Spine Spine 3 Bilateral Method Spine Box Method Right L Right Left 0 Left 0.5 L 0 0.5 L0 Left Right Left Right Spine Spine Spine Spine Vertebra Method Vertebra Method STERNUM Vertebra Method Peak Deflections 4 Sternum Deflections (mm) Use Spine‐sternum Method Mid thorax Sternum Sternum Vertebral body Spine L0 0.5 L0 0.5 L0 Spine Spine Peak Deflection Vector Mean Peak Deflection (mm) Peak Angulation Peak Deflection D0 Dt Time of Attainment of Deflection (ms) Mean Peak Deflection Angle (degree) 5 Injuries and AIS ID AIS Summary Left rib fractures left 2‐3; 4‐5; right rib fractures 1 4 1, 4, 5; and pleural trauma Left rib fractures 2‐5 and 8‐9; and L2, L4 2 3 transverse process fractures 3 3Left rib fractures 2‐4 and 9‐10; and 12 Left rib fractures 2‐6; 8‐10, right rib 5; 4 4 laceration of the spleen 5 3Left rib fractures 2‐4 and 9 Comparison with Pure Lateral Tests Peak Deflections –Pure Lateral Impact Non‐modular Oblique Load‐wall Tests 14 30 - 70% 12 10 8 6 4 2 0 -2 0 50 100 150 200 250 300 maximum 14 Normalized 12 10 8 30% 70% 6 chthest 4 2 0 deflection -2 75% 0 50 100 150 200 250 300 25% 25 - 75% 14 12 10 8 6 4 2 0 -2 0 50 100 150 200 250 300 Maltese et al. 1997‐2003 6 Non‐modular Oblique Load‐wall Tests Pure Lateral Deflection Contours Sternum A A Upper thorax Lower thorax Abdomen Oblique Loading Deflection Contours Spine Upper thorax Lower thorax Abdomen Comparison of Peak Deflections (mm) Deflection Angles (deg) Thorax Deflection Probability Curves Injury Scaling – Mean AIS Scores in Oblique Side Impact (mm) 3.4 2.8 2.0 Modular oblique Non‐modular oblique Pure lateral 7 Abdomen Deflection Probability Curves Deflection Probability Curves in Oblique Side Impact (mm) in Oblique Side Impacts (mm) Summary Acknowledgments Designed modular and size‐scaled load‐walls Conducted antero‐lateral oblique load tests Rodney Rudd Thoracic and abdomen deflections (mm, deg) Compared with pure lateral impact sled tests Stephen Ridella Analysis of deflection data from 15 PMHS tests Lower thorax deflections are greater in oblique US DOT NHTSA Abdomen deflections are also greater in oblique DTNH22‐07‐H‐00173 Deflection angulations are also different in oblique VA Medical Research Oblique loadingdifferent from pure lateral impact Oblique injury criteria different from pure lateral 8.