The Muscles That Act on the Upper Limb Fall Into Four Groups

Total Page:16

File Type:pdf, Size:1020Kb

The Muscles That Act on the Upper Limb Fall Into Four Groups MUSCLES OF THE APPENDICULAR SKELETON UPPER LIMB The muscles that act on the upper limb fall into four groups: those that stabilize the pectoral girdle, those that move the arm, those that move the forearm, and those that move the wrist, hand, and fingers. Muscles Stabilizing Pectoral Girdle (Marieb / Hoehn – Chapter 10; Pgs. 346 – 349; Figure 1) MUSCLE: ORIGIN: INSERTION: INNERVATION: ACTION: ANTERIOR THORAX: anterior surface coracoid process protracts & depresses Pectoralis minor* pectoral nerves of ribs 3 – 5 of scapula scapula medial border rotates scapula Serratus anterior* ribs 1 – 8 long thoracic nerve of scapula laterally inferior surface stabilizes / depresses Subclavius* rib 1 --------------- of clavicle pectoral girdle POSTERIOR THORAX: occipital bone / acromion / spine of stabilizes / elevates / accessory nerve Trapezius* spinous processes scapula; lateral third retracts / rotates (cranial nerve XI) of C7 – T12 of clavicle scapula transverse processes upper medial border elevates / adducts Levator scapulae* dorsal scapular nerve of C1 – C4 of scapula scapula Rhomboids* spinous processes medial border adducts / rotates dorsal scapular nerve (major / minor) of C7 – T5 of scapula scapula * Need to be familiar with on both ADAM and the human cadaver Figure 1: Muscles stabilizing pectoral girdle, posterior and anterior views 2 BI 334 – Advanced Human Anatomy and Physiology Western Oregon University Muscles Moving Arm (Marieb / Hoehn – Chapter 10; Pgs. 350 – 352; Figure 2) MUSCLE: ORIGIN: INSERTION: INNERVATION: ACTION: intertubercular sulcus / sternum / clavicle / flexes / medially rotates / Pectoralis major* greater tubercle pectoral nerves ribs 1 – 6 adducts arm of humerus acromion / spine of deltoid tuberosity Deltoid* scapula; lateral third axillary nerve abducts arm of humerus of clavicle spinous processes of intertubercular groove Latissimus dorsi* T – L / ribs 9 – 12 / thoracodorsal nerve extends / adducts arm 7 5 of humerus iliac crest of os coxa subscapular fossa lesser tubercle Subscapularis* subscapular nerves rotates arm medially of scapula of humerus supraspinous fossa greater tubercle Supraspinatus* suprascapular nerve abducts arm of scapula of humerus infraspinous fossa greater tubercle Infraspinatus* suprascapular nerve rotates arm laterally of scapula of humerus lateral border greater tubercle Teres minor* subscapular nerves rotates arm laterally of scapula of humerus inferior border lesser tubercle rotates medially / Teres major* subscapular nerves of scapula of humerus adducts arm coracoid process medial shaft musculocutaneous Coracobrachialis* flexes / adducts arm of scapula of humerus nerve * Need to be familiar with on both ADAM and the human cadaver 3 BI 334 – Advanced Human Anatomy and Physiology Western Oregon University Figure 2: Muscles that move the arm, anterior and posterior views (note: subscapularis not shown) 4 BI 334 – Advanced Human Anatomy and Physiology Western Oregon University Muscles Moving Forearm (Marieb / Hoehn – Chapter 10; Pgs. 352 – 353; Figure 3) MUSCLE: ORIGIN: INSERTION: INNERVATION: ACTION: POSTERIOR MUSCLES: below glenoid cavity of olecranon process Triceps brachii* scapula / posterior shaft radial nerve extends forearm of ulna of humerus lateral epicondyle olecranon process Anconeus radial nerve extends forearm of humerus of ulna ANTERIOR MUSCLES: coracoid process / radial tuberosity musculocutaneous Biceps brachii* above glenoid cavity flexes forearm of radius nerve of scapula anterior face coronoid process musculocutaneous Brachialis* flexes forearm of distal humerus of ulna nerve lateral epicondyle styloid process Brachioradialis* radial nerve flexes forearm of ulna (radius) * Need to be familiar with on both ADAM and the human cadaver 5 BI 334 – Advanced Human Anatomy and Physiology Western Oregon University Figure 3: Muscles that move the forearm, anterior and posterior views 6 BI 334 – Advanced Human Anatomy and Physiology Western Oregon University Muscles Moving Wrist, Hand, and Fingers - Anterior (Marieb / Hoehn – Chapter 10; Pgs. 354 – 356; Figure 4) MUSCLE: ORIGIN: INSERTION: INNERVATION: ACTION: SUPERFICIAL MUSCLES: medial epicondyle of Pronator teres* humerus; coronoid lateral shaft of radius median nerve pronates forearm process of ulna medial epicondyle Flexor carpi radialis* metacarpals 2 – 3 median nerve flexes / abducts wrist of humerus medial epicondyle tenses skin of palm during Palmaris longus palmar aponeurosis median nerve of humerus hand movement medial epicondyle pisiform / hamate bone Flexor carpi ulnaris* of humerus; olecranon ulnar nerve flexes / adducts wrist of carpals process of ulna Flexor digitorum medial epicondyle of humerus; coronoid process middle phalanges 2 – 5 median nerve flexes wrist / fingers superficialis* of ulna ; shaft of radius DEEP MUSCLES: coronoid process / Flexor digitorum anteriomedial surface distal phalanges 2 – 5 ulnar / median nerves flexes wrist / fingers profundus* of ulna anterior surface distal phalanx Flexor pollicis longus median nerve flexes thumb of radius of thumb distal surface of distal surface of Pronator quadratus median nerve pronates forearm anterior ulna anterior radius * Need to be familiar with on both ADAM and the human cadaver 7 BI 334 – Advanced Human Anatomy and Physiology Western Oregon University Figure 4: Anterior muscles that move the wrist, hand, and fingers 8 BI 334 – Advanced Human Anatomy and Physiology Western Oregon University Muscles Moving the Wrist, Hand, and Fingers - Posterior (Marieb / Hoehn – Chapter 10; Pgs. 356 – 357; Figure 5) MUSCLE: ORIGIN: INSERTION: INNERVATION: ACTION: SUPERFICIAL MUSCLES: Extensor carpi lateral epicondyle radialis* metacarpals 2 – 3 radial nerve extends / abducts wrist of humerus (longus / brevis) lateral epicondyle Extensor digitorum* distal phalanges 2 – 5 radial nerve extends fingers of humerus Extensor carpi lateral epicondyle metacarpal 5 radial nerve extends / adducts wrist ulnaris* of humerus DEEP MUSCLES: lateral epicondyle of proximal end Supinator humerus; proximal end radial nerve supinates forearm of radius of ulna Abductor pollicis posterior surface metacarpal 1 / trapezium abducts / extends radial nerve longus* of radius and ulna of carpals thumb Extensor pollicis* dorsal shaft proximal / distal radial nerve extends thumb (longus / brevis) of radius / ulna ends of phalange 1 posterior surface Extensor indicis phalange 2 radial nerve extends index finger of distal ulna * Need to be familiar with on both ADAM and the human cadaver 9 BI 334 – Advanced Human Anatomy and Physiology Western Oregon University Figure 5: Posterior muscles that move the wrist, hand, and fingers 10 BI 334 – Advanced Human Anatomy and Physiology Western Oregon University Out-of-Class Assignment: Intrinsic Muscles of the Hand Intrinsic muscles are found only in the palm of the hand (none on the dorsal surface). These small, relatively weak muscles control the precise movements of the metacarpals and the fingers, leaving the powerful movements of the fingers (e.g., power grip) to the forearm muscles. The intrinsic muscles of the palm are divided into three groups: those in the thenar eminence (ball of thumb), the hypothenar eminence (ball of the little finger), and the midpalm. The thenar and hypothenar eminence groups are responsible for flexing, abducting, and opposing the respective digits. The midpalm muscles extend the fingers at the interphalangeal joints. Below is a table listing the individual muscles in each functional group. For each muscle, fill in the appropriate origin, insertion, innervation, and action and then correctly label the muscle on the associated figure(s). This exercise is to introduce you to these muscles; you will not be responsible for these groups of muscles for the practical exam. MUSCLE: ORIGIN: INSERTION: INNERVATION: ACTION: THENAR MUSCLES: Abductor pollicis brevis Flexor pollicis brevis Opponens pollicis Adductor pollicis 11 BI 334 – Advanced Human Anatomy and Physiology Western Oregon University MUSCLE: ORIGIN: INSERTION: INNERVATION: ACTION: HYPOTHENAR MUSCLES: Abductor digiti minimi Flexor digiti minimi brevis Opponens digiti minimi MIDPALMAR MUSCLES: Lumbricals Palmar interossei Dorsal interossei 12 BI 334 – Advanced Human Anatomy and Physiology Western Oregon University 13 BI 334 – Advanced Human Anatomy and Physiology Western Oregon University .
Recommended publications
  • The Structure and Function of Breathing
    CHAPTERCONTENTS The structure-function continuum 1 Multiple Influences: biomechanical, biochemical and psychological 1 The structure and Homeostasis and heterostasis 2 OBJECTIVE AND METHODS 4 function of breathing NORMAL BREATHING 5 Respiratory benefits 5 Leon Chaitow The upper airway 5 Dinah Bradley Thenose 5 The oropharynx 13 The larynx 13 Pathological states affecting the airways 13 Normal posture and other structural THE STRUCTURE-FUNCTION considerations 14 Further structural considerations 15 CONTINUUM Kapandji's model 16 Nowhere in the body is the axiom of structure Structural features of breathing 16 governing function more apparent than in its Lung volumes and capacities 19 relation to respiration. This is also a region in Fascla and resplrstory function 20 which prolonged modifications of function - Thoracic spine and ribs 21 Discs 22 such as the inappropriate breathing pattern dis- Structural features of the ribs 22 played during hyperventilation - inevitably intercostal musculature 23 induce structural changes, for example involving Structural features of the sternum 23 Posterior thorax 23 accessory breathing muscles as well as the tho- Palpation landmarks 23 racic articulations. Ultimately, the self-perpetuat- NEURAL REGULATION OF BREATHING 24 ing cycle of functional change creating structural Chemical control of breathing 25 modification leading to reinforced dysfunctional Voluntary control of breathing 25 tendencies can become complete, from The autonomic nervous system 26 whichever direction dysfunction arrives, for Sympathetic division 27 Parasympathetic division 27 example: structural adaptations can prevent NANC system 28 normal breathing function, and abnormal breath- THE MUSCLES OF RESPIRATION 30 ing function ensures continued structural adap- Additional soft tissue influences and tational stresses leading to decompensation.
    [Show full text]
  • Vertebral Column and Thorax
    Introduction to Human Osteology Chapter 4: Vertebral Column and Thorax Roberta Hall Kenneth Beals Holm Neumann Georg Neumann Gwyn Madden Revised in 1978, 1984, and 2008 The Vertebral Column and Thorax Sternum Manubrium – bone that is trapezoidal in shape, makes up the superior aspect of the sternum. Jugular notch – concave notches on either side of the superior aspect of the manubrium, for articulation with the clavicles. Corpus or body – flat, rectangular bone making up the major portion of the sternum. The lateral aspects contain the notches for the true ribs, called the costal notches. Xiphoid process – variably shaped bone found at the inferior aspect of the corpus. Process may fuse late in life to the corpus. Clavicle Sternal end – rounded end, articulates with manubrium. Acromial end – flat end, articulates with scapula. Conoid tuberosity – muscle attachment located on the inferior aspect of the shaft, pointing posteriorly. Ribs Scapulae Head Ventral surface Neck Dorsal surface Tubercle Spine Shaft Coracoid process Costal groove Acromion Glenoid fossa Axillary margin Medial angle Vertebral margin Manubrium. Left anterior aspect, right posterior aspect. Sternum and Xyphoid Process. Left anterior aspect, right posterior aspect. Clavicle. Left side. Top superior and bottom inferior. First Rib. Left superior and right inferior. Second Rib. Left inferior and right superior. Typical Rib. Left inferior and right superior. Eleventh Rib. Left posterior view and left superior view. Twelfth Rib. Top shows anterior view and bottom shows posterior view. Scapula. Left side. Top anterior and bottom posterior. Scapula. Top lateral and bottom superior. Clavicle Sternum Scapula Ribs Vertebrae Body - Development of the vertebrae can be used in aging of individuals.
    [Show full text]
  • Intrinsic Hand Muscles of the Japanese Monkey, Macaca Fuscata
    Anthropol.Sci. 102(Suppl.), 85-95,1994 Intrinsic Hand Muscles of the Japanese Monkey, Macaca fuscata TOSHIHIKO HOMMA AND TATSUO SAKAI Department of Anatomy, School of Medicine, Juntendo University, Hongo 2-1-1, Bunkyo-ku, Tokyo 113, Japan Received December 24, 1993 •ôGH•ô Abstract•ôGS•ô Anatomy of the intrinsic hand muscles in the Japanese monkeys was studied with an improved method to dissect the muscles and nerves in water after removal of the skeletal framework. The thenar eminence contained four muscles, namely m. abductor pollicis brevis, m. opponens pollicis, m, flexor pollicis brevis, and m. adductor pollicis. The hypothenar eminence contained four muscles, namely m. palmaris brevis, m. abductor digiti minimi, m. flexor digiti minimi brevis, and m. opponens digiti minimi. Majority of the thenar muscles are fused more or less with each other, so that clear separation of these muscles was difficult. The lumbrical muscles arose from the palmar parts of four main tendons of the deep flexor muscle to the second, third, fourth, and fifth digits. The mm, contrahentes arose mainly from a medial tendinous septum attached on the palmar surface to the third metacarpus, and included three muscles destined to the second, fourth and fifth digits. The interossei were found on the radial side of the second, third, fourth and fifth finger as well as on the ulnar side of the second, third and fourth finger. The intrinsic hand muscles in the Japanese monkey received innervation either from the median or the ulnar nerve. Branching pattern of these nerves to the individual muscles was fundamentally similar to those in man except for the fact that the median and the ulnar nerve in the Japanese monkey do not communi cateto make a loop in the thenar muscles.
    [Show full text]
  • Study Guide Medical Terminology by Thea Liza Batan About the Author
    Study Guide Medical Terminology By Thea Liza Batan About the Author Thea Liza Batan earned a Master of Science in Nursing Administration in 2007 from Xavier University in Cincinnati, Ohio. She has worked as a staff nurse, nurse instructor, and level department head. She currently works as a simulation coordinator and a free- lance writer specializing in nursing and healthcare. All terms mentioned in this text that are known to be trademarks or service marks have been appropriately capitalized. Use of a term in this text shouldn’t be regarded as affecting the validity of any trademark or service mark. Copyright © 2017 by Penn Foster, Inc. All rights reserved. No part of the material protected by this copyright may be reproduced or utilized in any form or by any means, electronic or mechanical, including photocopying, recording, or by any information storage and retrieval system, without permission in writing from the copyright owner. Requests for permission to make copies of any part of the work should be mailed to Copyright Permissions, Penn Foster, 925 Oak Street, Scranton, Pennsylvania 18515. Printed in the United States of America CONTENTS INSTRUCTIONS 1 READING ASSIGNMENTS 3 LESSON 1: THE FUNDAMENTALS OF MEDICAL TERMINOLOGY 5 LESSON 2: DIAGNOSIS, INTERVENTION, AND HUMAN BODY TERMS 28 LESSON 3: MUSCULOSKELETAL, CIRCULATORY, AND RESPIRATORY SYSTEM TERMS 44 LESSON 4: DIGESTIVE, URINARY, AND REPRODUCTIVE SYSTEM TERMS 69 LESSON 5: INTEGUMENTARY, NERVOUS, AND ENDOCRINE S YSTEM TERMS 96 SELF-CHECK ANSWERS 134 © PENN FOSTER, INC. 2017 MEDICAL TERMINOLOGY PAGE III Contents INSTRUCTIONS INTRODUCTION Welcome to your course on medical terminology. You’re taking this course because you’re most likely interested in pursuing a health and science career, which entails ­proficiency­in­communicating­with­healthcare­professionals­such­as­physicians,­nurses,­ or dentists.
    [Show full text]
  • Order Ephemeroptera
    Glossary 1. Abdomen: the third main division of the body; behind the head and thorax 2. Accessory flagellum: a small fingerlike projection or sub-antenna of the antenna, especially of amphipods 3. Anterior: in front; before 4. Apical: near or pertaining to the end of any structure, part of the structure that is farthest from the body; distal 5. Apicolateral: located apical and to the side 6. Basal: pertaining to the end of any structure that is nearest to the body; proximal 7. Bilobed: divided into two rounded parts (lobes) 8. Calcareous: resembling chalk or bone in texture; containing calcium 9. Carapace: the hardened part of some arthropods that spreads like a shield over several segments of the head and thorax 10. Carinae: elevated ridges or keels, often on a shell or exoskeleton 11. Caudal filament: threadlike projection at the end of the abdomen; like a tail 12. Cercus (pl. cerci): a paired appendage of the last abdominal segment 13. Concentric: a growth pattern on the opercula of some gastropods, marked by a series of circles that lie entirely within each other; compare multi-spiral and pauci-spiral 14. Corneus: resembling horn in texture, slightly hardened but still pliable 15. Coxa: the basal segment of an arthropod leg 16. Creeping welt: a slightly raised, often darkened structure on dipteran larvae 17. Crochet: a small hook-like organ 18. Cupule: a cup shaped organ, as on the antennae of some beetles (Coleoptera) 19. Detritus: disintegrated or broken up mineral or organic material 20. Dextral: the curvature of a gastropod shell where the opening is visible on the right when the spire is pointed up 21.
    [Show full text]
  • Upper Limb Fractures in Rugby in Huddersfield 1986- 1 990
    Br J Sp Med 1991; 25(3) From the Clinic Br J Sports Med: first published as 10.1136/bjsm.25.3.139 on 1 September 1991. Downloaded from Upper limb fractures in rugby in Huddersfield 1986- 1 990 K.S. Eyres FRCS', A. Abdel-Salam FRCS2 and J. Cleary FRCS3 Research Registrar, Department of Human Metabolism and Clinical Biochemistry, University of Sheffield, Sheffield, UK 2 Orthopaedic Registrar, Huddersfield Royal Infirmary, Huddersfield, UK 3 Orthopaedic Consultant, Huddersfield Royal Infirmary, Huddersfield, UK Most injuries sustained by rugby players affect the soft Case 1 tissues, and fracture is relatively uncommon. Whereas the lower limb is most affected in footballers, the upper limb A 24-year-old full-back fractured his left clavicle in a tends to be injured in rugby players. Thirty consecutive scrummage in 1988 (Figure 1). Six months later, he fractures and ten dislocations affecting the upper limb, sustained a direct blow to the left shoulder. Radio- sustained by 35 rugby players, are reported. graphs showed a fracture to the greater tuberosity of the left humerus (Figure 2). He was treated with a Keywords: Rugby injury, hamate fracture, sports injury collar and cuff and was able to return to matchplay after 2 months. Nine months later he fell onto his left hand after a tackle. Radiographs showed a sagittal Most injuries sustained in rugby matches are to the fracture of the body of the hamate and a fracture of soft tissues. Fractures are relatively uncommon, the base of the fourth metacarpal (Figure 3). He was estimated to account for only 4% of injuries in adult treated conservatively with plaster immobilization, matches and for 5% of injuries in school matches'.
    [Show full text]
  • Pronator Syndrome: Clinical and Electrophysiological Features in Seven Cases
    J Neurol Neurosurg Psychiatry: first published as 10.1136/jnnp.39.5.461 on 1 May 1976. Downloaded from Journal ofNeurology, Neurosurgery, and Psychiatry, 1976, 39, 461-464 Pronator syndrome: clinical and electrophysiological features in seven cases HAROLD H. MORRIS AND BRUCE H. PETERS From the Department ofNeurology, University of Texas Medical Branch, Galveston, Texas, USA SYNOPSIS The clinical and electrophysiological picture of seven patients with the pronator syndrome is contrasted with other causes ofmedian nerve neuropathy. In general, these patients have tenderness over the pronator teres and weakness of flexor pollicis longus as well as abductor pollicis brevis. Conduction velocity of the median nerve in the proximal forearm is usually slow but the distal latency and sensory nerve action potential at the wrist are normal. Injection of corticosteroids into the pronator teres has produced relief of symptoms in a majority of patients. Protected by copyright. In the majority of isolated median nerve dys- period 101 cases of the carpal tunnel syndrome functions the carpal tunnel syndrome is appropri- and the seven cases of the pronator syndrome ately first suspected. The median nerve can also reported here were identified. Median nerve be entrapped in the forearm giving rise to a conduction velocity determinations were made on similar picture and an erroneous diagnosis. all of these patients. The purpose of this report is to draw full attention to the pronator syndrome and to the REPORT OF CASES features which allow it to be distinguished from Table 1 provides clinical details of seven cases of the median nerve entrapment at other sites.
    [Show full text]
  • Radiohamate Impingement After Proximal Row Carpectomy ‘Radiohamate Impingement PRC’
    Acta Orthop. Belg., 2020, 86 e-supplement 1, 19-21 CASE REPORT Radiohamate impingement after proximal row carpectomy ‘Radiohamate impingement PRC’ Pieter Caekebeke, Luc De Smet From the Department of Orthopaedics UZ Leuven, Pellenberg, Belgium Radiocarpal impingement after PRC is a well-known from 0% to 18% (5). Radiocarpal and pisiform complication due to impingement of the radial styloid impingement have been described after PRC. The against the radial carpal bones. A less common first is probably due to the proximalization of the impingement syndrome is that of the pisiforme. distal row with impingement of the trapezium/ We describe a radiohamate impingement and its trapezoid against the radial styloid process. The diagnosis and treatment. Based on a case we saw treatment is a radial styloid process resection for at our practice. Diagnosis is bases on standard radiographs and SPECT-CT. The treatment is the first and a pisiformectomy for the latter (3,5). No initially conservative. Surgery is necessary when other impingement syndromes have been described. conservative treatment fails and consists of resectie We present a case of radiohamate impingement of the proximal pole of the hamate. syndrome after proximal row carpectomy. Keywords: Radiohamate ; impingement ; proximal row CASE REPORT carpectomy. A 53-year-old mechanic contacted us 1 year after a work-accident with localized radiocarpal INTRODUCTION pain and swelling. Radiographs showed a stage Proximal row carpectomy (PRC) is a well- two SLAC wrist. (Fig. 1) A PRC with synovectomy established motion-preserving salvage procedure was performed. The following 3 years were for degenerative disorders of the proximal carpal uneventful with no to minimal pain complaints.
    [Show full text]
  • Wrist and Hand Examina[On
    Wrist and Hand Examinaon Daniel Lueders, MD Assistant Professor Physical Medicine and Rehabilitaon Objecves • Understand the osseous, ligamentous, tendinous, and neural anatomy of the wrist and hand • Outline palpable superficial landmarks in the wrist and hand • Outline evaluaon of and differen.aon between nerves to the wrist and hand • Describe special tes.ng of wrist and hand Wrist Anatomy • Radius • Ulna • Carpal bones Wrist Anatomy • Radius • Ulna • Carpal bones Wrist Anatomy • Radius • Ulna • Carpal bones Wrist Anatomy • Radius • Ulna • Carpal bones Inspec.on • Ecchymosis • Erythema • Deformity • Laceraon Inspec.on • Common Finger Deformies • Swan Neck Deformity • Boutonniere Deformity • Hypertrophic nodules • Heberden’s, Bouchard’s Inspec.on • Swan Neck Deformity • PIP hyperextension, DIP flexion • Pathology is at PIP joint • Insufficiency of volar/palmar plate and suppor.ng structures • Distally, the FDP tendon .ghtens from PIP extension causing secondary DIP flexion • Alternavely, extensor tendon rupture produces similar deformity Inspec.on • Boutonniere Deformity • PIP flexion, DIP hyperextension • Pathology is at PIP joint • Commonly occurs from insufficiency of dorsal and lateral suppor.ng structures at PIP joint • Lateral bands migrate volar/palmar, creang increased flexion moment • Results in PIP “buTon hole” effect dorsally Inspec.on • Nodules • Osteoarthri.c • Hypertrophic changes of OA • PIP - Bouchard’s nodule • DIP - Heberden’s nodule • Rheumatoid Arthri.s • MCP joints affected most • Distal radioulnar joint can also be affected
    [Show full text]
  • Stretching and Positioning Regime for Upper Limb
    Information for patients and visitors Stretching and Positioning Regime for Upper Limb Physiotherapy Department This leaflet has been designed to remind you of the exercises you Community & Therapy Services have been taught, the correct techniques and who to contact with any queries. For more information about our Trust and the services we provide please visit our website: www.nlg.nhs.uk Information for patients and visitors Muscle Tone Muscle tone is an unconscious low level contraction of your muscles while they are at rest. The purpose of this is to keep your muscles primed and ready to generate movement. Several neurological causes may change a person’s muscle tone to increase or decrease resulting in a lack of movement. Over time, a lack of movement can cause stiffness, pain, and spasticity. In severe cases this may also lead to contractures. Spasticity Spasticity can be defined as a tightening or stiffness of the muscle due to increased muscle tone. It can interfere with normal functioning. It can also greatly increase fatigue. However, exercise, properly done, is vital in managing spasticity. The following tips may prove helpful: • Avoid positions that make the spasticity worse • Daily stretching of muscles to their full length will help to manage the tightness of spasticity, and allow for optimal movement • Moving a tight muscle to a new position may result in an increase in spasticity. If this happens, allow a few minutes for the muscles to relax • When exercising, try to keep head straight • Sudden changes in spasticity may
    [Show full text]
  • Bone Limb Upper
    Shoulder Pectoral girdle (shoulder girdle) Scapula Acromioclavicular joint proximal end of Humerus Clavicle Sternoclavicular joint Bone: Upper limb - 1 Scapula Coracoid proc. 3 angles Superior Inferior Lateral 3 borders Lateral angle Medial Lateral Superior 2 surfaces 3 processes Posterior view: Acromion Right Scapula Spine Coracoid Bone: Upper limb - 2 Scapula 2 surfaces: Costal (Anterior), Posterior Posterior view: Costal (Anterior) view: Right Scapula Right Scapula Bone: Upper limb - 3 Scapula Glenoid cavity: Glenohumeral joint Lateral view: Infraglenoid tubercle Right Scapula Supraglenoid tubercle posterior anterior Bone: Upper limb - 4 Scapula Supraglenoid tubercle: long head of biceps Anterior view: brachii Right Scapula Bone: Upper limb - 5 Scapula Infraglenoid tubercle: long head of triceps brachii Anterior view: Right Scapula (with biceps brachii removed) Bone: Upper limb - 6 Posterior surface of Scapula, Right Acromion; Spine; Spinoglenoid notch Suprspinatous fossa, Infraspinatous fossa Bone: Upper limb - 7 Costal (Anterior) surface of Scapula, Right Subscapular fossa: Shallow concave surface for subscapularis Bone: Upper limb - 8 Superior border Coracoid process Suprascapular notch Suprascapular nerve Posterior view: Right Scapula Bone: Upper limb - 9 Acromial Clavicle end Sternal end S-shaped Acromial end: smaller, oval facet Sternal end: larger,quadrangular facet, with manubrium, 1st rib Conoid tubercle Trapezoid line Right Clavicle Bone: Upper limb - 10 Clavicle Conoid tubercle: inferior
    [Show full text]
  • Trapezius Origin: Occipital Bone, Ligamentum Nuchae & Spinous Processes of Thoracic Vertebrae Insertion: Clavicle and Scapul
    Origin: occipital bone, ligamentum nuchae & spinous processes of thoracic vertebrae Insertion: clavicle and scapula (acromion Trapezius and scapular spine) Action: elevate, retract, depress, or rotate scapula upward and/or elevate clavicle; extend neck Origin: spinous process of vertebrae C7-T1 Rhomboideus Insertion: vertebral border of scapula Minor Action: adducts & performs downward rotation of scapula Origin: spinous process of superior thoracic vertebrae Rhomboideus Insertion: vertebral border of scapula from Major spine to inferior angle Action: adducts and downward rotation of scapula Origin: transverse precesses of C1-C4 vertebrae Levator Scapulae Insertion: vertebral border of scapula near superior angle Action: elevates scapula Origin: anterior and superior margins of ribs 1-8 or 1-9 Insertion: anterior surface of vertebral Serratus Anterior border of scapula Action: protracts shoulder: rotates scapula so glenoid cavity moves upward rotation Origin: anterior surfaces and superior margins of ribs 3-5 Insertion: coracoid process of scapula Pectoralis Minor Action: depresses & protracts shoulder, rotates scapula (glenoid cavity rotates downward), elevates ribs Origin: supraspinous fossa of scapula Supraspinatus Insertion: greater tuberacle of humerus Action: abduction at the shoulder Origin: infraspinous fossa of scapula Infraspinatus Insertion: greater tubercle of humerus Action: lateral rotation at shoulder Origin: clavicle and scapula (acromion and adjacent scapular spine) Insertion: deltoid tuberosity of humerus Deltoid Action:
    [Show full text]