The Structure and Function of Breathing

Total Page:16

File Type:pdf, Size:1020Kb

The Structure and Function of Breathing CHAPTERCONTENTS The structure-function continuum 1 Multiple Influences: biomechanical, biochemical and psychological 1 The structure and Homeostasis and heterostasis 2 OBJECTIVE AND METHODS 4 function of breathing NORMAL BREATHING 5 Respiratory benefits 5 Leon Chaitow The upper airway 5 Dinah Bradley Thenose 5 The oropharynx 13 The larynx 13 Pathological states affecting the airways 13 Normal posture and other structural THE STRUCTURE-FUNCTION considerations 14 Further structural considerations 15 CONTINUUM Kapandji's model 16 Nowhere in the body is the axiom of structure Structural features of breathing 16 governing function more apparent than in its Lung volumes and capacities 19 relation to respiration. This is also a region in Fascla and resplrstory function 20 which prolonged modifications of function - Thoracic spine and ribs 21 Discs 22 such as the inappropriate breathing pattern dis- Structural features of the ribs 22 played during hyperventilation - inevitably intercostal musculature 23 induce structural changes, for example involving Structural features of the sternum 23 Posterior thorax 23 accessory breathing muscles as well as the tho- Palpation landmarks 23 racic articulations. Ultimately, the self-perpetuat- NEURAL REGULATION OF BREATHING 24 ing cycle of functional change creating structural Chemical control of breathing 25 modification leading to reinforced dysfunctional Voluntary control of breathing 25 tendencies can become complete, from The autonomic nervous system 26 whichever direction dysfunction arrives, for Sympathetic division 27 Parasympathetic division 27 example: structural adaptations can prevent NANC system 28 normal breathing function, and abnormal breath- THE MUSCLES OF RESPIRATION 30 ing function ensures continued structural adap- Additional soft tissue influences and tational stresses leading to decompensation. connections 31 insplratory and expiratory muder, 31 Restoration of normal function requires Gait influences 32 restoration of adequate mobility to the structural component and, self-evidently, maintenance of Upper thoracic muscles 33 Thoracic musculature 34 any degree of restored biomechanical integrity NOTES ON SPECIFIC MUSCLES 35 requires that function (how the individual Spinalis thoracis 35 breathes) should be normalized through re- Semispinalis thoracis 35 education and training. Multifidi 35 Rotatores longus and brevis 35 Spinal musculature: implications for thoracic function 36 MULTIPLE INFLUENCES: Muttifidus and the abdominals 36 Serratus posterior superior 36 BIOMECHANICAL, BIOCHEMICAL, Serratus posterior inferior 36 AND PSYCHOLOGICAL Levatores costarum iongus and brevis 37 lntercostals 37 The area of respiration is one in which the inter- Interior thorax 38 action between biochemical, biomechanical, and Transversus thoracis 39 psychosocial features is dramatically evident 1 2 MULTtDISCIPLINARY APPROACHES TO BREATHING PATTERN DISORDERS Other catalysts which may impact on breathing function include environmental factors (altitude, humidity, etc.). Even factors such as where an individual is born may contribute to subsequent breathing imbalances: 'People who are born at high altitude have a diminished ventilatory response to hypoxia that is only slowly corrected by subsequent residence at sea level. Conversely, those born at sea level who move to high altitudes retain their hypoxic response intact for a long time. Apparently therefore ventilatory response is determined very early in life' (West 2000). How we breathe and how we feel are inti- mately conjoined in a two-way loop. Feeling anxious produces a distinctive pattern of upper- chest breathing which modifies blood chemistry, leading to a chain reaction of effects, inducing anxiety, and so reinforcing the pattern which pro- duced the dysfunctional pattern of breathing in the first place. Even when an altered pattern of breathing is the result of emotional distress, it will eventually produce the structural, biomechanical changes which are described below. This suggests that when attempting to restore normal breathing - by means of re-education and exercise for example - both the psychological initiating factors and the structural compensation patterns Figure 1.1 A Homeostasis. B Heterostasis. (Reproduced need to be addressed. (The psychological effects with kind permission from Chaitow 1999.) of breathing dysfunction are covered in greater detail in Chapter 5.) (Fig. 1.1A, 1.1B). Inappropriate breathing can result directly from structural, biomechanical causes, Homeostasis and heterostasis such as a restricted thoracic spine or rib immobility or shortness of key respiratory muscles. The body is a self-healing mechanism. Broken Causes of breathing dysfunction can also have bones mend and cuts usually heal, and most a more biochemical etiology, possibly involving health disturbances - from infections to digestive an allergy or infection which triggers narrowing upsets - get better with or without treatment of breathing passages and subsequent asthmatic- (often faster without!), and, in a healthy state, type responses. Acidosis resulting from condi- there exists a constant process for normalization tions such as kidney failure will also directly alter and health promotion. This is called homeostasis. breathing function as the body attempts to However, the homeostatic functions (which reduce acid levels via elimination of C02through include the immune system) can become over- the means of hyperventilation. whelmed by too many tasks and demands as a The link between psychological distress and result of any, or all, of a selection of negative breathing makes this another primary cause of impacts, including nutritional deficiencies, accu- many manifestations of dysfunctional respir- mulated toxins (environmental pollution, either ation. Indeed, it is hard to imagine examining a as food or inhaled, in medication, previous or person suffering from anxiety or depression current use of drugs, etc.), emotional stress, without breathing dysfunction being noted. recurrent or current infections, allergies, modi- THE STRuefilRE AND FUNCTION OF BREATHING 3 fied functional ability due to age, or inborn the pressure off the defense mechanisms while factors, or acquired habits involving poor the body focuses on its current repair needs. posture, breathing imbalances and/or sleep 2. Enhancing, improving, modulating the disturbances, and so on and on ... (Fig. 1.2). defense and repair processes by a variety of At a certain point in time the adaptive homeo- means, sometimes via specific intervention static mechanisms break down, and frank illness and sometimes involving non-specific, - disease - appears. At this time the situation has constitutional methods. modified from homeostasis to heterostusis, and at 3. Treating the symptoms while making sure that this time the body needs help - treatment. nothing is being done to add further to the Treatment can take a number of forms, which are burden of the defense mechanisms. usually classifiable as involving one of three Not all available therapeutic measures need broad strategies: to be employed, because once the load on the 1. Reducing the load impacting the body by adaptation and repair processes has reduced taking away as many of the undesirable adap- sufficiently, a degree of normal homeostatic tive factors as possible (by avoiding allergens, self-regulating function is automatically restored, improving posture and breathing, learning and the healing process commences. stress coping tactics, improving diet, using supplements if called for, helping normalize Therapy as a stress factor sleep and circulatory function, introducing a detoxification program if needed, dealing A corollary to the perspective of therapy being with infections) and generally trying to keep aimed at the 'removal of obstacles to self-healing' pesticides, etc. heavy metals Possible nutrient petrochemicals deficiencies: self-generated Lifestyle factors: vitamins via infection poor sleep patterns conditions minerals iaterogenic inadequate or excessive EFAs influences, etc. exercise Neural and/or limbic i alcohol, tobacco usage I svstem malfunction h\ / /I I social and medical drugs I bacterial I \U fungal viral personality traits parasitic, etc. powerlessness L- anxiety Genetically interpersonal issues inherited tendencies: hypermobility genetic inscription influences on hormonal function Endocrine imbalance Multiple current symptoms: Functional problems: \' pain, fatigue, insomnia, IBS, - hyperventilation digestive, allergic, recurrent - digestive enzyme Trauma - physical and/or infections, genitourinary, etc. deficit, etc. psychological When homeostatic adaptive capacity is exhausted treatment calls for: 1. Restoration of immune competence, enhancement of defence capabilities, support of repair functions 2. Reduction of as many of the multiple interacting stressors impacting the individual as possible 3. Attention to symptoms (ideally without creating new problems). Figure 1.2 Multiple stressors in fibromyalgia. (Reproduced with kind permission from Chaitow 1999.) 4 MULTIDISCIPLINARY APPROACHES TO BREATHING PATTERN DISORDERS is that, since almost any form of ’treatment’ been established. This commonly requires the involves further adaptive demands, therapeutic removal of causative factors, if identifiable, interventions need to be tailored to the ability of and, if possible, the rehabilitation of habitual, the individual to respond to the treatment. acquired dysfunctional breathing patterns, and, Excessive adaptive demands
Recommended publications
  • Vertebral Column and Thorax
    Introduction to Human Osteology Chapter 4: Vertebral Column and Thorax Roberta Hall Kenneth Beals Holm Neumann Georg Neumann Gwyn Madden Revised in 1978, 1984, and 2008 The Vertebral Column and Thorax Sternum Manubrium – bone that is trapezoidal in shape, makes up the superior aspect of the sternum. Jugular notch – concave notches on either side of the superior aspect of the manubrium, for articulation with the clavicles. Corpus or body – flat, rectangular bone making up the major portion of the sternum. The lateral aspects contain the notches for the true ribs, called the costal notches. Xiphoid process – variably shaped bone found at the inferior aspect of the corpus. Process may fuse late in life to the corpus. Clavicle Sternal end – rounded end, articulates with manubrium. Acromial end – flat end, articulates with scapula. Conoid tuberosity – muscle attachment located on the inferior aspect of the shaft, pointing posteriorly. Ribs Scapulae Head Ventral surface Neck Dorsal surface Tubercle Spine Shaft Coracoid process Costal groove Acromion Glenoid fossa Axillary margin Medial angle Vertebral margin Manubrium. Left anterior aspect, right posterior aspect. Sternum and Xyphoid Process. Left anterior aspect, right posterior aspect. Clavicle. Left side. Top superior and bottom inferior. First Rib. Left superior and right inferior. Second Rib. Left inferior and right superior. Typical Rib. Left inferior and right superior. Eleventh Rib. Left posterior view and left superior view. Twelfth Rib. Top shows anterior view and bottom shows posterior view. Scapula. Left side. Top anterior and bottom posterior. Scapula. Top lateral and bottom superior. Clavicle Sternum Scapula Ribs Vertebrae Body - Development of the vertebrae can be used in aging of individuals.
    [Show full text]
  • Managing a Rib Fracture: a Patient Guide
    Managing a Rib Fracture A Patient Guide What is a rib fracture? How is a fractured rib diagnosed? A rib fracture is a break of any of the bones that form the Your doctor will ask questions about your injury and do a rib cage. There may be a single fracture of one or more ribs, physical exam. or a rib may be broken into several pieces. Rib fractures are The doctor may: usually quite painful as the ribs have to move to allow for normal breathing. • Push on your chest to find out where you are hurt. • Watch you breathe and listen to your lungs to make What is a flail chest? sure air is moving in and out normally. When three or more neighboring ribs are fractured in • Listen to your heart. two or more places, a “flail chest” results. This creates an • Check your head, neck, spine, and belly to make sure unstable section of chest wall that moves in the opposite there are no other injuries. direction to the rest of rib cage when you take a breath. • You may need to have an X-ray or other imaging test; For example, when you breathe in your rib cage rises out however, rib fractures do not always show up on X-rays. but the flail chest portion of the rib cage will actually fall in. So you may be treated as though you have a fractured This limits your ability to take effective deep breaths. rib even if an X-ray doesn’t show any broken bones.
    [Show full text]
  • Netter's Musculoskeletal Flash Cards, 1E
    Netter’s Musculoskeletal Flash Cards Jennifer Hart, PA-C, ATC Mark D. Miller, MD University of Virginia This page intentionally left blank Preface In a world dominated by electronics and gadgetry, learning from fl ash cards remains a reassuringly “tried and true” method of building knowledge. They taught us subtraction and multiplication tables when we were young, and here we use them to navigate the basics of musculoskeletal medicine. Netter illustrations are supplemented with clinical, radiographic, and arthroscopic images to review the most common musculoskeletal diseases. These cards provide the user with a steadfast tool for the very best kind of learning—that which is self directed. “Learning is not attained by chance, it must be sought for with ardor and attended to with diligence.” —Abigail Adams (1744–1818) “It’s that moment of dawning comprehension I live for!” —Calvin (Calvin and Hobbes) Jennifer Hart, PA-C, ATC Mark D. Miller, MD Netter’s Musculoskeletal Flash Cards 1600 John F. Kennedy Blvd. Ste 1800 Philadelphia, PA 19103-2899 NETTER’S MUSCULOSKELETAL FLASH CARDS ISBN: 978-1-4160-4630-1 Copyright © 2008 by Saunders, an imprint of Elsevier Inc. All rights reserved. No part of this book may be produced or transmitted in any form or by any means, electronic or mechanical, including photocopying, recording or any information storage and retrieval system, without permission in writing from the publishers. Permissions for Netter Art figures may be sought directly from Elsevier’s Health Science Licensing Department in Philadelphia PA, USA: phone 1-800-523-1649, ext. 3276 or (215) 239-3276; or e-mail [email protected].
    [Show full text]
  • Thoracic and Lumbar Spine Anatomy
    ThoracicThoracic andand LumbarLumbar SpineSpine AnatomyAnatomy www.fisiokinesiterapia.biz ThoracicThoracic VertebraeVertebrae Bodies Pedicles Laminae Spinous Processes Transverse Processes Inferior & Superior Facets Distinguishing Feature – Costal Fovea T1 T2-T8 T9-12 ThoracicThoracic VertebraeVertebrae andand RibRib JunctionJunction FunctionsFunctions ofof ThoracicThoracic SpineSpine – Costovertebral Joint – Costotransverse Joint MotionsMotions – All available – Flexion and extension limited – T7-T12 LumbarLumbar SpineSpine BodiesBodies PediclesPedicles LaminaeLaminae TransverseTransverse ProcessProcess SpinousSpinous ProcessProcess ArticularArticular FacetsFacets LumbarLumbar SpineSpine ThoracolumbarThoracolumbar FasciaFascia LumbarLumbar SpineSpine IliolumbarIliolumbar LigamentsLigaments FunctionsFunctions ofof LumbarLumbar SpineSpine – Resistance of anterior translation – Resisting Rotation – Weight Support – Motion IntervertebralIntervertebral DisksDisks RatioRatio betweenbetween diskdisk thicknessthickness andand vertebralvertebral bodybody heightheight DiskDisk CompositionComposition – Nucleus pulposis – Annulus Fibrosis SpinalSpinal LigamentsLigaments AnteriorAnterior LongitudinalLongitudinal PosteriorPosterior LongitudinalLongitudinal LigamentumLigamentum FlavumFlavum InterspinousInterspinous LigamentsLigaments SupraspinousSupraspinous LigamentsLigaments IntertransverseIntertransverse LigamentsLigaments SpinalSpinal CurvesCurves PosteriorPosterior ViewView SagittalSagittal ViewView – Primary – Secondary
    [Show full text]
  • Part 1 the Thorax ECA1 7/18/06 6:30 PM Page 2 ECA1 7/18/06 6:30 PM Page 3
    ECA1 7/18/06 6:30 PM Page 1 Part 1 The Thorax ECA1 7/18/06 6:30 PM Page 2 ECA1 7/18/06 6:30 PM Page 3 Surface anatomy and surface markings The experienced clinician spends much of his working life relating the surface anatomy of his patients to their deep structures (Fig. 1; see also Figs. 11 and 22). The following bony prominences can usually be palpated in the living subject (corresponding vertebral levels are given in brackets): •◊◊superior angle of the scapula (T2); •◊◊upper border of the manubrium sterni, the suprasternal notch (T2/3); •◊◊spine of the scapula (T3); •◊◊sternal angle (of Louis) — the transverse ridge at the manubrio-sternal junction (T4/5); •◊◊inferior angle of scapula (T8); •◊◊xiphisternal joint (T9); •◊◊lowest part of costal margin—10th rib (the subcostal line passes through L3). Note from Fig. 1 that the manubrium corresponds to the 3rd and 4th thoracic vertebrae and overlies the aortic arch, and that the sternum corre- sponds to the 5th to 8th vertebrae and neatly overlies the heart. Since the 1st and 12th ribs are difficult to feel, the ribs should be enu- merated from the 2nd costal cartilage, which articulates with the sternum at the angle of Louis. The spinous processes of all the thoracic vertebrae can be palpated in the midline posteriorly, but it should be remembered that the first spinous process that can be felt is that of C7 (the vertebra prominens). The position of the nipple varies considerably in the female, but in the male it usually lies in the 4th intercostal space about 4in (10cm) from the midline.
    [Show full text]
  • Basic Biomechanics
    Posture analysis • A quick evaluation of structure and function • Doctor views patient from behind (P-A) and from the side (lateral) • References points of patient’s anatomy relative to plumb (a position of balance) 9/3/2013 1 Posture analysis • Lateral View – Knees (anterior, posterior, plumb, genu recurvatum) – Trochanter (anterior, posterior, plumb) – Pelvis (anterior, posterior, neutral pelvic tilt) – Lumbar lordosis (hypo-, hyper-, normal) – Mid-axillary line (anterior, posterior, plumb) – Thoracic kyphosis (hyp-, hyper- normal) – Acromion (anterior, posterior, plumb) – Scapulae (protracted, retracted, normal) – Cervical lordosis (hypo-, hyper-, normal) – External auditory meatus (anterior, posterior, plumb) – Occiput (extended, neutral, flexed) 9/3/2013 2 Posture analysis • Posterior – Anterior View – Feet (pronation, supination, normal) – Achilles tendon (bowed in/out, normal) – Knees (genu valga/vera, normal - internal/external rotation) – Popliteal crease heights (low, high, level) – Trochanter heights (low, high, level) – Iliac crest heights (low on the right/left, normal) – Lumbar scoliosis (right/left, or no signs of) – Thoracic scoliosis (right/left, or no signs of) – Shoulder level (low on the right/left, or normal) – Cervical scoliosis (right/left, or no signs of) – Cervical position (rotation, tilt, neutral) – Mastoid (low on the right/left, or normal) 9/3/2013 3 …..poor postures 9/3/2013 4 Functional Anatomy of the Spine • The vertebral curvatures – Cervical Curve • Anterior convex curve (lordosis) develop in infancy
    [Show full text]
  • Ch22: Actions of the Respiratory Muscles
    CHAPTER 22 ACTIONS OF THE RESPIRATORY MUSCLES André de Troyer he so-called respiratory muscles are those muscles that caudally and ventrally from their costotransverse articula- Tprovide the motive power for the act of breathing. Thus, tions, such that their ventral ends and the costal cartilages although many of these muscles are involved in a variety of are more caudal than their dorsal parts (Figure 22-2B, C). activities, such as speech production, cough, vomiting, and When the ribs are displaced in the cranial direction, their trunk motion, their primary task is to displace the chest wall ventral ends move laterally and ventrally as well as cra- rhythmically to pump gas in and out of the lungs. The pres- nially, the cartilages rotate cranially around the chon- ent chapter, therefore, starts with a discussion of the basic drosternal junctions, and the sternum is displaced ventrally. mechanical structure of the chest wall in humans. Then, the Consequently, there is usually an increase in both the lateral action of each group of muscles is analyzed. For the sake of and the dorsoventral diameters of the rib cage (see Figure clarity, the functions of the diaphragm, the intercostal mus- 22-2B, C). Conversely, a displacement of the ribs in the cau- cles, the muscles of the neck, and the muscles of the abdom- dal direction is usually associated with a decrease in rib cage inal wall are analyzed sequentially. However, since all these diameters. As a corollary, the muscles that elevate the ribs as muscles normally work together in a coordinated manner, their primary action have an inspiratory effect on the rib the most critical aspects of their mechanical interactions are cage, whereas the muscles that lower the ribs have an expi- also emphasized.
    [Show full text]
  • Trunk Control During Gait: Walking with Wide and Narrow Step Widths Present Distinct 4 Challenges 5 6 Hai-Jung Steffi Shih, James Gordon, Kornelia Kulig
    bioRxiv preprint doi: https://doi.org/10.1101/2020.08.30.274423; this version posted November 17, 2020. The copyright holder for this preprint (which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under aCC-BY-NC-ND 4.0 International license. 1 Original Article 2 3 Trunk Control during Gait: Walking with Wide and Narrow Step Widths Present Distinct 4 Challenges 5 6 Hai-Jung Steffi Shih, James Gordon, Kornelia Kulig 7 Division of Biokinesiology and Physical Therapy, University of Southern California, Los Angeles, 8 CA, USA 9 10 11 Corresponding Author: 12 Hai-Jung Steffi Shih 13 Address: 1540 E. Alcazar St, CHP 155, Los Angeles, CA, 90033 14 Telephone: +1 (323)442-2089 15 Fax: +1 (323)442-1515 16 Email: [email protected] 17 18 19 Keywords: Gait stability, Lateral stability, Trunk coordination, Muscle activation, Foot placement 20 Word count (intro-discussion): 3519 21 1 bioRxiv preprint doi: https://doi.org/10.1101/2020.08.30.274423; this version posted November 17, 2020. The copyright holder for this preprint (which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under aCC-BY-NC-ND 4.0 International license. 22 Abstract 23 The active control of the trunk plays an important role in frontal plane gait stability. We 24 characterized trunk control in response to different step widths using a novel feedback system 25 and examined the different effects of wide and narrow step widths as they each present unique 26 task demands.
    [Show full text]
  • Energy Requirements of Breathing
    The mass movement of gases into all intercostal muscles when ventilation and out of the lungs is accomplished requirements approach 50% of the pre­ by muscular work. This requires en­ dicted vital capacity. ergy expenditure, caloric consump­ The diaphragm and intercostals are tion, oxygen utilization, and carbon di­ the only respiratory muscles used by oxide production. Inspiration is always the normal individual under ordinary an active process, enlarging the vol­ circumstances. Other muscles are mo­ ume of the thorax, thereby increasing bilized when ventilatory demands are the negative pressure so that air flows increased, either because of increase into the lungs. Expiration is ordinarily in total ventilation in the normal indi­ passive but may require muscular vidual or because of altered physiology work. of respiration in disease states. The so­ The position of the chest wall at called accessory muscles of respiration rest is a mechanically neutral point include particularly the scalenes, the at which the tendency of the chest sternomastoid, and the trapezius. wall to expand is balanced by the The scalene muscles arise from the Energy Requirements tendency of the lungs to recoil. This is transverse processes of the cervical the end expiratory level or midposi­ vertebrae and insert in the 1st and of Breathing* tion, and the lung volume at this point 2nd ribs. They serve to stabilize and is termed the functional residual ca­ elevate the 1st and 2nd ribs. They are pacity. An increase in chest size can not ordinarily employed in quiet respir­ be achieved only by exerting pressure ation. W. T. THOMPSON, JR.
    [Show full text]
  • Skeletal System? Skeletal System Chapters 6 & 7 Skeletal System = Bones, Joints, Cartilages, Ligaments
    Warm-Up Activity • Fill in the names of the bones in the skeleton diagram. Warm-Up 1. What are the 4 types of bones? Give an example of each. 2. Give 3 ways you can tell a female skeleton from a male skeleton. 3. What hormones are involved in the skeletal system? Skeletal System Chapters 6 & 7 Skeletal System = bones, joints, cartilages, ligaments • Axial skeleton: long axis (skull, vertebral column, rib cage) • Appendicular skeleton: limbs and girdles Appendicular Axial Skeleton Skeleton • Cranium (skull) • Clavicle (collarbone) • Mandible (jaw) • Scapula (shoulder blade) • Vertebral column (spine) • Coxal (pelvic girdle) ▫ Cervical vertebrae • Humerus (arm) ▫ Thoracic vertebrae • Radius, ulna (forearm) ▫ Lumbar vertebrae • Carpals (wrist) • Metacarpals (hand) ▫ Sacrum • Phalanges (fingers, toes) ▫ Coccyx • Femur (thigh) • Sternum (breastbone) • Tibia, fibula (leg) • Ribs • Tarsal, metatarsals (foot) • Calcaneus (heel) • Patella (knee) Functions of the Bones • Support body and cradle soft organs • Protect vital organs • Movement: muscles move bones • Storage of minerals (calcium, phosphorus) & growth factors • Blood cell formation in bone marrow • Triglyceride (fat) storage Classification of Bones 1. Long bones ▫ Longer than they are wide (eg. femur, metacarpels) 2. Short bones ▫ Cube-shaped bones (eg. wrist and ankle) ▫ Sesamoid bones (within tendons – eg. patella) 3. Flat bones ▫ Thin, flat, slightly curved (eg. sternum, skull) 4. Irregular bones ▫ Complicated shapes (eg. vertebrae, hips) Figure 6.2 • Adult = 206 bones • Types of bone
    [Show full text]
  • An Endoscopic Study on the Prevalence of the Accessory Maxillary Ostium in Chronic Sinusitis Patients
    International Journal of Otorhinolaryngology and Head and Neck Surgery Varadharajan R et al. Int J Otorhinolaryngol Head Neck Surg. 2020 Jan;6(1):40-44 http://www.ijorl.com pISSN 2454-5929 | eISSN 2454-5937 DOI: http://dx.doi.org/10.18203/issn.2454-5929.ijohns20195211 Original Research Article An endoscopic study on the prevalence of the accessory maxillary ostium in chronic sinusitis patients Ramesh Varadharajan*, Swara Sahithya, Ranjitha Venkatesan, Agaman Gunasekaran, Sneha Suresh Department of Otorhinolaryngology and Head and Neck Surgery , Aarupadai Veedu Medical College and Hospital, Kirumampakkam, Puducherry, India Received: 21 October 2019 Revised: 07 November 2019 Accepted: 08 November 2019 *Correspondence: Dr. Ramesh Varadharajan, E-mail: [email protected] Copyright: © the author(s), publisher and licensee Medip Academy. This is an open-access article distributed under the terms of the Creative Commons Attribution Non-Commercial License, which permits unrestricted non-commercial use, distribution, and reproduction in any medium, provided the original work is properly cited. ABSTRACT Background: Chronic maxillary sinusitis is one of the common ENT problems. Accessory maxillary ostium (AMO) has been postulated in many publications to play a role in the development of chronic maxillary sinusitis. AMO is found in the medial wall of maxillary sinus and located in the lateral wall of the nose. It’s been frequently identified in the routine nasal endoscopy. The variations in the location of AMO have been evaluated by nasal endoscopy in live subjects or through cadaver dissections by many authors. This live study is conducted to identify the prevalence of AMO during nasal endoscopic evaluation of chronic sinusitis patients.
    [Show full text]
  • The Influence of the Rib Cage on the Static and Dynamic Stability
    www.nature.com/scientificreports OPEN The infuence of the rib cage on the static and dynamic stability responses of the scoliotic spine Shaowei Jia1,2, Liying Lin3, Hufei Yang2, Jie Fan2, Shunxin Zhang2 & Li Han3* The thoracic cage plays an important role in maintaining the stability of the thoracolumbar spine. In this study, the infuence of a rib cage on static and dynamic responses in normal and scoliotic spines was investigated. Four spinal fnite element (FE) models (T1–S), representing a normal spine with rib cage (N1), normal spine without rib cage (N2), a scoliotic spine with rib cage (S1) and a scoliotic spine without rib cage (S2), were established based on computed tomography (CT) images, and static, modal, and steady-state analyses were conducted. In S2, the Von Mises stress (VMS) was clearly decreased compared to S1 for four bending loadings. N2 and N1 showed a similar VMS to each other, and there was a signifcant increase in axial compression in N2 and S2 compared to N1 and S1, respectively. The U magnitude values of N2 and S2 were higher than in N1 and S1 for fve loadings, respectively. The resonant frequencies of N2 and S2 were lower than those in N1 and S1, respectively. In steady-state analysis, maximum amplitudes of vibration for N2 and S2 were signifcantly larger than N1 and S1, respectively. This study has revealed that the rib cage improves spinal stability in vibrating environments and contributes to stability in scoliotic spines under static and dynamic loadings. Scoliosis, a three-dimensional deformity, prevents healthy development.
    [Show full text]