THE ANTHROPOMETRY of BODY ACTION* by Wilfrid Taylor
Total Page:16
File Type:pdf, Size:1020Kb
Load more
Recommended publications
-
The Structure and Function of Breathing
CHAPTERCONTENTS The structure-function continuum 1 Multiple Influences: biomechanical, biochemical and psychological 1 The structure and Homeostasis and heterostasis 2 OBJECTIVE AND METHODS 4 function of breathing NORMAL BREATHING 5 Respiratory benefits 5 Leon Chaitow The upper airway 5 Dinah Bradley Thenose 5 The oropharynx 13 The larynx 13 Pathological states affecting the airways 13 Normal posture and other structural THE STRUCTURE-FUNCTION considerations 14 Further structural considerations 15 CONTINUUM Kapandji's model 16 Nowhere in the body is the axiom of structure Structural features of breathing 16 governing function more apparent than in its Lung volumes and capacities 19 relation to respiration. This is also a region in Fascla and resplrstory function 20 which prolonged modifications of function - Thoracic spine and ribs 21 Discs 22 such as the inappropriate breathing pattern dis- Structural features of the ribs 22 played during hyperventilation - inevitably intercostal musculature 23 induce structural changes, for example involving Structural features of the sternum 23 Posterior thorax 23 accessory breathing muscles as well as the tho- Palpation landmarks 23 racic articulations. Ultimately, the self-perpetuat- NEURAL REGULATION OF BREATHING 24 ing cycle of functional change creating structural Chemical control of breathing 25 modification leading to reinforced dysfunctional Voluntary control of breathing 25 tendencies can become complete, from The autonomic nervous system 26 whichever direction dysfunction arrives, for Sympathetic division 27 Parasympathetic division 27 example: structural adaptations can prevent NANC system 28 normal breathing function, and abnormal breath- THE MUSCLES OF RESPIRATION 30 ing function ensures continued structural adap- Additional soft tissue influences and tational stresses leading to decompensation. -
Vertebral Column and Thorax
Introduction to Human Osteology Chapter 4: Vertebral Column and Thorax Roberta Hall Kenneth Beals Holm Neumann Georg Neumann Gwyn Madden Revised in 1978, 1984, and 2008 The Vertebral Column and Thorax Sternum Manubrium – bone that is trapezoidal in shape, makes up the superior aspect of the sternum. Jugular notch – concave notches on either side of the superior aspect of the manubrium, for articulation with the clavicles. Corpus or body – flat, rectangular bone making up the major portion of the sternum. The lateral aspects contain the notches for the true ribs, called the costal notches. Xiphoid process – variably shaped bone found at the inferior aspect of the corpus. Process may fuse late in life to the corpus. Clavicle Sternal end – rounded end, articulates with manubrium. Acromial end – flat end, articulates with scapula. Conoid tuberosity – muscle attachment located on the inferior aspect of the shaft, pointing posteriorly. Ribs Scapulae Head Ventral surface Neck Dorsal surface Tubercle Spine Shaft Coracoid process Costal groove Acromion Glenoid fossa Axillary margin Medial angle Vertebral margin Manubrium. Left anterior aspect, right posterior aspect. Sternum and Xyphoid Process. Left anterior aspect, right posterior aspect. Clavicle. Left side. Top superior and bottom inferior. First Rib. Left superior and right inferior. Second Rib. Left inferior and right superior. Typical Rib. Left inferior and right superior. Eleventh Rib. Left posterior view and left superior view. Twelfth Rib. Top shows anterior view and bottom shows posterior view. Scapula. Left side. Top anterior and bottom posterior. Scapula. Top lateral and bottom superior. Clavicle Sternum Scapula Ribs Vertebrae Body - Development of the vertebrae can be used in aging of individuals. -
Series 1100TDM Tandem MEGALUG Mechanical Joint Restraint
Series 1100TDM Tandem MEGALUG® Mechanical Joint Restraint High Pressure Restraint for Ductile Iron Pipe Features and Applications: • For use on Ductile Iron Pipe 4 inch through 54 inch • High Pressure Restraint • Torque Limiting Twist-Off Nuts • Mechanical Joint follower gland incorporated into the restraint • MEGA-BOND® Coating System For more information on MEGA- BOND, visit our web site at www. ebaa.com • Minimum 2 to 1 Safety Factor Series 1112TDM restraining a mechanical joint fitting. • Constructed of A536 Ductile Iron Post Pressure Rating • EBAA-Seal™ Mechanical Nominal Pipe Shipping Assembly (PSI) Joint Gaskets are provided Size Weights* Deflection with all 1100TDM MEGALUG 4 21.6 3° 700 restraints. These are required 6 33.0 3° 700 to accommodate the pressure ratings and safety factors 8 40.0 3° 700 shown. 10 60.2 3° 700 12 75.0 3° 700 • New: High strength heavy hex 14 112.7 2° 700 machine bolts with T-nuts are 16 131.6 2° 700 provided to facilitate easier assembly due to the fittings 18 145.2 1½° 500 radius area prohibiting the use 20 166.6 1½° 500 longer T-bolts. 24 290.2 1½° 500 30 457.9 1° 500 • T-Nuts constructed of High 36 553.63 1° 500 Tensile Ductile Iron with Fluropolymer Coating. 42 1,074.8 1° 500 48 1,283.1 1° 500 For use on water or wastewater 54 1,445.32 ½° 400 pipelines subject to hydrostatic NOTE: For applications or pressures other than those shown please pressure and tested in accordance contact EBAA for assistance. -
Chapter 14. Anthropometry and Biomechanics
Table of contents 14 Anthropometry and biomechanics........................................................................................ 14-1 14.1 General application of anthropometric and biomechanic data .....................................14-2 14.1.1 User population......................................................................................................14-2 14.1.2 Using design limits ................................................................................................14-4 14.1.3 Avoiding pitfalls in applying anthropometric data ................................................14-6 14.1.4 Solving a complex sequence of design problems ..................................................14-7 14.1.5 Use of distribution and correlation data...............................................................14-11 14.2 Anthropometric variability factors..............................................................................14-13 14.3 Anthropometric and biomechanics data......................................................................14-13 14.3.1 Data usage............................................................................................................14-13 14.3.2 Static body characteristics....................................................................................14-14 14.3.3 Dynamic (mobile) body characteristics ...............................................................14-28 14.3.3.1 Range of whole body motion........................................................................14-28 -
MINED NORMAL PORTAL VEIN DIAMETER: RESULTS from a STUDY CONDUCTED in RAJASTHAN, INDIA Nidhi Lal *1, Vivek Lal 2, Sayantani Majumdar 3, Sreya Moitra 4
International Journal of Anatomy and Research, Int J Anat Res 2018, Vol 6(3.3):5588-92. ISSN 2321-4287 Original Research Article DOI: https://dx.doi.org/10.16965/ijar.2018.208 ANTHROPOMETRIC CORRELATES OF SONOGRAPHICALLY-DETER- MINED NORMAL PORTAL VEIN DIAMETER: RESULTS FROM A STUDY CONDUCTED IN RAJASTHAN, INDIA Nidhi Lal *1, Vivek Lal 2, Sayantani Majumdar 3, Sreya Moitra 4. *1 Demonstrator, College of Medicine & Sagore Datta Medical College, Kolkata, West Bengal, India. 2 National Medical Advisor, German Leprosy & TB Relief Association- India 3 Demonstrator, College of Medicine & Sagore Datta Medical College, Kolkata, West Bengal, India. 4 Assistant Professor, College of Medicine & Sagore Datta Medical College, Kolkata, West Bengal, India. ABSTRACT Background: Dilatation of portal vein is predictive of portal hypertension and therefore requires accurate standards for normal measurements. Despite several studies to determine portal vein diameters, there exist considerable variations across communities. Moreover, body builds have been found to correlate with different diseases. Purpose of study: We conducted a study among 200 normal participants belonging to Rajasthan in order to obtain data on sonographically measured diameters of portal vein and determine the association between portal vein diameters and age, sex, anthropometric measurements like height, weight, chest circumference, circumference at the transpyloric plane, circumference at the umbilicus and circumference at the hip. Results: We found that the mean portal vein diameter assessed ultrasonographically was 10.2 mm (SD 1.47 mm), with diameter ranging from 8.0 mm to 14.5 mm. Although, there was no statistically significant difference in portal vein diameter among the various age groups, a statistically significant difference was found between males and females. -
Anthropometrical Orofacial Measurement in Children from Three to Five Years Old
899 MEDIDAS ANTROPOMÉTRICAS OROFACIAIS EM CRIANÇAS DE TRÊS A CINCO ANOS DE IDADE Anthropometrical orofacial measurement in children from three to five years old Raquel Bossle(1), Mônica Carminatti(1), Bárbara de Lavra-Pinto(1), Renata Franzon (2), Fernando de Borba Araújo (3), Erissandra Gomes(3) RESUMO Objetivo: obter as medidas antropométricas orofaciais em crianças pré-escolares de três a cinco anos e realizar a correlação com idade cronológica, gênero, raça e hábitos orais. Métodos: estudo transversal com 93 crianças selecionadas por meio de amostra de conveniência consecutiva. Os responsáveis responderam a um questionário sobre os hábitos orais e as crianças foram submetidas a uma avaliação odontológica e antropométrica da face. O nível de significância utilizado foi p<0,05. Resultados: as médias das medidas antropométricas orofaciais foram descritas. Houve diferença estatística nas medidas de altura da face (p<0,001), terço médio da face (p<0,001), canto externo do olho até a comissura labial esquerda/direita (p<0,001) e lábio inferior (p=0,015) nas faixas etárias. O gênero masculino apresentou medidas superiores na altura de face (p=0,003), terço inferior da face (p<0,001), lábio superior (p=0,001) e lábio inferior (p<0,001). Não houve diferença estatisticamente significante na altura do lábio superior em sujeitos não brancos (p=0,03). A presença de hábitos orais não influenciou os resultados. O aleitamento materno exclusivo por seis meses influenciou o aumento da medida de terço médio (p=0,022) e da altura da face (p=0,037). Conclusão: as médias descritas neste estudo foram superiores aos padrões encontrados em outros estudos. -
Medical Terminology Abbreviations Medical Terminology Abbreviations
34 MEDICAL TERMINOLOGY ABBREVIATIONS MEDICAL TERMINOLOGY ABBREVIATIONS The following list contains some of the most common abbreviations found in medical records. Please note that in medical terminology, the capitalization of letters bears significance as to the meaning of certain terms, and is often used to distinguish terms with similar acronyms. @—at A & P—anatomy and physiology ab—abortion abd—abdominal ABG—arterial blood gas a.c.—before meals ac & cl—acetest and clinitest ACLS—advanced cardiac life support AD—right ear ADL—activities of daily living ad lib—as desired adm—admission afeb—afebrile, no fever AFB—acid-fast bacillus AKA—above the knee alb—albumin alt dieb—alternate days (every other day) am—morning AMA—against medical advice amal—amalgam amb—ambulate, walk AMI—acute myocardial infarction amt—amount ANS—automatic nervous system ant—anterior AOx3—alert and oriented to person, time, and place Ap—apical AP—apical pulse approx—approximately aq—aqueous ARDS—acute respiratory distress syndrome AS—left ear ASA—aspirin asap (ASAP)—as soon as possible as tol—as tolerated ATD—admission, transfer, discharge AU—both ears Ax—axillary BE—barium enema bid—twice a day bil, bilateral—both sides BK—below knee BKA—below the knee amputation bl—blood bl wk—blood work BLS—basic life support BM—bowel movement BOW—bag of waters B/P—blood pressure bpm—beats per minute BR—bed rest MEDICAL TERMINOLOGY ABBREVIATIONS 35 BRP—bathroom privileges BS—breath sounds BSI—body substance isolation BSO—bilateral salpingo-oophorectomy BUN—blood, urea, nitrogen -
About Your Knee
OrthoInfo Basics About Your Knee What are the parts of the knee? Your knee is Your knee is made up of four main things: bones, cartilage, ligaments, the largest joint and tendons. in your body Bones. Three bones meet to form your knee joint: your thighbone and one of the (femur), shinbone (tibia), and kneecap (patella). Your patella sits in most complex. front of the joint and provides some protection. It is also vital Articular cartilage. The ends of your thighbone and shinbone are covered with articular cartilage. This slippery substance to movement. helps your knee bones glide smoothly across each other as you bend or straighten your leg. Because you use it so Two wedge-shaped pieces of meniscal cartilage act as much, it is vulnerable to Meniscus. “shock absorbers” between your thighbone and shinbone. Different injury. Because it is made from articular cartilage, the meniscus is tough and rubbery to help up of so many parts, cushion and stabilize the joint. When people talk about torn cartilage many different things in the knee, they are usually referring to torn meniscus. can go wrong. Knee pain or injury Femur is one of the most (thighbone) common reasons people Patella (kneecap) see their doctors. Most knee problems can be prevented or treated with simple measures, such as exercise or Articular cartilage training programs. Other problems require surgery Meniscus to correct. Tibia (shinbone) 1 OrthoInfo Basics — About Your Knee What are ligaments and tendons? Ligaments and tendons connect your thighbone Collateral ligaments. These are found on to the bones in your lower leg. -
Study Guide Medical Terminology by Thea Liza Batan About the Author
Study Guide Medical Terminology By Thea Liza Batan About the Author Thea Liza Batan earned a Master of Science in Nursing Administration in 2007 from Xavier University in Cincinnati, Ohio. She has worked as a staff nurse, nurse instructor, and level department head. She currently works as a simulation coordinator and a free- lance writer specializing in nursing and healthcare. All terms mentioned in this text that are known to be trademarks or service marks have been appropriately capitalized. Use of a term in this text shouldn’t be regarded as affecting the validity of any trademark or service mark. Copyright © 2017 by Penn Foster, Inc. All rights reserved. No part of the material protected by this copyright may be reproduced or utilized in any form or by any means, electronic or mechanical, including photocopying, recording, or by any information storage and retrieval system, without permission in writing from the copyright owner. Requests for permission to make copies of any part of the work should be mailed to Copyright Permissions, Penn Foster, 925 Oak Street, Scranton, Pennsylvania 18515. Printed in the United States of America CONTENTS INSTRUCTIONS 1 READING ASSIGNMENTS 3 LESSON 1: THE FUNDAMENTALS OF MEDICAL TERMINOLOGY 5 LESSON 2: DIAGNOSIS, INTERVENTION, AND HUMAN BODY TERMS 28 LESSON 3: MUSCULOSKELETAL, CIRCULATORY, AND RESPIRATORY SYSTEM TERMS 44 LESSON 4: DIGESTIVE, URINARY, AND REPRODUCTIVE SYSTEM TERMS 69 LESSON 5: INTEGUMENTARY, NERVOUS, AND ENDOCRINE S YSTEM TERMS 96 SELF-CHECK ANSWERS 134 © PENN FOSTER, INC. 2017 MEDICAL TERMINOLOGY PAGE III Contents INSTRUCTIONS INTRODUCTION Welcome to your course on medical terminology. You’re taking this course because you’re most likely interested in pursuing a health and science career, which entails proficiencyincommunicatingwithhealthcareprofessionalssuchasphysicians,nurses, or dentists. -
Monitoring Methods of Human Body Joints: State-Of-The-Art and Research Challenges
sensors Review Monitoring Methods of Human Body Joints: State-of-the-Art and Research Challenges Abu Ilius Faisal 1, Sumit Majumder 1 , Tapas Mondal 2, David Cowan 3, Sasan Naseh 1 and M. Jamal Deen 1,* 1 Department of Electrical and Computer Engineering, McMaster University, Hamilton, ON L8S 4L8, Canada; [email protected] (A.I.F.); [email protected] (S.M.); [email protected] (S.N.) 2 Department of Pediatrics, McMaster University, Hamilton, ON L8S 4L8, Canada; [email protected] 3 Department of Medicine, St. Joseph’s Healthcare Hamilton, Hamilton, ON L8N 4A6, Canada; [email protected] * Correspondence: [email protected]; Tel.: +1-905-5259-140 (ext. 27137) Received: 26 April 2019; Accepted: 4 June 2019; Published: 10 June 2019 Abstract: The world’s population is aging: the expansion of the older adult population with multiple physical and health issues is now a huge socio-economic concern worldwide. Among these issues, the loss of mobility among older adults due to musculoskeletal disorders is especially serious as it has severe social, mental and physical consequences. Human body joint monitoring and early diagnosis of these disorders will be a strong and effective solution to this problem. A smart joint monitoring system can identify and record important musculoskeletal-related parameters. Such devices can be utilized for continuous monitoring of joint movements during the normal daily activities of older adults and the healing process of joints (hips, knees or ankles) during the post-surgery period. A viable monitoring system can be developed by combining miniaturized, durable, low-cost and compact sensors with the advanced communication technologies and data processing techniques. -
Order Ephemeroptera
Glossary 1. Abdomen: the third main division of the body; behind the head and thorax 2. Accessory flagellum: a small fingerlike projection or sub-antenna of the antenna, especially of amphipods 3. Anterior: in front; before 4. Apical: near or pertaining to the end of any structure, part of the structure that is farthest from the body; distal 5. Apicolateral: located apical and to the side 6. Basal: pertaining to the end of any structure that is nearest to the body; proximal 7. Bilobed: divided into two rounded parts (lobes) 8. Calcareous: resembling chalk or bone in texture; containing calcium 9. Carapace: the hardened part of some arthropods that spreads like a shield over several segments of the head and thorax 10. Carinae: elevated ridges or keels, often on a shell or exoskeleton 11. Caudal filament: threadlike projection at the end of the abdomen; like a tail 12. Cercus (pl. cerci): a paired appendage of the last abdominal segment 13. Concentric: a growth pattern on the opercula of some gastropods, marked by a series of circles that lie entirely within each other; compare multi-spiral and pauci-spiral 14. Corneus: resembling horn in texture, slightly hardened but still pliable 15. Coxa: the basal segment of an arthropod leg 16. Creeping welt: a slightly raised, often darkened structure on dipteran larvae 17. Crochet: a small hook-like organ 18. Cupule: a cup shaped organ, as on the antennae of some beetles (Coleoptera) 19. Detritus: disintegrated or broken up mineral or organic material 20. Dextral: the curvature of a gastropod shell where the opening is visible on the right when the spire is pointed up 21. -
Biomechanics of the Thoracic Spine - Development of a Method to Measure the Influence of the Rib Cage on Thoracic Spine Movement
Universität Ulm Zentrum für Chirurgie Institut für Unfallchirurgische Forschung und Biomechanik Direktor: Prof. Dr. A. Ignatius Biomechanics of the Thoracic Spine - Development of a Method to Measure the Influence of the Rib Cage on Thoracic Spine Movement Dissertation zur Erlangung des Doktorgrades der Medizin der Medizinischen Fakultät der Universität Ulm vorgelegt von: Konrad Appelt geboren in: Pforzheim 2012 Amtierender Dekan: Prof. Dr. Thomas Wirth 1. Berichterstatter: Prof. Dr. H.-J. Wilke 2. Berichterstatter: Prof. Dr. Tobias Böckers Tag der Promotion: 06.06.2013 Index List of abbreviations ......................................................................................IV 1 Introduction .............................................................................................. 1 1.1 Background ............................................................................................................. 1 1.2 State of Research .................................................................................................... 4 1.3 Objectives ............................................................................................................... 6 2 Material and methods .............................................................................. 7 2.1 Testing machines and devices ................................................................................. 7 2.1.1 Spine loading simulator ................................................................................... 7 2.1.2 Vicon – MX Motion Capture System