Human Vitamin and Mineral Requirements

Total Page:16

File Type:pdf, Size:1020Kb

Human Vitamin and Mineral Requirements Human Vitamin and Mineral Requirements Report of a joint FAO/WHO expert consultation Bangkok, Thailand Food and Agriculture Organization of the United Nations World Health Organization Food and Nutrition Division FAO Rome The designations employed and the presentation of material in this information product do not imply the expression of any opinion whatsoever on the part of the Food and Agriculture Organization of the United Nations concerning the legal status of any country, territory, city or area or of its authorities, or concern- ing the delimitation of its frontiers or boundaries. All rights reserved. Reproduction and dissemination of material in this information product for educational or other non-commercial purposes are authorized without any prior written permission from the copyright holders provided the source is fully acknowledged. Reproduction of material in this information product for resale or other commercial purposes is prohibited without written permission of the copyright holders. Applications for such permission should be addressed to the Chief, Publishing and Multimedia Service, Information Division, FAO, Viale delle Terme di Caracalla, 00100 Rome, Italy or by e-mail to [email protected] © FAO 2001 FAO/WHO expert consultation on human vitamin and mineral requirements iii Foreword he report of this joint FAO/WHO expert consultation on human vitamin and mineral requirements has been long in coming. The consultation was held in Bangkok in TSeptember 1998, and much of the delay in the publication of the report has been due to controversy related to final agreement about the recommendations for some of the micronutrients. A priori one would not anticipate that an evidence based process and a topic such as this is likely to be controversial. But the reality is that there is surprisingly little data on specific health status indicators on which to draw conclusions, whereas there is more information in relation to overt deficiency disease conditions. The recommended intakes are therefore largely based on the interpretation of the best available scientific information, and this leaves the door open for differences in interpretation. A fundamental point is that when we look at recommended nutrient intakes (RNIs) in industrialized countries over the last 25 years, the levels for some of the micronutrients have been gradually increasing. The question is whether this comes from better scientific knowledge and understanding of the biochemical role of the nutrients, or whether the criteria for setting the levels of the requirements have changed. Even if the scientific knowledge base has expanded, it appears that the basic criteria for deciding on levels to recommend may bear more of the responsibility. Whereas RNIs for vitamins and minerals were initially established on the understanding that they are meant to meet the basic nutritional needs of over 97 percent of the population, a fundamental criterion in industrialized countries has become one of presumptive role these nutrients may play in the “prevention” against an increasing range of disease conditions that characterise these populations. The latter approach implies the notion of “optimal nutrition”, and this may be insidiously pushing requirements to higher levels time and again. This shift in the goal for setting RNIs is not without reason. The populations that are targeted for prevention through “optimal nutrition” are characterised by sedentary lifestyles and longer life expectations. The populations of developed countries are ageing, and the concern for the health of the ageing has become prominent. By contrast the micronutrient needs of developing countries as a whole have not really changed, and are more appropriately described as those that will satisfy basic needs of younger populations that are physically active. This, nevertheless, is not to deny the double burden of malnutrition, which is rapidly rising in many developing countries, and one needs to also bear that in mind. The concern raised about possible differences in micronutrient needs of populations with different lifestyles is for a very practical reason. The logic behind the establishment of micronutrient needs of industrialized nations has come about at the same time that there is a large and growing demand for a variety of supplements of all kinds, and manufacturers have responded quickly to meet this market. This phenomenon could be skewing our strategy for nutritional development, with a tendency to want to resolve micronutrient deficiency problems of developing countries through the use of supplements and fortification strategies, rather than through increasing the consumption of an adequate and varied diet. Higher levels of RNIs in developed countries can easily be supported because they can be met with supplementation in addition to food. But when it becomes difficult to meet some of the micronutrient needs of developing countries by consuming locally available food, there is a problem. iv FAO/WHO expert consultation on human vitamin and mineral requirements The nutrients of concern currently are, first, calcium, for which the RNI may be difficult to meet without dairy products. The recently revised US/Canada Dietary Reference Intakes (DRIs) only propose an Acceptable Intake (AI) for calcium, instead of a Recommended Daily Allowance (RDA), in recognition of the fact that intake data is out of step with the relatively high intake requirements observed with experimentally derived values. Another is iron, particularly during pregnancy, where supplementation appears to be essential during the second half of pregnancy. Folic acid requirements are doubled for women of child-bearing age to prevent the incidence of neural tube defects in the foetus. Conversion factors for carotenoids are under review, with the looming conclusion that servings of green leafy vegetables needed to meet vitamin A requirements would probably need to be at least doubled. In view of this uncertainty, we have only provided for “recommended safe intakes” rather than RNIs. Selenium is undergoing growing interest because of its properties as an antioxidant. The RNIs recommended from the FAO/WHO process for this micronutrient are in a lower range than that provided by the US/Canada process because the latter is calculated on a cellular basis, whereas the former are based on the more traditional whole body estimates. Are these “developments” or “new understandings” appropriate and applicable for developing countries? There is no clear answer based on our current knowledge, but the time may be coming when RNIs will need to be seen differently for developing countries, and based on developing country data. There may be a need to identify some biomarkers that are specific to developing country conditions. There is therefore an urgent need for research to be carried out in developing countries about their nutrient needs. The current situation also implies that the RNIs for the micronutrients of concern discussed above will need to be re-evaluated as soon as significant additional data becomes available. Guy Nantel FAO Coordinator for the expert consultation Food and Nutrition Division Kraisid Tontisirin Director Food and Nutrition Division FAO/WHO expert consultation on human vitamin and mineral requirements v CONTENTS Foreword i Participating experts xiiiii Background paper contributors xvii Background paper reviewers xix Consultants xxi Secretariat xxii Chapter 1 Introduction 1 Background 1 Terms of reference and process 1 Definitions of terms used 2 Report of the consultation 4 References 6 Chapter 2 Food-based approaches to meeting vitamin and mineral needs 7 Dietary diversification when consuming cereal and tuber-based diets 9 How to accomplish dietary diversity in practice 10 Practices which will enhance the success of food-based approaches 11 Delineating the role of supplementation and food fortification for nutrients which cannot be supplied by regular foods 12 Recommendations for the future 15 Future research 16 References 25 Chapter 3 Thiamin, riboflavin, niacin, vitamin B6, pantothenic acid and biotin 27 Thiamin 28 Riboflavin 31 Niacin 33 Vitamin B6 36 Pantothenate 38 Biotin 40 General considerations for B-complex vitamins 42 References 44 Chapter 4 Folate and folic acid 53 Role of folate and folic acid in human metabolic processes 53 Definition of populations at risk for folate deficiency 57 Delineation of dietary sources 57 Evidence on which to base a recommended intake 57 Differences in bio-availability of folic acid and food folate 59 Neural tube defects 59 Cardiovascular disease 60 Colorectal cancer 60 Upper limit 60 Future research 60 References 62 vi FAO/WHO expert consultation on human vitamin and mineral requirements Chapter 5 Vitamin B12 65 Role of vitamin B12 in human metabolic processes 65 Dietary sources and availability 65 Absorption 65 Populations at risk for and consequences of vitamin B12 deficiency 66 Vitamin B12 interaction with folate or folic acid 67 Assessment of vitamin B12 status 68 Evidence on which to base a recommended intake 68 Future research 70 References 71 Chapter 6 Vitamin C 73 Role in human metabolic processes 73 Overview of significant scientific information 74 Definition of population at risk 75 Dietary sources of vitamin C and limitations to vitamin C 76 Information used to derive dietary requirement of vitamin C 77 Future research 80 References 81 Chapter 7 Vitamin A 87 Role of vitamin A in human metabolic processes 87 Population at risk and consequences of vitamin A deficiency
Recommended publications
  • Does Dietary Fiber Affect the Levels of Nutritional Components After Feed Formulation?
    fibers Article Does Dietary Fiber Affect the Levels of Nutritional Components after Feed Formulation? Seidu Adams 1 ID , Cornelius Tlotliso Sello 2, Gui-Xin Qin 1,3,4, Dongsheng Che 1,3,4,* and Rui Han 1,3,4 1 College of Animal Science and Technology, Jilin Agricultural University, Changchun 130118, China; [email protected] (S.A.); [email protected] (G.-X.Q.); [email protected] (R.H.) 2 College of Animal Science and Technology, Department of Animal Genetics, Breeding and Reproduction, Jilin Agricultural University, Changchun 130118, China; [email protected] 3 Key Laboratory of Animal Production, Product Quality and Security, Jilin Agricultural University, Ministry of Education, Changchun 130118, China 4 Jilin Provincial Key Laboratory of Animal Nutrition and Feed Science, Jilin Agricultural University, Changchun 130118, China * Correspondence: [email protected]; Tel.: +86-136-4431-9554 Received: 12 January 2018; Accepted: 25 April 2018; Published: 7 May 2018 Abstract: Studies on dietary fiber and nutrient bioavailability have gained an increasing interest in both human and animal nutrition. Questions are increasingly being asked regarding the faith of nutrient components such as proteins, minerals, vitamins, and lipids after feed formulation. The aim of this review is to evaluate the evidence with the perspective of fiber usage in feed formulation. The consumption of dietary fiber may affect the absorption of nutrients in different ways. The physicochemical factors of dietary fiber, such as fermentation, bulking ability, binding ability, viscosity and gel formation, water-holding capacity and solubility affect nutrient absorption. The dietary fiber intake influences the different methods in which nutrients are absorbed.
    [Show full text]
  • Guideline for Dietary Fibre Intake
    Guideline for dietary fibre intake Gezondheidsraad Health Council of the Netherlands To the Minister of Health, Welfare and Sport Subject : Presentation of advisory report Guideline for dietary fibre intake Your reference:- Our reference : U 383/CS/cn/754-C Enclosures : 1 Date : March 21, 2006 Dear Minister, I hereby present an advisory report concerning the Guideline for Dietary Fibre Intake, which has been prepared, at the request of my predecessor Professor JGAJ Hautvast, by the Health Council's Committee on Dietary Fibre and reviewed by the Standing Committee on Nutrition and the Standing Committee on Medicine. I have today also presented this report to the Minister of Agriculture, Nature and Food Quality. This is the fourth in a series of advisory reports designed to revise the Dutch dietary ref- erence intakes (Nederlandse Voedingsnormen), which were adopted in 1992 by the former Food and Nutrition Council (Voedingsraad). Dietary fibre received very little attention in that report, however. The advisory report Guidelines for a Healthy Diet (Richtlijnen Goede Voeding), which was published by the Food and Nutrition Council in 1986 and is currently being revised, also included a very brief passage about dietary fibre. The attached advisory report is therefore the first thorough evaluation of the physiological effects of dietary fibre to have been undertaken in the Netherlands. The Committee has chosen not to set a dietary reference intake for fibre, but instead to issue a guideline. This decision is motivated by the fact that dietary fibre is the collective term for a group of substances with very wide-ranging physiological effects.
    [Show full text]
  • 957 Geophagia, a Soil
    CORE Metadata, citation and similar papers at core.ac.uk Provided by Adnan Menderes University International Meeting on Soil Fertility Land Management and Agroclimatology. Turkey, 2008. p: 957-967 Geophagia, a Soil - Environmental Related Disease Hadi Ghorbani Assistant Professor in Soil and Environmental Pollution Shahrood University of Technology, Shahrood, Iran [email protected] ABSTRACT Geophagia or geophagy is a habit for an uncontrollable urge to eat earth that commonly is occur in poverty-stricken populations and particularly there are in children under three years of age and pregnant women. The custom of involuntary or deliberate eating of soil, especially clayey soil, has a long history and is amazingly widespread. Some researchers have described an anomalous clay layer at a prehistoric site at the Kalambo Falls in Zambia indicating that clay might have been eaten by hominids. Von Humboidt reported from his travels in South America in early 18th century that clay was eaten to some extent at all times by the tribe in Peru. In the mid 19 century it was customary for certain people in the north of Sweden to mix earth with flour in making bread whether the clay effected an improvement in taste. In Iran, geophagia has seen in some of children and pregnant which that is solved with eating starch daily. For example, some reports are shown that there has been geophagia disease in some parts of Fars province, around Shiraz city which have been made different health as well as environmental complications. Clay with a large cation exchange capacity that is also fairly well saturated can release and supplement some macronutrients and micronutrients such as Cu, Fe, Mn and Zn.
    [Show full text]
  • Series 1100TDM Tandem MEGALUG Mechanical Joint Restraint
    Series 1100TDM Tandem MEGALUG® Mechanical Joint Restraint High Pressure Restraint for Ductile Iron Pipe Features and Applications: • For use on Ductile Iron Pipe 4 inch through 54 inch • High Pressure Restraint • Torque Limiting Twist-Off Nuts • Mechanical Joint follower gland incorporated into the restraint • MEGA-BOND® Coating System For more information on MEGA- BOND, visit our web site at www. ebaa.com • Minimum 2 to 1 Safety Factor Series 1112TDM restraining a mechanical joint fitting. • Constructed of A536 Ductile Iron Post Pressure Rating • EBAA-Seal™ Mechanical Nominal Pipe Shipping Assembly (PSI) Joint Gaskets are provided Size Weights* Deflection with all 1100TDM MEGALUG 4 21.6 3° 700 restraints. These are required 6 33.0 3° 700 to accommodate the pressure ratings and safety factors 8 40.0 3° 700 shown. 10 60.2 3° 700 12 75.0 3° 700 • New: High strength heavy hex 14 112.7 2° 700 machine bolts with T-nuts are 16 131.6 2° 700 provided to facilitate easier assembly due to the fittings 18 145.2 1½° 500 radius area prohibiting the use 20 166.6 1½° 500 longer T-bolts. 24 290.2 1½° 500 30 457.9 1° 500 • T-Nuts constructed of High 36 553.63 1° 500 Tensile Ductile Iron with Fluropolymer Coating. 42 1,074.8 1° 500 48 1,283.1 1° 500 For use on water or wastewater 54 1,445.32 ½° 400 pipelines subject to hydrostatic NOTE: For applications or pressures other than those shown please pressure and tested in accordance contact EBAA for assistance.
    [Show full text]
  • Choline for a Healthy Pregnancy
    To support healthy for a Healthy weight gain and keep up with the nutritional needs of both mom and Pregnancy the developing baby, CHOLINE additional nutrients are necessary. Nine out of 10 Americans don’t meet the daily recommended choline intake of 550 mg1,2 and it can be challenging to reach this goal even when choosing choline-containing foods like beef, eggs, wheat germ and Brussels sprouts. Choline is particularly important during pregnancy for both mom and baby because it supports healthy brain growth and offers protection against neural tube defects. Women are encouraged to take a prenatal supplement before and during pregnancy to ensure they’re meeting vitamin and mineral recommendations. In fact, the American Medical Association recommends that choline be included in all prenatal vitamins to help ensure women get enough choline to maintain a normal pregnancy.3 Look for a prenatal supplement that contains folic acid, iron, DHA (omega-3s), vitamin D and choline. Consider smart swaps to get the most choline in your diet for a healthy pregnancy, as well as optimal health after baby arrives. PREGNANCY EATING PATTERN* CHOLINE-FOCUSED PREGNANCY EATING PATTERN* 1 1 hard-cooked egg 1 2 cups toasted whole grain oat cereal / 1 large peach 1 cup nonfat milk 1 1 slice whole grain bread /3 cup blueberries 1 1 tablespoon jelly /3 cup sliced banana BREAKFAST 1 cup nonfat milk 1 /2 whole grain bagel 1 whole wheat tortilla 2 tablespoons peanut butter 2 tablespoons peanut butter 1 small apple 1 SNACK 1 /2 large banana /2 cup nonfat vanilla Greek yogurt 2 slices whole grain bread 3 oz.
    [Show full text]
  • Is There an Ideal Diet to Protect Against Iodine Deficiency?
    nutrients Review Is There an Ideal Diet to Protect against Iodine Deficiency? Iwona Krela-Ka´zmierczak 1,† , Agata Czarnywojtek 2,3,†, Kinga Skoracka 1,* , Anna Maria Rychter 1 , Alicja Ewa Ratajczak 1 , Aleksandra Szymczak-Tomczak 1, Marek Ruchała 2 and Agnieszka Dobrowolska 1 1 Department of Gastroenterology, Dietetics and Internal Diseases, Poznan University of Medical Sciences, Heliodor Swiecicki Hospital, 60-355 Poznan, Poland; [email protected] (I.K.-K.); [email protected] (A.M.R.); [email protected] (A.E.R.); [email protected] (A.S.-T.); [email protected] (A.D.) 2 Department of Endocrinology, Metabolism and Internal Medicine, Poznan University of Medical Sciences, 60-355 Poznan, Poland; [email protected] (A.C.); [email protected] (M.R.) 3 Department of Pharmacology, Poznan University of Medical Sciences, 60-806 Poznan, Poland * Correspondence: [email protected]; Tel.: +48-665-557-356 or +48-8691-343; Fax: +48-8691-686 † These authors contributed equally to this work. Abstract: Iodine deficiency is a global issue and affects around 2 billion people worldwide, with preg- nant women as a high-risk group. Iodine-deficiency prevention began in the 20th century and started with global salt iodination programmes, which aimed to improve the iodine intake status globally. Although it resulted in the effective eradication of the endemic goitre, it seems that salt iodination did not resolve all the issues. Currently, it is recommended to limit the consumption of salt, which is the main source of iodine, as a preventive measure of non-communicable diseases, such as hypertension or cancer the prevalence of which is increasing.
    [Show full text]
  • Zinc Citrate – a Highly Bioavailable Zinc Source
    Wellness Foods Europe THE MAGAZINE FOR NUTRITION, FUNCTIONAL FOODS & BEVERAGES AND SUPPLEMENTS Zinc citrate – a highly bioavailable zinc source Reprint from Wellness Foods Europe issue 3/2014 Wellness Foods Europe Special salts Zinc citrate – a highly bioavailable zinc source Markus Gerhart, Jungbunzlauer Ladenburg GmbH Zinc, the versatile mineral, is about to be- Zinc is a component of about 300 enzymes and come the next star in the minerals catego- 2000 transcriptional factors, and 10 % of the ry. Profiting from its various health benefits human proteome contain zinc-binding motives. and its relatively low cost in use, zinc sales Impairment of intestinal zinc absorption results in supplements have shown a double digit in severe clinical manifestations like skin lesions, growth in 2012 and are starting to catch up developmental retardation, stunted growth and with calcium, magnesium and iron, the cate- immune deficiency. gory leaders. Its importance for human health was empha- sised by the European health claim regu lation, Zinc is an essential transition metal that is where zinc received more positive opinions (18 directly or indirectly involved in a wide varie- in total) than any other mineral. The range of ty of physiological processes. After discover- claims (Table 1) includes, amongst others, im- ing the necessity of zinc for Aspergillus niger, it portant health benefits like immunity, bone took another 100 years before its relevance for health, cognitive function and healthy vision. humans was recognised, when the zinc deficien- These health benefits can be clearly defined and cy syndrome was described for the first time by are easy for the consumer to understand.
    [Show full text]
  • Macronutrients and Human Health for the 21St Century
    nutrients Editorial Macronutrients and Human Health for the 21st Century Bernard J. Venn Department of Human Nutrition, University of Otago, Dunedin 9054, New Zealand; [email protected] Received: 30 July 2020; Accepted: 4 August 2020; Published: 7 August 2020 Abstract: Fat, protein and carbohydrate are essential macronutrients. Various organisations have made recommendations as to the energy contribution that each of these components makes to our overall diet. The extent of food refining and the ability of food systems to support future populations may also impact on how macronutrients contribute to our diet. In this Special Issue, we are calling for manuscripts from all disciplines to provide a broad-ranging discussion on macronutrients and health from personal, public and planetary perspectives. Keywords: macronutrient; fat; protein; carbohydrate; acceptable macronutrient distribution range; starch; sustainability The macronutrients, fat, protein and carbohydrate provide energy and essential components to sustain life. Fat is composed of glycerol and fatty acids; protein is an agglomeration of amino acids; and carbohydrate is simple sugars occurring either as monosaccharides or chains of connected monosaccharides (e.g., starch) whose bonds are either hydrolysed in the human small intestine to monosaccharides or are resistant to hydrolysis (dietary fibre). To maintain longevity and health, a combination of these macronutrients is required in our diet. It is elusive as to whether there is a combination of macronutrients that provides optimal health. When expressed as a percentage of energy to the diet, human populations have historically survived on diets with greatly differing proportions of these macronutrients. For example, the animal-based diet of an Alaskan Inuit group was found to comprise 33% protein, 41% fat and 26% carbohydrate [1].
    [Show full text]
  • Mineral Deficiencies in Florida and Supplementation Considerations
    Mineral Deficiencies in Florida and Supplementation Considerations Lee R. McDowell and Mark E. Tiffany Department of Animal Science University of Florida, Gainesville Summary than 100%, to increase growth rates from 10% to 25%, and to reduce mortality significantly Mineral deficiencies have been and continue to (McDowell, 1992; 1997). be severe detriments to beef cattle production in Florida. Historically, Florida cattle have suffered The first United States reports of Cu or Co from deficiencies of P, Ca, Na, Mg, Co, Cu, Zn, deficiency in grazing cattle originated in Florida and toxicities of F and Mo. In more recent years Se (Becker et al., 1965). Nutritional anemia or “salt deficiency, as evidenced by white muscle disease sick” in cattle, later established as a deficiency of and a “buckling” condition, has been widespread. Fe, Cu and Co, was noted as early as 1872 (Becker Evaluating 15 data sets of Florida forages et al., 1965). Prior to the 1950s, Florida’s nutri- (predominately bahiagrass), the minerals most de- tional deficiencies, as evidenced by low forage ficient were P, Na, Cu, Se and Zn, with Ca, Mg and and(or) animal tissue concentration or decreased Co found to be borderline-to-deficient depending on performance, had been established for Ca, P, Co, location, season, forage species, and year. As a Cu, Na, Mg, and Fe. In more recent years the low-cost insurance measure to provide adequate problems of Se and Zn deficiency for ruminants mineral nutrition, a modified “complete” mineral have been observed. Zinc deficiency was evidenced supplement should be available free-choice. The by hair loss and skin lesions.
    [Show full text]
  • Chapter 14. Anthropometry and Biomechanics
    Table of contents 14 Anthropometry and biomechanics........................................................................................ 14-1 14.1 General application of anthropometric and biomechanic data .....................................14-2 14.1.1 User population......................................................................................................14-2 14.1.2 Using design limits ................................................................................................14-4 14.1.3 Avoiding pitfalls in applying anthropometric data ................................................14-6 14.1.4 Solving a complex sequence of design problems ..................................................14-7 14.1.5 Use of distribution and correlation data...............................................................14-11 14.2 Anthropometric variability factors..............................................................................14-13 14.3 Anthropometric and biomechanics data......................................................................14-13 14.3.1 Data usage............................................................................................................14-13 14.3.2 Static body characteristics....................................................................................14-14 14.3.3 Dynamic (mobile) body characteristics ...............................................................14-28 14.3.3.1 Range of whole body motion........................................................................14-28
    [Show full text]
  • Nutritional Disturbances in Crohn's Disease ANTHONY D
    Postgrad Med J: first published as 10.1136/pgmj.59.697.690 on 1 November 1983. Downloaded from Postgraduate Medical Journal (November 1983) 59, 690-697 Nutritional disturbances in Crohn's disease ANTHONY D. HARRIES RICHARD V. HEATLEY* M.A., M.R.C.P. M.D., M.R.C.P. Department of Gastroenterology, University Hospital of Wales, Cardiffand *Department ofMedicine, St James's University Hospital, Leeds LS9 7TF Summary deficiency in the same patient. The most important A wide range of nutritional disturbances may be causes of malnutrition are probably reduced food found in patients with Crohn's disease. As more intake, active inflammation and enteric loss of sophisticated tests become available to measure nutrients (Dawson, 1972). vitamin and trace element deficiencies, so these are being recognized as complications ofCrohn's disease. TABLE 1. Pathogenesis of malnutrition It is important to recognize nutritional deficiencies at an early stage and initiate appropriate treatment. Reduced food intake Anorexia Otherwise many patients, experiencing what can be a Fear of eating from abdominal pain chronic and debilitating illness, may suffer unneces- Active inflammation Mechanisms unknown Protected by copyright. sarily from the consequences of deprivation of vital Enteric loss of nutrients Exudation from intestinal mucosa nutrients. Interrupted entero-hepatic circulation Malabsorption Loss of absorptive surface from disease, resection or by-pass KEY WORDS: growth disturbance, Crohn's disease, anaemia, vitamin deficiency. Stagnant loop syndrome from strictures, fistulae or surgically created blind loops Introduction Miscellaneous Rapid gastrointestinal transit Effects of medical therapy Crohn's disease is a chronic inflammatory condi- Effects of parenteral nutrition tion ofunknown aetiology that may affect any part of without trace element supplements the gastrointestinal tract from mouth to anus.
    [Show full text]
  • Detection, Distribution and Health Risk Assessment of Toxic Heavy
    foods Article Detection, Distribution and Health Risk Assessment of Toxic Heavy Metals/Metalloids, Arsenic, Cadmium, and Lead in Goat Carcasses Processed for Human Consumption in South-Eastern Nigeria Emmanuel O. Njoga 1,* , Ekene V. Ezenduka 1 , Chiazor G. Ogbodo 1, Chukwuka U. Ogbonna 2 , Ishmael F. Jaja 3 , Anthony C. Ofomatah 4 and Charles Odilichukwu R. Okpala 5,* 1 Department of Veterinary Public Health and Preventive Medicine, Faculty of Veterinary Medicine, University of Nigeria, Nsukka 410001, Nigeria; [email protected] (E.V.E.); [email protected] (C.G.O.) 2 Department of Biochemistry, Federal University of Agriculture Abeokuta, Ogun State 110124, Nigeria; [email protected] 3 Department of Livestock and Pasture Science, University of Fort Hare, Alice 5700, South Africa; [email protected] 4 National Centre for Energy Research and Development, University of Nigeria, Nsukka 410001, Nigeria; [email protected] 5 Department of Functional Food Products Development, Faculty of Biotechnology and Food Science, Wrocław University of Environmental and Life Sciences, 51-630 Wrocław, Poland Citation: Njoga, E.O.; Ezenduka, * Correspondence: [email protected] (E.O.N.); [email protected] (C.O.R.O.) E.V.; Ogbodo, C.G.; Ogbonna, C.U.; Jaja, I.F.; Ofomatah, A.C.; Okpala, Abstract: Notwithstanding the increased toxic heavy metals/metalloids (THMs) accumulation in C.O.R. Detection, Distribution and (edible) organs owed to goat0s feeding habit and anthropogenic activities, the chevon remains Health Risk Assessment of Toxic increasingly relished as a special delicacy in Nigeria. Specific to the South-Eastern region, however, Heavy Metals/Metalloids, Arsenic, Cadmium, and Lead in Goat there is paucity of relevant data regarding the prevalence of THMs in goat carcasses processed for Carcasses Processed for Human human consumption.
    [Show full text]