<<

Accepted Manuscript

The Bamble Sector, south : A review

Timo G. Nijland , Daniel E. Harlov , Tom Andersen

PII: S1674-9871(14)00067-X DOI: 10.1016/j.gsf.2014.04.008 Reference: GSF 300

To appear in: Geoscience Frontiers

Received Date: 31 August 2013 Revised Date: 14 April 2014 Accepted Date: 19 April 2014

Please cite this article as: Nijland, T.G., Harlov, D.E., Andersen, T., The Bamble Sector, south Norway: A review, Geoscience Frontiers (2014), doi: 10.1016/j.gsf.2014.04.008.

This is a PDF file of an unedited manuscript that has been accepted for publication. As a service to our customers we are providing this early version of the manuscript. The manuscript will undergo copyediting, typesetting, and review of the resulting proof before it is published in its final form. Please note that during the production process errors may be discovered which could affect the content, and all legal disclaimers that apply to the journal pertain. ACCEPTED MANUSCRIPT

MANUSCRIPT

ACCEPTED ACCEPTED MANUSCRIPT The Bamble Sector, south Norway: A review

Timo G. Nijland a,* , Daniel E. Harlov b,c , Tom Andersen d a TNO, PO Box 49, 2600 AA Delft, The Netherlands b GeoForschungsZentrum, Telegrafenberg, 14473 Potsdam, Germany c Department of Geology, University of Johannesburg P.O. Box 524, Auckland Park, 2006 South Africa dDepartment of Geosciences, University of , PO Box 1047, Blindern, 0316 Oslo, Norway

*Corresponding author.

E-mail: [email protected]; [email protected]

Abstract

The Bamble Sector, South Norway, is one of the world's classic amphibolite- to granulite- facies transition zones. It is characterized by a well-developed isograd sequence, with isolated 'granulite-facies islands' in the amphibolite-facies portion of the transtion zone. The area is notable for the discovery of CO 2-dominated fluid inclusions in the MANUSCRIPT granulite-facies rocks by Jacques Touret in the late 1960's, which triggered discussion of the role of carbonic fluids during granulite genesis. The aim of this review is to provide an overview of the current state of knowledge of the Bamble Sector, with an emphasis on the --- area and off shore islands (most prominantly Tromøy and Hisøy) where the transtion zone is best developed. After a brief overview of the history of geological research and in the area, aspects of sedimentary, metamorphic and magmatic petrology of the Bamble Sector are discussed, including the role of fluids. Issues relevant to current geotectonic models for SW Scandinavia, directly related to the Bamble Sector, are discussed at the end of the review.

Keywords ACCEPTED

Bamble Sector, South Norway, charnockite, amphibolite- to granulite-facies transition, CO 2, brines, Precambrian

1

ACCEPTED MANUSCRIPT 1. Introduction

The Bamble Sector is a classic Precambrian high-grade gneissic in a 30 km wide strip along the coast of South Norway (Fig. 1), between the Oslo in the northeast and the city of in the southwest. The central part, including the Arendal region and off shore islands (notably Tromøy and Hisøy), forms a well-developed, continuous transition zone from amphibolite- to granulite-facies metamorphic grade, which has attracted both intense geological interest as well as (past) interest from mining and exploration. It was the first amphibolite- to granulite-facies transition zone in which CO 2-rich fluid inclusions were investigated and their importance in granulite genesis first recognized by Jacques Touret (1970, 1971a, 1972, 1974). CO 2-rich fluid inclusions have since been found in granulites worldwide (e.g. Touret and Huizenga, 2011, 2012; Touret and Nijland, 2012; and references therein). In the same set of studies, (Na, K)Cl brine inclusions are also reported, though the importance of (Na, K)Cl brines as 'the other' granulite-facies fluid was realized only decades later (e.g. Newton et al., 1998). Though apparently regular, the transition zone shows local variations, like 'granulite-facies islands' in the amphibolite-facies zone, which are controlled by fluid and precursor chemistry, local LILE-depletion. The transition zone developed in what was an already high-grade metamorphic terrane. The current paper provides a review of the sedimentary, magmatic and metamorphic petrology of this classic area. MANUSCRIPT 2. Brief history of geological research and explora tion

From the 16 th century onwards, iron ore mining and smelting in the Bamble Sector became important pre-industrial activities, stimulated by the Danish crown (e.g. Kjerulf and Dahll, 1861, 1866; Vogt, 1908; Christophersen, 1974; Vevstad, 2002; Fløystad, 2007). Around 1800, the iron mines and works attracted early scientists such as the French metallurgist Gabriel Jars (1774) and the Germans Leopold von Buch (1813) and Alfred Hausmann (1812). In his Journey through Scandinavia in the years 1806 and 1807 , Hausmann (1812), remarked about the richness of the ores: 'Occurrences of small size, which would still have been very appreciated in Germany, are not mined in Norway, though these occur everywhere in the surroundings of Arendal.' The local miners were well aware of the interest in mineral specimens: 'Not long after my arrival, and briefly after that I had told the reason for my journey, was I ranACCEPTED over by miners, who brought minerals from the nearby mines for sale. One would not expect such an industry in a city that far away from any mineral trade. In this extent, one does not find it in Clausthal and Freiberg' (Hausmann, 1812). Both Clausthal and Freiberg were famous

2

ACCEPTED MANUSCRIPT German mining towns at that time. Iron mining, concentrated around Arendal and Kragerø, declined in the 2 nd half of the 19 th century, and was revived during both world wars in the 20 th century.

Especially in the 19 th century, nickel ore was mined from several mineralized metagabbros throughout the Bamble Sector (Vogt, 1893; A. Bugge, 1922; Jerpseth, 1979; Petersen, 1979; Boyd and Nixon, 1985; Brickwood, 1986). Base metals (Cu, Zn, Pb) were mined on a small scale and for shorter periods, the most important being the Ettedal (also called Espeland) Ag-Pb-Zn deposit (Naik, 1975; Naik et al., 1976; Tørdal, 1990; Petersen et al., 1995). Rutile was mined intermittently over the years, most notably from metasomatized gabbros (Korneliussen, 1985; Force, 1991; Korneliussen and Furuhaug, 1993). Though granulite-facies rocks in the Bamble Sector are depleted in gold (e.g. Cameron, 1989), there are several early reports of the occurrence of gold in the area (Pontoppidan, 1752; Daubrée, 1843), specifically on the island of Hisøy (Bugge, 1934; Johansen 2007a,b). Amongst the non-metallic ores, apatite was most prominent. Around World War I, several small, short-lived apatite deposits were actively mined (C. Bugge, 1922), but the apatite ores at Ødegårdens Verk proper, operated by the Compagnie Française de Mines de Bamle and later the Norwegian Bamble A/S, formed one of the richest known apatite deposits in the early 20 th century (Brøgger and Reusch, 1875; C. Bugge, 1922; Neumann et al., 1960; Bugge, 1965; Lieftink et al., 1993; Harlov et al., 2002; Engvik et al., 2009). The granite pegmatites (see below) offered many a fine mineral specimen for the natural history museums for the major capitals of 18 th and 19 th century Europe (e.g. Lacroix, 1889), some of them playing a role in the history of science, likeMANUSCRIPT an Y-bearing variety of uraninite, known as cleveite in the old literature, obtained from the Auselmyra pegmatite and sold to Mme. Curie in Paris to serve in her studies on radioactivity (Solås, 1990). Granitic pegmatites also served as a source of thorite and other Th-bearing minerals, much sought in the late 19 th century, resulting in a local ' boom' in the Kragerø area (Grønhaug, 2004). A more extensive overview of historic mining in the Bamble Sector may be found in Nijland and Touret (2013a,b), whereas Sandstad et al. (2012) give a metallogenetic overview.

Significant contributions to understanding of the geology of the area in the 20 th century were made by W.C. Brøgger (1906, 1934a,b), A. Bugge (1922, 1928, 1936, 1965), C. Bugge (1922), J.A.W. Bugge (1940, 1943, 1978), and T.F.W. Barth (1925, 1928, 1955, 1969). Some of the world's first radiometric age determinationsACCEPTED were performed on the Narestø pegmatite on the island of (Holmes et al., 1955). This was soon followed by other pegmatites in the Bamble Sector (Kulp and Ecklemann, 1957; Kulp and Neumann, 1961). Already before, the uraninite variety cleveite had been used by Bakken and Gleditsch (1938) for early chemical age determinations. From the 1960's onwards, several

3

ACCEPTED MANUSCRIPT research groups have been working intensively in the area for several decades, with detailed accounts of relationships between deformation, magmatism, and metamorphism compiled in a series of papers by Starmer (1969a,b, 1972a,b, 1976, 1977, 1978, 1985, 1987, 1990, 1991, 1993, 1996). These relationships were correlated to then current Rb-Sr and K-Ar ages. Recent U-Pb zircon, monazite, and titanite dating as well as Ar-Ar ages have since significantly changed the absolute timing of events.

3. Regional context and general outline

The Proterozoic Bamble Sector, South Norway, is part of the Southwest Scandinavian Domain, which is the latest accreted part of the (Gaál and Gorbatschev, 1987; Andersen, 2005; Bingen et al., 2005, 2008a,b). Over the last decades, the regional nomenclature of different parts of the Southwest Scandinavian Domain has become a mix of sectors, segments, blocks, , etc. (Fig. 2). In this review, we will use the original nomenclature of sectors and segments, purely for descriptive purposes and without any geotectonic implications, except where explicitly noted.

The Bamble Sector is a high-grade gneiss terrane, with an overall northeast-southwest trending structural style with multiple isoclinal folding (e.g. A. Bugge, 1936; J.A.W. Bugge, 1943; Starmer, 1985, 1990, 1996). It has occasionally been referred to as a mobile belt . The sector is made up of high grade, migmatized gneisses with quartzite dominated supracrustal complexes, which are prominently featured in the Froland and Kragerø areas. Several generations MANUSCRIPT of gabbroic intrusions over the entire sector; and granitic-charnockitic augen gneisses along the border with the Sector. Two post- tectonic granites ( and ) have intruded the high grade terrane.

The Bamble Sector is cut off in the northeast by the Permian Oslo Rift, and otherwise separated from the Telemark Sector by the Porsgrunn-Kristiansand shear zone (Figs. 1 and 3). This mylonitic deformation zone has generally been interpreted as a terrane boundary (e.g. Starmer, 1977, 1985). It is correlated with deep, gently dipping seismic reflectors below the Bamble Sector and the Skagerrak, which cut the Moho (Fig. 3) (Pedersen et al., 1990; Kinck et al., 1991; Lie et al., 1990, 1993). The downthrow of the Bamble Sector relative to the Telemark Sector is estimated from gravimetric studies to be at least 0.5 km near the Herefoss granite (Smithson, 1963) most probably between 0.6 and 1.0 km (Starmer, 1991).ACCEPTED More to the northeast (Nelaugvatn), gravity studies indicate downthrows of possibly over 2 km (Ramberg and Smithson, 1975). Nevertheless, the style of deformation (Falkum and Petersen, 1980; Hagelia, 1989) and distribution of Bouguer anomalies (NGU, 1971) indicate some kind of continuity between the Bamble and Telemark Sectors over the Porsgrunn-Kristiansand shear zone (Figs. 1 and 2). In addition, quartzites at Brattland, north of the Porsgrunn-Kristiansand 4

ACCEPTED MANUSCRIPT shear zone in the Vegårshei area, show strong similarities with those of the quartzite complex. Neodynium isotopic systematics of these quartzites supports this correlation (Andersen et al., 1995).

The continuation of the Bamble Sector below the Skagerrak is obscured by the Skagerrak , a continuation of the Oslo rift (Figs. 2 and 3). However, it is noteworthy that whereas the overall structural style and isograds in the Bamble Sector are concave towards the present-day coastline, a positive gravity anomaly is present below the Skagerrak with opposite (complementary?) orientation (Smithson, 1963). Aeromagnetic and gravity anomalies below the northern Skagerrak are considered to reflect a continuation of the high grade Bamble Sector (Olesen et al., 2004). Though separated by the Telemark Sector, the Bamble Sector has traditionally been correlated with the Kongsberg Sector, e.g. A. Bugge (1936), J.A.W. Bugge (1943), Starmer (1985, 1990, 1996), Bingen et al. (2005, 2008b) (Fig. 2). This correlation is disputed by Andersen (2005). The Porsgrunn-Kristiansand shear zone (Fig. 1) is intersected by a late (Permian?) brittle fault, which earlier has been referred to the Great Breccia or the Great Friction Breccia (Bugge 1928, 1936). In order to explain the observed gravity anomalies, some authors have suggested that both the Bamble and Kongsberg Sectors may continue below the Permian Oslo rift (Fig. 2) (Afework et al., 2004; Ebbing et al., 2005). These anomalies were, however, originally interpreted as Permian cumulates below the rift (Ramberg, 1976). Assigning these anomalies to older Precambrian rocks would create a tremendous volumetric problem, because those cumulates are needed to prod MANUSCRIPTuce the intermediate felsic magmas in the rift (Neumann, 1980), and there is no alternative location in the rift to store them.

Elaborate descriptions of the lithological relationships in the Bamble Sector have been compiled by Starmer (1985, 1990, 1996), in which the general picture was one of 1.7–1.5 Ga clastic supracrustals, being deposited on an unknown basement, metamorphosed and intruded by granitic-charnockitic and gabbroic magmas during the Gothian (1.7–1.5 Ga). These were later reworked again during the (1.25–0.9 Ga), with the intrusion of major granitic-charnockitic augen gneiss bodies at the onset of the Sveconorwegian orogeny. Geochronological studies during the last decade have, however, shown that the supracrustal suites are significantly younger whilst (last) peak metamorphism is Sveconorwegian. The oldest rocks currently recognized belong to a suite of calc- alkaline magmas,ACCEPTED which intruded all over during the period of 1.6–1.52 Ga (Andersen et al., 2001a, 2002a, 2004; Pedersen et al., 2009). Most sedimentary suites postdating this event, coincided in time with the ill defined and controversial (1.75–1.55 Ga; Ga ál and Gorbatschev, 1987). In the Proterozoic, the Bamble Sector was intruded by several pulses of basic

5

ACCEPTED MANUSCRIPT and felsic magmas ending with the intrusion of the post-tectonic Herefoss and Grimstad granites (Fig. 1), which marked the end of the Sveconorwegian orogeny. In the central part of the Bamble Sector, a well-developed transition zone from amphibolite- to granulite-facies grade occurs in both the supracrustals and in the intruding basic and felsic magmatic rocks (Fig. 1) (Touret, 1971b; Nijland and Maijer, 1993). This transition zone is related to the Sveconorwegian orogeny (Kullerud and Machado, 1991; Kullerud and Dahlgren, 1993; Knudsen et al., 1997; Cosca et al., 1998), though field relations demonstrate an older, pre-Sveconorwegian high-grade migmatitic event (Starmer 1985, 1991, 1996; Nijland and Senior, 1991).

Geological maps of the area have been published by Touret (1968), Starmer (1987), and, most recently, on a 1:250,000 scale by Padget and (1996), based on underlying 1:50,000 scale maps (Padget 1993a,b,c, 1997, 1999). A full bibliography of the geology of the Bamble Sector is given in the electronic supplement to this paper.

4. Sedimentary petrology

4.1. Hisøy-Merdøy supracrustal suite

The granulite-facies Hisøy-Merdøy supracrustal suitMANUSCRIPTe occurs on the islands of Hisøy, Merdøy, Torungen, and the western tip of Tromøy, and severa l smaller islands (Fig. 1). It is characterized by relatively thinly banded quartzitic gneisses with intercalations of amphibolite (Nijland, 1993; Andersen et al., 1995). Within these decimetre to metre scale alterations of quartzitic rocks, millimetre to centimetre thick sillimanite-garnet-biotite seams are frequent. Such alterations have been interpreted as metamorphosed soil horizons (e.g. Fujimori and Fyfe, 1984). Cordierite- orthamphibole rocks occur as small lenses within the sequence.

Neodynium isotopic studies (Andersen et al., 1995) and SIMS studies of detrital zircons (Knudsen et al., 1997) have demonstrated the presence of Svecofennian and Archaean components in the

provenance area of the clastic metasediments. T DM Nd ages typically range from 1.79 to 1.93 Ga (excluding two odd much older ages) for the quartzitic rocks, and from 1.38 to 1.71 Ga (excluding one odd much olderACCEPTED age) for the amphibolites (Andersen et al., 1995). A 207 Pb/ 206 Pb SIMS age on the youngest detrital zircon encountered in Hisøy-Merdøy supracrustal suite rocks, 1367 ± 50 Ma, provides a weak maximum age limit of sedimentation estimate for these supracrustals (Knudsen et al., 1997).

6

ACCEPTED MANUSCRIPT

4.2. Nidelva quartzite complex

The Nidelva quartzite complex is exposed between the post-tectonic Herefoss granite and the Nidelva river (Fig. 1), possibly continuing on the eastern shores of the Nidelva (Starmer, 1985; Nijland et al., 1993a). The Nidelva quartzite complex can possibly be correlated with the Coastal quartzite complex in the Kragerø area (Starmer, 1985; Padget, 1990, 2004; however, see §4.4). The main constituents of the Nidelva quartzite complex are massive, relatively pure quartzites with minor intercalations of metapelites (including sillimanitic nodular gneisses), calcsilicate rocks, marbles, and amphibolites. In addition, the Nidelva quartzite complex contains many small intercalated bodies of several peculiar types, viz. cordierite-orthoamphibole rocks; alternating preiswerkite-tourmaline-biotite- marialitic-scapolite and pargasitite rocks (Visser et al., 1998); garnet-cummingtonite rocks; tourmaliniferous quartzites and conglomerates; and tourmalinites. These generally occur as small lenses, but tourmalinifeours quartzites and tourmalinites may stretch over considerable distances. Fine grained, very K-feldspar-rich rocks, with up to 80 vol.% microcline and lesser amounts of quartz, plagioclase, mica, and opaques have been encountered at one level within the Nidelva quartzite complex, and grade laterally into feldspar-bearing quartzites (Kloprogge, 1987; Van Linschoten, 1988). Local sulphidic horizons have been mined for Cu in the past (e.g. Robyn et al., 1985; Nijland and Touret, 2013b). The pure quartzites locally preserve sedimentary structures, including desiccation cracks (Fig. 4), large, metre scale cross bedding, asMANUSCRIPT well as small, decimetre scale through cross bedding (Nijland et al., 1993a). At least two different intraformational conglomerates occur within the Nidelva quartzite complex. Both are monomict, but one, the Reddal conglomerate, is relatively unflattened, and occupies a considerable inferred area (Padget and Brekke, 1991). The other, the Neset conglomerate, has been intensively flattened (Nijland et al., 1993a). Another difference is the presence of abundant tourmaline in the matrix of the Neset conglomerate, which gives the matrix a bluish black appearance. The combination of sedimentary structures, lithologies, and ‘ chemical fossils’ , i.e. rock types interpreted as meta-evaporites, have led Nijland et al. (1993a) to propose a continental depositional environment, although a near-shore one could not be excluded. Padget (2010) proposed a shelf system in an open seaway as the depositional environment, suggesting that the Miocene Utsira formation in the North Sea could be a modern analogue. The well-known corundum- bearing gneisses,ACCEPTED occurring north of Froland (Oftedahl, 1963; Nijland et al., 1993b), have been interpreted as metamorphosed kaolinite-bauxite weathering crusts (cf. Serdyuchenko, 1968).

7

ACCEPTED MANUSCRIPT In case of the Nidelva quartzite complex, the minimum age of deposition is constrained by the Sm-Nd whole rock age of the intruding basic dykes at 1472 ± 69 Ma (Nijland et al., 2000). Whereas a limit for the maximum age of sedimentation is given by a 207 Pb/206 Pb SIMS age on the youngest detrital

zircon encountered, viz. 1450 ± 40 Ma (De Haas et al., 1999). TDM Nd ages for the quartzites range from 1.69 to 1.93 Ga (Andersen et al., 1995). A limit to the maximum age of deposition of the Coastal quartzite complex in the Kragerø area is given by a 207 Pb/ 206 Pb SIMS zircon age of 1484 ± 15 Ma (Åhäll et al., 1998). Given that the number of zircon grains analyzed in both studies is less than one would currently think to be necessary, both age limits are considered to be weak. Like the Nidelva quartzite complex, the Coastal quartzite complex is dominated by quartzites with occaisional well- preserved sedimentary structures (Morton, 1971).

4.3. Selås Banded Gneisses

The Selås banded gneisses were first denominated as such by Touret (1966, 1968, 1969). They comprise a series of well banded, quartzofeldspathic gneisses alternating with amphibolites that occur in the area between Selås and Ubergsmoen (Fig. 1). They stretch down to the southwest, along Stemtjern, towards Flaten, near the Nidelva River. In general, individual bands in the quartzo- feldspathic gneisses do not exceed a few cm in thickness. Banding may partly reflect primary compositional layering, but is definitively enhanced by migmatization, i.e. the gneisses show well developed stromatitic leuco-, meso-, and melanosomeMANUSCRIPTs. Mineralogically, the main constituents are quartz, K-feldspar, plagioclase, biotite, and opaque phases. Accessories are apatite, tourmaline, and zircon. The quartz-rich feldspathic gneisses alternate with more pure quartzitic bands. The gneisses contain frequent sulphidic and graphitic intervals. Sulphidic intervals commonly contain pyrite and chalcopyrite, but locally, layer-bound sulphidic mineralizations may have developed, including the Ettedal mine mentioned above. At Ettedal, the mineralization is accompanied by tourmalinites and associated with amphibolites. Locally, small lenses of marble, calcsilicate rocks, and metapelite occur within the Selås banded gneisses.

The Selås banded gneisses have been interpreted as metamorphosed turbidites (Touret, 1966). Starmer (1985) considered the gneisses to represent deep-water sediments with metavolcanic intercalations. Gammon (1966) ACCEPTEDsuggested that sulphidic horizons (the so-called fahlbands ) in comparable gneisses in the Kongsberg Sector were derived from sapropelic muds. Other authors (e.g. Pedersen, 1984) have suggested exhalative origins. A minimum age of deposition for the Selås banded gneisses is indicated by the 1460 ± 21 Ma (U-Pb zircon) age of the Vimme amphibolite intruding the gneisses (De Haas et al., 2002a).

8

ACCEPTED MANUSCRIPT

4.4. General sedimentary picture

Starmer (1985, 1990, 1996) interpreted the Nidelva and Coastal quartzite complexes and Selås banded gneisses as overlying sedimentary formations. The former represent shallow water sediments (however, see §4.2 above) and the latter, overlying the quartzite complexes, represent deep water sediments with intercalated volcanics. Padget (2010) also divided the metasediments in the Bamble Sector into a lower and an upper series. He considered the Selås banded gneisses (grouped together with similar gneisses by Padget (2010) as the gneisses) and the Nidelva quartzite complex as lateral equivalents in the lower series. Both are overlain by the Stavseng and - metapelites with intercalated marls. According to the interpretation of Padget (2010), the upper series are again made up by quartzites. The Selås banded (Sundebru) gneisses are overlain by quartzites from several local depositional systems in the Kragerø area (including Arøy and associated islands; Morton et al., 1970; Morton, 1971). All together they have been previously referred to as the Coastal quartzite complex. This was correlated with the Nidelva quartzite complex (see above). The Messel and Øynesvatn quartzites of Padget (2010) are then deposited on top of the Nidelva quartzite complex. Sedimentary rocks on Merdøy are considered to be equivalent to metapelites in the upper part of the lower series and the sediments from the upper series. MANUSCRIPT Crucial to the interpretation of the depositional setting of the different sedimentary series and complexes is the combination of relict sedimentary structures and lithological characteristics such as bulk chemistry. Cordierite-orthoamphibole rocks occur within all three series, viz. the Nidelva quartzite complex, the Selås banded gneisses, and the Hisøy-Merdøy supracrustal suite. In the Bamble Sector, these have been interpreted as metamorphosed evaporites (Touret, 1979; Beeson, 1988; Nijland et al., 1993a); metamorphosed low temperature altered mafic volcanics (Visser, 1995); or synmetamorphic metasomatic rocks (Engvik et al., 2011), whereas in other terranes several other origins have been proposed (see references in Touret and Nijland, 2012). Definitive elucidation of their origin(s) would provide a crucial argument in the debate on the origin of the Bamble metasediments. The high B content in the cordierite-orthoamphibole rocks, several quartzites, and the matrix of conglomerates from the Nidelva quartzite complex in Padget´s (2010) lower series, and in cross-bedded quartzitesACCEPTED from Arøy (J. Kihle pers. com., 1990) in the upper series, should also be taken into account. Another characteristic lithology is the nodular gneisses, i.e. metapelites with (variably flattened) sillimanite-quartz nodules (e.g. Elliot and Morton, 1965; Brøgger, 1934b; Nijland et al., 1993a; Fig. 5). Their occurrence is not restricted to one sedimentary series (for whichever

9

ACCEPTED MANUSCRIPT interpretation above) and their origin is also crucial but open. A tectonic origin (Macaudière and Touret, 1969), due to dealkalinization as proposed elsewhere (Losert, 1968; Eugster, 1970), as well as a sedimentary origin as clay balls, comparable to those occuring in the German Buntsandstein (Nijland et al., 1993a), have been suggested.

In addition to the sedimentary series described above, Padget (2010) suggested that conglomerates occuring at Krokelia and Stemvatn represent a late episode of erosion, postdating peak metamorphism but predating intrusion of the Herefoss and Grimstad granites. Given the cooling and uplift path of the Bamble Sector (see §6.4 below), sedimentary deposition in this period seems to be rather unlikely.

5. Magmatism

5.1. Regional calcalkaline gneisses and Tromøy gneiss complex

Except for the supracrustals described in section 4, a considerable part of the geological mass in the Bamble Sector is made up by calcalkaline granodioritic to tonalitic orthogneisses (Fig. 1). On the mainland, these intruded at 1.52–1.60 Ga (Table 1). These calcalkaline gneisses have major and trace element characteristics corresponding to those of moderately evolved modern continental arc settings and comparable to contemporaneous calcalkaline gneiMANUSCRIPTsses in other terranes from the Southwest Scandinavian Domain, except those of the Kongsberg Sector and the Stora-Le Marstrand belt in SW Sweden (Andersen et al., 2004). Combined with other data, it appears that these calcalkaline magmas belong to a phase of continuous felsic arc magmatism along the margin of the Baltic Shield from at least 1.66–1.50 Ga (Åhäll et al., 2000; Andersen et al., 2002a, 2004).

The bulk of the charno-enderbitic gneisses on the island of Tromøy are part of the meta-igneous Tromøy gneiss complex, dated at 1198 ± 13 Ma with a metamorphic overprint at 1125 ± 23 Ma (U-Pb SIMS zircon; Knudsen and Andersen, 1999). Rocks belonging to this phase of igneous activity also occur on the neighbouring island of Hisøy (dated at 1178 ± 9 Ma, U-Pb zircon) and possibly elsewhere in the area (Andersen et al., 2004). The Tromøy gneiss complex is made up of metaluminous, low-K mafic gneisses and tonalites with trace element signatures resembling those of evolved magmasACCEPTED in modern oceanic island arcs. These gneisses are subsequently intruded by trondhjemitic dykes originating from anatectic melting of leucogabbroic or dioritic members of the complex at about 1100 Ma (Knudsen and Andersen, 1999).

10

ACCEPTED MANUSCRIPT 5.2. Basic magmatism

Gabbroic magmas intruded the Bamble Sector during two periods. The intrusion of cross cutting basic dykes constrains an older generation of gabbros, including the Blengsvatn gabbro, to a younger age limit of 1.47 Ga (Sm-Nd whole rock; Nijland et al., 2000). Several other gabbros intruded the Bamble Sector around 1.2 Ga. These include the Jomåsknutene gabbro, previously assigned a much older Sm- Nd whole rock age (De Haas et al., 1993a), but dated by U-Pb zircon at 1235 ± 13 Ma (Graham et al., 2005), and the small Vestre Dale gabbro, dated at 1207 ± 14 Ma by a Sm-Nd whole rock + plagioclase + orthopyroxene isochron (De Haas et al., 2002b). A remarkable feature is the relatively small scale and abundance of the gabbroic intrusions. Some are only tens of metres in diameter at outcrop level. Nevertheless, they can show distinct chemical zonations from troctolitic to olivine to ferro gabbro like the Vestre Dale gabbro (de Haas et al., 1992), or from orthopyroxenite to orthopyroxene troctolite to troctolite in the Messel gabbro (Brickwood, 1986). They can also show metamorphosed but otherwise well preserved igneous modally graded layering (Fig. 6) and magmatic sedimentary features (e.g. de Haas et al., 1993b). Associated with the gabbros are nickel sulphide mineralizations, which have been actively mined (Boyd and Nixon, 1985; Brickwood, 1986).

All gabbros have tholeiitic signatures. However, within the group of ca. 1.2 Ga gabbros (i.e. those actually dated and those from field relationships deduced to belong to the same period of basic magmatism), two distinct geochemical populations ar eMANUSCRIPT present. These include those enriched in LREE and LILE such as the Vestre Dale gabbro, Flosta gabbro, and a part of the Jomåsknutene gabbro, and those depleted in LREE and LILE, such as the Arendal gabbro, Tromøy gabbro, and the remaining part of the Jomåsknutene gabbro (de Haas, 1992; de Haas et al., 1993a). The Vestre Dale gabbro exhibits high whole rock Ni and MgO contents, with low initial 87 Sr/ 86 Sr ratios, indicating a basaltic parental liquid. However, forsterite contents in the olivine are too low to have been in equilibrium with primary, mantle-derived melts; the gabbros crystallized from magmas that had already fractioned olivine (de Haas, 1992; de Haas et al., 1992). Gabbros from both populations have clear negative Nb anomalies (Atkin and Brewer, 1990; de Haas et al., 1993a). LREE, LILE, Sr and Nd isotope characteristics have been interpreted to reflect derivation from a single, variably metasomatized mantle source that came into existence during the early events (de Haas et al., 1993a, 2000). ACCEPTED

In both sets of gabbros, coronitic microstructures between olivine and plagioclase and between ilmenite and plagioclase are found. Their occurrence (Sjögren, 1883) was noted only a few years after

11

ACCEPTED MANUSCRIPT their first description in Sweden by Törnebohm (1877). The origin of these microstructures has been debated since, both in terms of metamorphic (e.g. Törnebohm 1877, Lacroix 1889, Ashworth 1986) and late magmatic subsolidus reactions (e.g. Adams 1893, Joesten 1986a,b). Detailed SEM, REE, and Sm-Nd mineral isotope data on olivine-plagioclase coronas from the 1.21 Ga Vestre Dale gabbro show that the coronas formed as a result of multistage, late magmatic processes, with initial formation of orthopyroxene by partial dissolution of olivine as an inner shell, subsequent formation of orthopyroxene + spinel symplectites as an outer shell, and final replacement of this precursory outer shell by calcic amphibole, with local availability of fractionated magma as the limiting factor (de Haas et al., 2002b; Fig. 7).

Besides the gabbroic intrusions, several small, isolated ultrabasic bodies occur in the Bamble Sector that are not associated with the metagabbros. These include (spinel) lherzolite bodies at Solemsvatn, Gullknap, and Østebø; dunite at Frivoll and Nelaugtjern; orthopyroxene-clinopyroxene hornblendite at Åsvann; and corundum-actinolite rocks at Bjormyr. The Solemsvatn spinel lherzolite and the Nelaugtjern dunite are among the most primitive basic rocks encountered in the Bamble Sector and Telemark Sector, with minor LREE enrichment and slight HREE depletion for the Solemsvatn lherzolite and significant HREE depletion, Eu anomalies, and Mg-rich olivine (Fo 88 ) for the dunite. Neodynium-depleted mantle model ages of 1.63–1.78 Ga and 1.44–1.77 Ga for the Solemsvatn lherzolite and Nelaugtjern dunite, respectively, provide minimum estimates for the timing of lithosphere formation and enrichment (De Haas et al., MANUSCRIPT2000).

5.3. Granitic-charnockitic augen gneisses

A suite of granitic to charnockitic magmas, now augen gneisses, were intruded in the Bamble Sector along and across the boundary with the Telemark Sector as well as in the central part of the sector between 1.12 and 1.19 Ga (Fig. 1). These comprise, in part, the augen gneisses from Hovdefjell- Vegårshei (1168 ± 2 Ma, U-Pb zircon; A. Råheim & T.E. Krogh unpubl. data in Field et al., 1985); Ubergsmoen (ca. 1.12 Ga, Pb-Pb; Andersen et al., 1994); Gjeving (1152 ± 2 Ma, U-Pb zircon; Kullerud and Machado, 1991); and (1187 ± 2 Ma, U-Pb zircon; Heaman and Smalley, 1994). They also include the younger Morkheia monzonite suite associated with the Gjerstad augen gneiss (1134 +7/–2 Ma,ACCEPTED U-Pb zircon; Heaman and Smalley, 1994), as well as the undated Laget body. The Pb isotope systematics of the Ubergsmoen augen gneiss indicates that magmas were extracted from the mantle to form a crustal precursor at 1.9–1.6 Ga, i.e. prior to or during the Gothian orogeny. This

12

ACCEPTED MANUSCRIPT was followed by anatexis, igneous differentiation, and synmetamorphic emplacement at ca. 1.12 Ga (Andersen et al., 1994).

These magmas intrude an already high-grade gneiss complex, dated at ca. 1.6 Ga; Andersen et al., 2004), in which the main gneissossity and stromatitic migmatization were isoclinally folded with development of new axial planar leucosomes. Both phases of deformation and migmatization are cut by augen gneisses (D1–D3 of Starmer, 1985; D1/MIG1–D2/MIG2 of Nijland and Senior, 1991; Fig. 8). The augen gneisses represent excellent time markers for the separation of Sveconorwegian and earlier metamorphic events. Around some of the intrusions, contact metamorphic aureoles developed (Hagelia, 1989; Nijland and Senior, 1991; see §6.3). The augen gneisses themselves have widely been considered as synkinematic intrusions, with the magmatic pyroxene assemblage being almost completely metamorphically recrystallized (Touret, 1967a, 1968; Hagelia, 1989; Nijland and Senior, 1991; Andersen et al., 1994).

Of these intrusions, the Morkheia monzonite suite displays all the features of an anorthosite- monzonite-charnockite suite, except for the presence of major cumulate anorthosites (Milne and Starmer, 1982). However, at least one large anorthosite xenolith occurs at Morkheia Summit. The Morkheia monzonite suite is composed of (meta) gabbros and diorites, together with granodioritic (augen) gneisses, i.e., if one assumes that the Gjerstad Augen Gneiss is a member of the complex. Various primary magmatic structures are present in theMANUSCRIPT least deformed area of the diorite. The gabbros range from olivine ferrogabbro to ferrogabbro. The diorites range from ferrosyenodiorite via mangerite to monzonite. The rocks have high to extremely high Fe/Mg ratios; are depleted in Mg, V, Ni, and Cr; and are enriched in Mn, K, Na, Ti, Zr, Ba, P, and La (Milne and Starmer, 1982). The anorthosite xenolith has a primary assemblage of plagioclase + olivine + spinel + orthopyroxene + late biotite. Coronas of colourless clinoamphibole have developed around olivine, whereas spinel is often rimmed by talc. Metamorphic orthopyroxene developed at the expense of magmatic biotite, likely a contact metamorphic effect due to the surrounding intrusion. The Morkheia monzonite suite itself consists of a virtually undeformed core and mylonitized marginal zones, amongst them the so- called inverse augen gneisses of Touret (1968), with mafic augen in a leucocratic matrix. The marginal zones contain augen of clinopyroxene, sometimes replaced by hornblende, and perthititc porphyroclasts. TheACCEPTED clinopyroxene often has extremely long tails of fine-grained hornblende + biotite ± orthopyroxene. After the mylonitic deformation, assumed to be identical to the D3 shear deformation in the Ubergsmoen augen gneiss (cf. Nijland and Senior, 1991), large poikiloblastic orthopyroxene developed at the expense of biotite and hornblende. Although the core is

13

ACCEPTED MANUSCRIPT macroscopically undeformed and the coronas seem to be unstrained, microstructures in olivine present in the fayalite mangerite of Touret (1967b) indicate severe deformation.

Both the Ubergsmoen and Hovdefjell-Vegårshei augen gneiss are elongated, somehat assymetric bodies and have been mapped as zoned intrusions with charnockitic cores surrounded by granitic rims (Touret, 1968; Hagelia, 1989). In the case of the Hovdefjell-Vegårshei augen gneiss, this includes the charnockitic parts in the southwest and the granitic parts in the northeastern part of the intrusion. The Ubergsmoen augen gneiss shows charnockitic domains throughout the entire intrusion, though less along the margins. The intrusion contains both mafic (gabbro, amphibolite) xenoliths as well as fine grained gneiss xenoliths, occasionally with a stable orthopyroxene + scapolite + plagioclase assemblages. The augen in the Ubergsmoen augen gneiss are made up of coarse grained K-feldspar, often partially or completely recrystallized to equigranular, perthitic microcline, in a matrix of medium grained, polygonal plagioclase + quartz. Accessory zircon, apatite, and allanite are common. Ilmenite and rare pyrrhotite, chalcopyrite, and pyrite are present in the mafic domains. Mafic minerals in the Ubergsmoen augen gneiss document four successive metamorphic stages. These include recrystallized ortho- and clinopyroxene + plagioclase, which are succeeded by hornblende (hastingite) + quartz ± biotite, and later overprinted locally by garnet ± clinopyroxene. Orthopyroxene may be extremely Fe-rich, with ferrosilite contents of up to 91%, but show a considerable range in

composition (En 6–25 Fs 68–91 Wo 0–3) (Vogels 1991, Lieftink 1992). Later retrogression resulted in the replacement of orthopyroxene by grunerite + magneti MANUSCRIPTte ± quartz and the formation of grunerite between orthopyroxene and hornblende. With an XMg of 0.20 (Verheul, 1992), the experimental data by Fonarev and Korolkov (1980) constrain the formation of grunerite at ca. 730–740 °C and 500 MPa.

In case of the Hovdefjell-Vegårshei augen gneiss, fluid inclusion data indicate a early H 2O-poor, CO 2-

N2-rich fluid for the charnockitic stage (Ploegsma, 1990). CO 2-rich fluid inclusions have also been encountered in the Ubergsmoen augen gneiss, but the N 2-component is absent here (J.L.R. Touret, pers. com. 1992). In part of the Ubergsmoen augen gneiss, (Na,K)Cl brines occur as fluid inclusions, associated with the late formation of garnet. Accompanying plagioclase is often scapolitized. This close spatial relationship between (Na,K)Cl brine inclusions and a late anhydrous assemblage

indicates that infiltration by low H 2O activity (Na,K)Cl brines resulted in progressive dehydration during retrogradeACCEPTED cooling and uplift, giving rise to apparently high grade mineral assemblages (Nijland and Touret, 2000).

5.4. Granitic pegmatites

14

ACCEPTED MANUSCRIPT

Parts of the fame of the Bamble Sector are the many fine mineral specimens found in the granite pegmatites (Nijland et al., 1998b). Well known among the granitic pegmatites are those of Gloserheia (Bjørlykke and Sverdrup, 1962; Åmli, 1975, 1977; Baadsgaard et al., 1984; Harlov, 2012a), Narestø (Forbes and Dahll, 1855; Andersen, 1931; Eakin, 1989), (Ihlen et al., 2001), and Auselmyra (Bakken and Gleditsch, 1938) in the Froland area, and Lindvikskollen, Kalstad, and Tangen pegmatites in the Kragerø area (Brøgger, 1906; Andersen, 1931; Green, 1956; Larsen, 2008). These granitic pegmatites are very coarse-grained with feldspar and biotite crystals up to metres in length. The pegmatites from the Froland area show the typical zoned structure of complex pegmatites, with an occasional border zone, a wall zone, and one or more intermediate zones surrounding a core (Bjørlykke, 1937; Åmli, 1977; Larsen, 2002). The pegmatites consist of (macroperthitic) K-feldspar, plagioclase, and quartz, with accessory biotite, muscovite, apatite, and tourmaline. The occurrence of so-called solstein , i.e. oligoclase with interspersed hematite flakes, is an attractive feature of several pegmatites in the area (e.g. Weibye, 1847; Divljan, 1960; Copley and Gay, 1978, 1979). The pegmatites are enriched in REE, Nb, and Ta (Larsen, 2002). Common accessory minerals include xenotime, monazite, allanite-(Ce), gadolinite, columbite, euxenite-(Y), fergusonite, samarskite, uraninite, and thorite. More rarely, aeschinite-Y, yttrotantalite-Y, fourmanierite, uranophane, kasolite, hellandite, and phenakite occur (Brøgger, 1906; Brøgger et al., 1922; Bjørlykke, 1939; Nijland et al., 1998b and references therein). The granitic pegmatites of the Froland area, like those from the - district, were derived from parental magmas MANUSCRIPT with low Sr. The Froland pegmatites had a relatively HREE-rich, LREE-poor source (Larsen, 2002). They belong to the mixed type, i.e. intermediate between the Li-Cs-Ta and Nb-Y-F families of pegmatites ( Černý, 1991). While the chemistry of feldspars and biotite reflects changes in melt composition, the quartz trace element chemistry is, however, remarkably similar for all pegmatites in the Froland area (Müller et al., 2008).

Most of the age determinations for the pegmatites reflect closure ages. The only well-dated pegmatites are those at Gloserheia at 1060 +8/–6 Ma (U-Pb euxenite; Baadsgaard et al., 1984) and one near Tvedestrand at 1094 ± 11 Ma (U-Pb xenotime; Scherer et al., 2011). The implication of this age is that REE-enriched granitic pegmatites are considerably older than the post-tectonic Herefoss and Grimstad granites (see §5.5 below) and are synorogenic (cf. Müller et al., 2008). Indeed the pegmatites underwent deformationACCEPTED kinematically related to west-verging thrust and fold tectonics along the Porsgrunn-Kristiansand shear zone roughly around 1.1 Ga (Henderson and Ihlen, 2004). A second group of pegmatites are the so-called low-angle pegmatites. These are thin (< 2 m thick), barren, granitic pegmatite sheets, which generally intrude their country rocks at a low angle with respect to

15

ACCEPTED MANUSCRIPT the horizontal (Nijland, 1993). They cut across and hence postdate the 1.06 Ga granitic sheets on Tromøy (Rb-Sr whole rock, Field and Råheim, 1979).

5.5. Post-tectonic granites

Two post-tectonic granites feature prominently on a geological map of the Bamble Sector, viz. the Grimstad and Herefoss granites (Fig. 1). The Herefoss granite is a nearly circular granitic body emplaced over the margin of the Bamble and the Telemark Sectors. Gravity data indicate a funnel- shaped body (Smithson, 1963). The pluton is made up of two medium- to coarse-grained bodies, with a smaller, fine grained and more differentiated granite (individually called the Holtebu granite) extending north from the main body (Elders, 1963; Annis, 1974). Whole rock analysis by Elders (1963) show 64–75 wt.% silica and minor amounts of normative wollastonite or corundum. Sr-Nd isotope relationships show derivation from two sources, viz. a crustal source residing in a moderately LILE-enriched 1.6–1.9 Ga crustal reservoir and a mantle component younger than 1.5 Ga. Intrusion of the Herefoss granite is constrained by a Pb-Pb mineral isochron of 926 ± 8 Ma (Andersen, 1997) and U-Pb zircon upper intercept age of 920 +16/–27 Ma (Andersen et al., 2002b).

The Grimstad granite is a roughly egg-shaped pluton cut off by the present day coast line. Gravity data indicate a cylindrical-shaped body (Smithson, 1963).MANUSCRIPT The pluton is made up of medium grained granite with small, fine-grained granite and dykes as well as monzonitic enclaves in the main body. Aplitic dykes cut across both the granite and monzonitic enclaves. Part of the granite is porphyritic, with mantled plagioclase and K-feldspar (Christie et al., 1970). The pluton shows a chemical zonation, with total Fe and CaO increasing and K 2O decreasing towards the core (Christie et al., 1970). The granite has been dated by the U-Pb zircon method at 989 ± 8 Ma (Kullerud and Machado, 1991). Both the Herefoss and Grimstad granite belong to a suite of post-tectonic granitic intrusions in south Norway, whose intrusion is thought to have been related to the collapse of the Sveconorwegian orogen (Eliasson, 1992; Andersen et al., 2002b), though some granites (including Grimstad) are relatively old.

5.6. Phanerozoic magmatism ACCEPTED Phanerozoic magmatism in the Bamble Sector is mainly manifested by the intrusion of late basic to ultrabasic dykes (dolerites, lamprophyres, and rhombporphyry dykes). Most of these dykes are related to Permian Oslo Rift magmatism (Carstens, 1959; Sundvoll and Larsen, 1991), whereas some

16

ACCEPTED MANUSCRIPT intruded during the Tertiary (Storetvedt, 1968). Some of these dykes are possible pre-Permian, with one yielding a Sm-Nd whole rock age of 354 ± 71 Ma (Moree et al., 1996). Some contain vacuoles with hydrocarbons (Dons, 1975).

6. Metamorphism

6.1. Pre-Sveconorwegian high-grade metamorphism

Isotopic age determinations over the last two decades demonstrate a Sveconorwegian age for granulite-facies metamorphism in the Bamble Sector (see below). Isotopic mineral age determinations, as such, are generally not considered to reflect Gothian (or other Pre- Sveconorwegian) high-grade metamorphism anymore. However, field relationships unequivocally demonstrate the presence of Pre-Sveconorwegian, presumably Gothian, high-grade metamorphism in the form of widespread migmatization, which regionally reached upper amphibolite-facies (Starmer, 1969a,b, 1972, 1985, 1990, 1993; Nijland and Senior, 1991). These well developed stromatitic migmatites (Gupta and Johannes, 1982) were already deformed prior to the intrusion of Early Sveconorwegian intrusions such as the granitic-charnockitic Ubergsmoen augen gneiss (Fig. 8).

6.2. Sveconorwegian high-grade metamorphism MANUSCRIPT

The central part of the Bamble Sector, i.e. in the region around Arendal and including the islands of Tromøy, Hisøy, and associated smaller islands, shows a well developed amphibolite- to granulite- facies transtion zone, with granulite-facies rocks occurring on Tromøy, Hisøy and other islands along the coast and up to several kilometres inland (Fig. 1). The remainder of the Bamble Sector is generally consists of upper amphibolite-facies rocks with some exceptions (see below). Starting inland in the amphibolite-facies zone and moving towards the coast, the transition to granulite-facies is characterized by an isograd sequence consisting of muscovite-out in quartzitic rocks, cordierite-in in metapelitic rocks, orthopyroxene-in in metabasic rocks, and orthopyroxene-in in granitoid gneisses, which nearly coincide with allanite-out and titanite-out in the gneisses, metapelites, and amphibolites (Touret, 1971b; Nijland and Maijer, 1993; Fig. 1). In the highest-grade portion of the granulite-facies zone (centered onACCEPTED the Arendal area, Tromøy, and Hisøy), orthopyroxene is particularly abundant in the tonalitic (enderbitic) leucosomes (Fig. 9). Granulite-facies dehydration bands formed at the contact between amphibolites and tonalitic gneisses (Fig. 10). In the granulite-facies metabasites and tonalites, ubiquitous K-feldspar micro-veins occur (Harlov et al., 1998; Fig. 11), similar to those

17

ACCEPTED MANUSCRIPT documented in several other tonalitic granulite-facies terranes (e.g. Coolen, 1980; Hansen et al., 1984; Harlov and Förster, 2002; Hansen and Harlov, 2007; see also discussion in Touret and Nijland, 2012). The isograds are accompanied by the increasing recrystallization of sillimanite from a fibrolitic habit to a euhedral prismatic habit. In addition, isopleths for Ti in hornblende and biotite in basic rocks increase with increasing metamorphic grade from amphibolite-facies to granulite-facies. Calculated Fe 2+ /(Fe 3+ + Fe 2+ ) ratios of both biotite and hornblende also vary with metamorphic grade (Nijland, 1993).

Like most terranes, the prograde P-T path is only recorded by specific rock types of suitable bulk chemistry (Fig. 12). Visser and Senior (1990) deduced the P-T path of Na-Mg-rich cordierite- orthoamphibole rocks from the Froland area in the amphibolite-facies part of the transtion zone. Their P-T path is essentially clockwise. The oldest assemblage present in these rocks (M1) is made up by andalusite + gedrite + tourmaline. M2 involves replacement of andalusite by kyanite, formation of staurolite, and strong Na-Al-Mg zoning in orthoamphibole, reflecting an increase in metamorphic conditions from 500 to 650 °C and 400 to 800 MPa. Peak metamorphism is documented in two stages, M3a and M3b. M3a (600–700 °C, 600–700 MPa) involved the formation of cordierite ± corundum at the expense of kyanite, staurolite, and orthoamphibole, and the formation of cordierite rims between orthoamphibole + corundum. It also involved the formation of Fe-Al-rich kornerupine as coronas between biotite and various oxide phases (Zn-rich spinel, ilmenite, rutile, corundum). P-T conditions for the latter coronas are estimated at 630–720 MANUSCRIPT °C, 600–800 MPa (Visser, 1995), in general agreement with M3a. M3b reflects a static metamorphic climax involving the development of garnet at 740 ± 60 °C, 700 MPa. Retrograde metamorphism in these rocks involved formation of talc + kyanite + quartz (M4a, 350–600 °C, 600–700 MPa) and chlorite + kyanite + andalusite + quartz (M4b, 420–530 °C, 300–400 MPa). Granulite-facies metapelites on the islands of Hisøy and Torungen record a three stage metamorphic evolution (Knudsen, 1996). Assemblages enclosed in garnet, viz. staurolite + chlorite + albite, staurolite + hercynite + ilmenite, cordierite + sillimanite, and hercynite + biotite ± sillimanite, define a prograde M1 at 360 ± 50 MPa with maximum temperatures of 750–850 °C. They are thought to be related to the thermal effects from basic magmatism prior to peak metamorphism. The latter, M2, is characterized by quartz + plagioclase + K-feldspar + garnet + biotite ± sillimanite with P,T conditions of 790–884 °C, 590–910 MPa. Retrograde M3 amphibolite- facies assemblagesACCEPTED in the metapelites indicate temperatures of 516–581 °C at 170–560 MPa. If these stages reflect a continuous P-T path, this path is counter-clockwise, in contrast to that of Visser and Senior (1990). This may be explained either by a different evolution of the coastal zone with respect to the mainland, or, alternatively, that the oldest phase of metamorphism does not belong to the same

18

ACCEPTED MANUSCRIPT event. The latest, high temperature phase of regional metamorphism has, over the last decade, been shown to be Sveconorwegian. An overview of relevant mineral ages is given in Table 2.

Hornblende-plagioclase thermometry and garnet-hornblende-plagioclase-quartz barometry indicate P- T conditions of ca. 750 °C and 710 MPa for the amphibolite-facies rocks (Nijland and Maijer, 1993). P-T estimation utilizing garnet-orthopyroxene, orthopyroxene-clinopyroxene, hornblende-plagioclase and titanomagnetite-ilmenite thermometry and garnet-orthopyroxene-plagioclase-quartz and garnet- plagioclase-aluminosilicate-quartz barometry indicate temperatures and pressures of ca. 795–830 °C and 700–740 MPa for the granulite-facies rocks (Harlov, 1992, 2000a,b; Nijland and Maijer, 1993; Knudsen, 1996). Kihle et al. (2010) obtained considerably higher temperature and pressure estimates of 930 ˚C and 1000 MPa for a quartz + corundum-bearing sapphirine + garnet boudin on the island of Hisøy. They attributed lower P-T estimates to be ' due to extensive overprinting by fluid-present conditions ', though the lower P-T estimates mentioned above involve low αH2O, orthopyroxene- bearing assemblages..

The upper amphibolite-facies area is dotted with several 'granulite-facies islands' north of the orthopyroxene-in isograds (Fig. 1). These occur as two different types. Type 1 consists of Mg-rich coriderite-orthoampibolite rocks, which show peak metamorphic orthopyroxene and/or kornerupine- bearing assemblages (Visser and Senior, 1990; Visser, 1993, 1995). In type 2, the local action of (Na,K)Cl brines resulted in the formation of typica MANUSCRIPTl granulite-facies assemblages in metapelites. These included the breakdown of biotite + quartz to orthopyroxene + K-feldspar and sapphirine + albite ± spinel assemblages at Hauglandsvatn (Nijland et al., 1998a; Fig. 13) and the formation of sapphirine + corundum in metagabbro at Ødegården (Engvik and , 2010).

After the peak of Sveconorwegian metamorphism, the coastal zone and the adjacent part of the amphibolite-facies area underwent isobaric cooling (Visser and Senior, 1990; Nijland et al., 1993b). An exception to this is the Nelaug area, directly adjacent to the Porsgrunn-Kristiansand shear zone, where a P-T increase seems to have followed initial cooling (Nijland, 1993).

6.2.1. Fluid composition ACCEPTED

The granulite-facies rocks are characterized by the occurrence of high-density CO 2 fluid inclusions in

orthopyroxene-bearing tonalitic gneisses (Touret, 1970, 1971a,c, 1985). Gaseous CO 2 ± N 2 inclusions show a wide range of homogenization temperatures between –27 and 31 °C , corresponding to

19

ACCEPTED MANUSCRIPT densities of 1.06 and 0.47 g/cm 3 (Touret, 1985; Van den Kerkhof et al., 1994). A genetic relationship between the occurrence of CO 2-rich fluids and the development of anhydrous granulite-facies assemblages was suggested and has been debated since, especially the source and mode of transfer of these carbonic fluids into the lower continental crust. Carbon isotopes indicate a juvenile signature for the CO 2 (Hoefs and Touret, 1975; Van den Kerkhof et al., 1994). In addition, orthopyroxene-bearing

dehydration rims contain magmatic CO 2 (Knudsen and Lidwin, 1996). In contrast to the fluid inclusions, with increasing metamorphic grade IR spectroscopic data indicate that the cordierite channels show a decrease in CO 2, type-II H 2O, Na, and possibly Li, whereas X and type-I H 2O- 2OH contents are variable (Visser et al., 1994).

Other indicators of fluid activity, in both the amphibolite and granulite-facies rocks, include the carbon and oxygen isotope systematics of graphite and carbonate in metasedimentary rocks (Broekmans et al., 1994), and the halogen chemistry of apatite and hydrous silicates (Nijland et al., 1993c). These demonstrate that here fluid equilibria were local and not affected by pervasive streaming of CO 2; rather, isotope equilibria reflect premetamorphic trends (Broekmans et al., 1994).

The occurrence of CO 2 fluid inclusions is complemented by the occurrence of (Na,K)Cl brines, in particular in metasedimentary rocks (Touret, 1971a, 1972, 1985). (Na,K)Cl brine inclusions also occur in orthopyroxene-bearing enderbitic rocks, where they are associated with prograde metamorphism and with CO 2 during granulite-faciesMANUSCRIPT peak metamorphism (Knudsen and Lidwin, 1996). Low H 2O activity (Na,K)Cl brines are proposed to be one of the mechanisms behind the formation of K-feldspar microveins (Harlov et al., 1998). Locally, their action in lowering the H 2O activity resulted in the formation of anhydrous assemblages in both the metasediments (Nijland et al., 1998a) and in the igneous rocks (Nijland and Touret, 2000).

6.2.2. Granulite-facies oxide-sulphide textures

Primary oxide minerals in the granulite-facies rocks from the Bamble Sector (especially Tromøy and Hisøy) include magnetite, titaniferous magnetite, ilmenite, and hemo-ilmenite (Harlov, 1992, 2000b). Titaniferous magnetite grains contain ilmenite in varying stages of exsolution (Fig. 14a,b) whereas the majority of the ilmeniteACCEPTED grains (85 %) contain hematite also in varying stages of exsolution (Fig. 14c). Titaniferous magnetite grains outnumber the ilmenite grains by at least 4 to 1, and more generally 8 to 1.

20

ACCEPTED MANUSCRIPT In thin section, the primary sulphide phase in the granulite-facies rocks is pyrrhotite (Harlov, 1992, 2000b,c). Pyrite also occurs, but in much lesser amounts; in some cases, pyrite may be secondary. Much more rarely, pyrrhotite can form close associations with with discrete grains of chalcopyrite, ilmenite, pyrite, and (titaniferous) magnetite. Chalcopyrite is the common Cu-bearing phase and is almost always associated with isolated pyrrhotite grains in the form of either lamellae and/or as lenticular blebs within the body of the pyrrhotite grain (Fig. 14d). This would suggest that the chalcopyrite exsolved from the pyrrhotite with which it has a limited solid solution at temperatures between 700–900 °C at < 100 bar (Harlov, 2000c).

Temperatures and oxygen fugacities were estimated for the granulite-facies rocks using the titaniferous magnetite-ilmenite thermometer / oxygen barometer of Ghiorso and Sack (1991), which is based on the exchange reaction: magnetite (Fe 3O4) + ilmenite (FeTiO 3) = ulvöspinel (Fe 2TiO 4) + hematite (Fe 2O3) (Harlov, 1992, 2000b). Two oxygen barometers were applied to the samples. The first is based on the oxidation reaction between the magnetite component in the titaniferous magnetite

and the hematite component in the ilmenite: 6 hematite (Fe 2O3) = 4 magnetite (Fe 3O4) + O 2. The second oxygen barometer is internally consistant with the first (see discussion in Harlov, 1992, 2000b), and is based on the equilibrium between the ferrosilite component in orthopyroxene, the

magnetite component in titaniferous magnetite and quartz: 2 magnetite (Fe 3O4) + 6 quartz (SiO 2) = 3

ferrosilite (Fe 2Si 2O6) + O 2. MANUSCRIPT Temperatures and titaniferous magnetite-ilmenite oxygen fugacities are plotted for granulite-facies samples from the islands of Tromøy and Hisøy (Fig. 15a) and the mainland (Fig. 15b), estimated using a mean pressure of 7.5 kilobars (cf. Harlov, 1992, 2000a). The large range of values cluster along the mean ulvöspinel isopleth for the titaniferous magnetite grains for all the samples. This strongly suggests that the large range in temperatures and oxygen fugacities is primarily caused by variability in the Fe 2O3-component among the ilmenites, since independent variation in XHm causes

movement along the XUsp isopleth (cf. Frost et al., 1988; Lindsley et al., 1990; Harlov, 1992). This variability in the hematite component is also commonly seen among the ilmenite grains from just one sample (cf. Harlov, 1992). The reason why this variability occurs along the XUsp and not the XIlm isopleth is that the titaniferous magnetite grains greatly outnumber the ilmenite grains. The extent to which the compositionsACCEPTED of the titaniferous magnetite and ilmenite grains change during re-

equilibration, and hence the T–log 10 fO2 trend followed, is governed by the relative proportions of the oxides present (cf. Frost et al., 1988). Since titaniferous magnetite grains are much more abundant than the ilmenite grains, the interoxide cooling trend follows the XUsp isopleth with the ilmenites

21

ACCEPTED MANUSCRIPT changing their composition, apparently in a variable manner, while the composition of the titaniferous magnetite grains changes relatively much less.

Orthopyroxene-titaniferous magnetite-quartz and titaniferous magnetite-ilmenite oxygen fugacities are plotted against titaniferous magnetite-ilmenite temperatures in Figure 16c for all granulite-facies

samples. Samples at high temperature and log 10 fO2 show the best agreement in oxygen fugacity between both oxygen barometers. These are considered to preserve near-equilibrium compositions. For samples plotting below 725 °C, the oxygen fugacity estimated from titaniferous magnetite- ilmenite is always below that estimated from orthopyroxene-titaniferous magnetite-quartz. This increase in discrepancy is proportional with decreasing temperature, which is consistent with the inference that there is an increasing disequilibrium between the two assemblages with decreasing apparent temperature. It suggests a direct correlation between decreasing temperature and retrograde resetting of the oxide minerals, specifically ilmenite.

Together, the linear combination of the equilibria magnetite + ilmenite = ulvöspinel + hematite and

magnetite + quartz = ferrosilite + O 2 defines the so-called QUIlP equilibrium (cf. Lindsley et al., 1990; Harlov, 1992, 2000b) described by the following general expression: 2 quartz + 2 ulvöspinel = 2 ilmenite + ferrosilite. QUIlP represents the orthopyroxene analogue of the QUIlF equilibrium

(quartz-ulvöspinel-ilmenite-fayalite) of Frost et al. (1988). QUIlP is defined in log 10 fO2–T space, for a specific pressure and activity of ferrosilite in orthopyroxene, MANUSCRIPT as a series of temperatures calculated using the titaniferous magnetite-ilmenite thermometer for which there is perfect agreement between oxygen fugacities estimated from the titaniferous magnetite-ilmenite and orthopyroxene-titaniferous magnetite-quartz equilibria. An equilibrium temperature and oxygen fugacity for reset samples can be

found from the intersection of the XUsp isopleth for these samples with the QUIlP equilibrium (Frost et al., 1988; Lindsley et al., 1990; Harlov, 1992, 2000b). This entails conceptually increasing the hematite content of the ilmenite grain such that temperature and oxygen fugacity are shifted upward along the XUsp isopleth until the QUIlP equilibrium point is reached. The mean QUIlP equilibrium temperature for reset samples from Tromøy and Hisøy is 830 +/–40 °C (Harlov, 1992) whereas oxygen fugacities range from log 10 fO2 = –11.0 to –13.0. These results are in good agreement with

QUIlP temperatures and oxygen fugacities (823 +/– 6 °C (1 σ); log 10 fO2 = –12.0 to –14.0) estimated for for the mainlandACCEPTED enderbites along the coast (Harlov, 2000b).

Non-reset oxygen fugacities estimated both directly from the oxide-silicate data (Fig. 15c; also see above) and from QUILP indicate that carbon could only have been stable as CO 2 during granulite-

22

ACCEPTED MANUSCRIPT facies metamorphism in the Bamble Sector. However, it should be noted that on a more local scale primary graphite can still be found in the granulite-facies rocks. For example, Broekmans et al. (1994) have documented primary graphite ± overgrowths in granulite-facies metapelites and fahlbands on the mainland. This suggests that the high oxidation state estimated from oxide-silicate assemblages was not uniform throughout the granulite-facies rocks but perhaps was limited to rocks whose protolith was igneous in origin as opposed to sedimentary.

Overall observations of a high oxidation states during granulite-facies metamorphism contradicts earlier studies of similar granulite-facies terranes utilizing titaniferous magnetite-ilmenite thermometery/oxygen barometery such as in the Adirondacks by Lamb and Valley (1985), who estimated substantially lower temperatures and oxygen fugacities implying that graphite was the stable carbon phase during granulite-facies metamorphsim. However, since these oxygen fugacities are not compared isothermally with oxygen fugacities estimated from other internally consistent oxygen barometers such as ferrosilite-magnetite-quartz (see above), it is uncertain if they actually represent peak metamorphic conditions.

6.2.3. LILE depletion

The notion of LILE depletion as a regional feature of the lower continental crust, i.e. granulite-facies rocks, was put forward in the 1960s (e.g. Heier and Adams,MANUSCRIPT 1963; Heier, 1965). Field and coworkers advocated the case of regional scale LILE depletion due to granulite-facies metamorphism in the Bamble Sector, defining the islands of Tromøy and Hisøy as a separate, high-grade, zone (Field et al., 1980, 1985; Lamb et al., 1986). As already noted by Moine et al. (1972), however, the actual relationships between whole rock chemistry and metamorphic grade in the area are complex, with K- poor (´hypopotassic´) rocks and normal K-bearing rocks occurring in the granulite-facies area, e.g. on the island of Tromøy. Knudsen and Andersen (1999) showed that the gneisses that make up a large part of that island, the so-called Tromøy gneiss complex, dated at 1198 ± 13 Ma, represent a low-K, calcalkaline igneous complex with trondhjemitic affinities, whose trace element characteristics are explained by magmatic fractionation and post-emplacement anatexis, instead of regional metamorphic depletion (see §5.1 above). ACCEPTED 6.2.4. Skarns

23

ACCEPTED MANUSCRIPT A special feature of the granulite-facies zone is the so-called skarns. In spite of their great economic importance in the past, these have obtained relatively little attention in geological research over the last decades. They are not skarns in the common sense, i.e. they are (at least in part) not clearly related to granitic intrusions (though, given the skarn formation is undated, the Tromøy igneous complex may be considered as such). The skarns are calcsilicate rocks, occurring in the area around Arendal and on the island of Tromøy, either as stratabound layers within the gneisses or as boudins of different size. The occurrences are known for a range of Ca- and Mg-silicates (andraditic and melanitic garnet, hedenbergite, tremolite, epidote, zoisite, forsterite, chondrodite, clinohumite, titanite, pumpellyite, vesuvianite, rhodonite; babingtonite, scapolite, apophyllite, phlogopite); borosilicates (axinite, datolite, tourmaline, okayamalite); zeolites (analcime, thomsonite, mesolite, scolectite, natrolite); sulphides (pyrite, chalcopyrite, tetrahedrite, molybdenite); oxides (magnetite, spinel, gahnite, rutile, anatase); hydroxides (groutite); phosphates (apatite); carbonates (calcite, dolomite, ankerite); borates (cahnite); and halides (fluorite) (Scheerer, 1845; Weibye, 1847; Kjerulf and Dahll, 1861; Vogt, 1910; J.A.W. Bugge, 1940, 1943, 1945, 1951, 1954, 1960; Neumann, 1985; Burns and Dyar, 1991; Broekmans et al., 1994; Nijland et al. 1998a; Olmi et al., 2000). Amphibolite-facies skarns occur in the southwesternmost tip of the Bamble Sector, around Kristiansand (Barth, 1928, 1963; Falkum, 1966).

6.3. Sveconorwegian granulite-facies contact metamorphism MANUSCRIPT Contact aureoles (granulite-facies) occur along the contact between the granitic and charnockitic augen gneisses that intruded along the Porsgrunn-Kristiansand shear zone in the Nelaug-Ubergsmoen- Vegårshei area where they overprint regional amphibolite-facies metamorphism (Hagelia, 1989; Nijland and Senior, 1991). Geothermobarometry on granulite mineral assemblages in basic dikes in the contact aureole of the Ubergsmoen augen gneiss indicate P-T conditions of ca. 750 ºC and 870 MPa (Nijland and Senior, 1991).

6.4. Sveconorwegian regional retrograde metamorphism

Except directly adjacent to the Porsgrunn-Kristiansand shear zone (Fig. 1), the post-peak metamorphic evolutionACCEPTED of the Bamble Sector is characterized by a typical P-T path with an onset of isobaric cooling followed by near isothermal decompression and subsequent near isobaric cooling (Fig. 12). This is documented by mineral assemblages (Visser and Senior, 1990; Nijland et al., 1993b; Sørensen, 2007) and fluid inclusion isochores (Touret and Olsen, 1985). In the Froland corundum-

24

ACCEPTED MANUSCRIPT bearing rocks (in the middle of the amphibolite-facies zone), the peak metamorphic assemblage of sillimanite + plagioclase + biotite + corundum (ca. 750 °C, 700 MPa) was replaced by kyanite + muscovite + chlorite, which reflects isobaric cooling (600–700 °C, 700 MPa). This was followed by decompression, which is reflected by the formation of margarite + corundum (500–570 °C, 300–700 MPa). Retrograde evolution occurred in two stages. The first stage involved the development of muscovite, biotite, and epidote (ca. 400 °C, 200–400 MPa). The second stage was characterized by the development of prehnite, pumpeleyite, scapolite, and tourmaline (175–280 °C, 200–300 MPa) (Nijland et al., 1993b). Phase modelling of the successive assemblages by Sørensen (2007), taking into account solution models and corrected H2O activities, implies that the entire uplift path has to be shifted lower by about 100 °C.

In the cordierite-orthoamphibole bearing rocks, retrogression is reflected by the breakdown of gedrite to cordierite + anthophyllite + magnetite at 527–560 °C and 300–600 MPa (Visser, 1992) and the subsequent formation of talc + kyanite + quartz and kyanite + andalusite + chlorite + quartz assemblages at 350–600 °C and 600–700 MPa, and 420–530 °C and 300–400 MPa, respectively (Visser et al., 1990; Visser and Senior, 1990). This stage also involved the development of retrograde borosilicate assemblages with dumortierite + muscovite + chlorite + quartz and rare grandidierite (Michel-Lévy and Lacroix, 1888; Visser and Senior, 1991). In the original paper by Visser and Senior (1991), the dumortierite assemblages were limited to the inland zone along the Porsgrunn- Kristiansand shear zone, suggesting a regional tren MANUSCRIPTd. However, dumortierite has since also been identified in similar rocks on Tromøy.

The formation of new muscovite porphyroblasts in rocks of suitable composition, (quartzites, granitic gneisses), has been recognized by several authors. This prompted Maijer (1990) to propose the notion of a north-facing, retrograde muscovite-in isograd. Muscovite porphyroblasts, however, also occur in the granitic sheets (similar to those studied by Field and Råheim, 1979) on the island of Tromøy and elsewhere along the coast. Along the Porsgrunn-Kristiansand shear zone, the formation and recrystallization of deformed muscovite porphyroblasts have been dated by the 40 Ar-39 Ar method at 891 ± 3 and 880 ± 3 Ma (Mulch et al., 2005). Here, oxygen and hydrogen isotopic data indicate (final) equilibration between muscovite and infiltrating meteoric water at 320 ± 30 ˚C (Mulch et al., 2005). ACCEPTED

Though the retrograde fluids were obviously H 2O-rich, in many cases several retrograde assemblages

show the action of localized CO 2-rich fluids, as in the case of the breakdown of gedrite in cordierite- orthoamphibole rocks at Blengsvatn (Visser, 1992). Brines documented at high-grade conditions (see

25

ACCEPTED MANUSCRIPT above) are also documented in retrograde assemblages, where they stabilize more anhydrous assemblages at lower temperatures (Sørensen 2007).

6.5. Regional albitization and scapolitization

Both in the central part of the Bamble Sector and the Kragerø area (Fig. 1), so-called albitites or albite-actionolite-quartz (AAQ) rocks occur (Brøgger, 1934a; A. Bugge, 1965; Elliott, 1966; Nijland and Touret, 2001; Engvik et al., 2008). Similar lithologies occur in the Kongsberg Sector (Jøsang, 1966; Munz et al., 1994, 1995). The term albitites is confusing in the sense that, in the Bamble Sector, it is used for both metasomatically altered rocks and apparently magmatic albitite pegmatites (cf. Bodart, 1968; Morshuis, 1991). Considering the close spatial and temporal relationship between both rock types and the experiments of Keppler and co-workers (Shen and Keppler, 1997; Bureau and Keppler, 1999) on the transition between albite melts and fluids, differences in the genesis of the magmatic and metasomatic albitites may be relatively small.

Metasomatic albitization affected both the metagabbros and the sediments. For example, in the Blengsvatn gabbro at the Snøløsvatn or at the margin of the Jomåsknutene gabbro near Uvatn, albitization of the metagabbro starts with the formation of rims of albite around laths of igneous plagioclase. Subsequently, the individual igneous plagioclasesMANUSCRIPT are replaced by albite-oligoclase. The laths grow to stringers and veinlets of albite, giv ing the rock a brecciated outlook. Meanwhile, ferromagnesian minerals are replaced by what is initially patchy actinolite ± clinopyroxene. Continuing metasomatism results in the formation of veinlets of actinolite ± clinopyroxene, (which enhances the brecciated appearance), and/or large aggregates of these minerals. Comparable to episyenitization, quartz is removed during the process. This is illustrated by the Mjåvatn pegmatite, where feldspar and quartz in graphic intergrowths are replaced by albite and actinolite-clinopyroxene intergrowths, respectively, whilst macroscopically preserving the graphic texture (Nijland and Touret, 2001; Fig. 16). Here, metasomatism is estimated to have occurred at 350–450 °C and 200–400 MPa. At least part of the albitization, however, occurred at higher temperatures. TEM observation of actinolite from albitized rock in the Jomås area show the presence of cummingtonite exsolution lamellae in actinoliteACCEPTED that have been affected by two phases of deformation after exsolution (ter Haar, 1988). Depending on Fe/Mg, the presence of these cummingtonite exsolution lamellae in the

actinolite implies a temperature of formation above 600–700 °C at P H2O of 200 MPa (Cameron, 1975).

26

ACCEPTED MANUSCRIPT Albitization is associated with the formation of pipes of very pure quartz intergrown with up to 1 m long needles of actinolite ( strahlstein ). The albitized rocks are often enriched in Ti-minerals, particularly titanite and rutile. The latter have been termed kragerøite in the past (Johanssen, 1937; Force, 1991). Ti-enrichment reflects strong enhancement in Ti-solubility due to the presence of a Na- silicate component in the fluid (Antignano and Manning, 2008; Hayden and Manning, 2011). The AAQ rocks can be apatite-rich, and associated with apatite-actinolite rocks. One example occurs at the margin of a boudin from the Blengsvatn gabbro at Håvatn (Brøgger, 1934a). It has a diameter of several tens of meters, and has been mined in the past (C. Bugge, 1922). Light green F-OH apatite is intergrown with dark green actinolites. Accessory titanite and calcite also occur (Nijland and Maijer, 1991).

Detailed 1:5,000 scale mapping has shown that the regional distribution of AAQ rocks indicates the presence of a regional scale irrigation network that came into existence during the collapse of the Sveconorwegian orogen (Nijland and Touret, 2001). As part of this network the AAQ rocks occur along a late joint system, which is also manifest in the geomorphology of the area, and along gabbro - country rock contacts. The exact timing of the formation of this network is unclear. Munz et al. (1994) obtained a U-Pb titanite age of 1080 ± 3 Ma for similar albitized rocks from the Kongsberg Sector. Such an age seems to be relatively old for the Bamble Sector, as it would be within the error range of the U-Pb zircon lower intercept and overgrowth ages (Kullerud and Machado, 1991; Knudsen et al., 1997) and the Sm-Nd mineral + whole rock isochron MANUSCRIPTages for granulites from the area (Kullerud and Dahlgren, 1993). Magmatic albite pegmatites differ from the AAQ rocks by apparent magmatic textures and sharp cross-cutting relationships with the surrounding country rocks.

In addition to albitization, scapolitization is locally widespread, most notably affecting metagabbroic bodies e.g. the Hiåsen gabbro in the Søndeled area (Frodesen, 1968, 1973); the Jomåsknutene gabbro in the Froland area (de Haas, 1992); and the Ødegården gabbro in the Bamble municipality (Hysingjord, 1990; Korneliussen and Furuhaug, 1993; Engvik and Austrheim, 2010; Engvik et al., 2011), amongst many others (Fig. 1). Locally, almost pure Cl-scapolite rocks with minor rutile and Na-phlogopite formed at Ødegårdens Verk (Lieftink et al., 1993) and was denominated sand rock by Brøgger (1934a). These rocks are associated with Cl-apatite + enstatite + phlogopite veins (Lieftink et al., 1994; EngvikACCEPTED et al., 2009). These veins, most probably, are of metasomatic origin, deriving from an ilmenite-bearing precursor (Austrheim et al., 2008). After their formation, the veins underwent new hydrous alteration, involving replacement of Cl-apatite by F-OH-apatite and accompanying formation of monazite and xenotime (Lieftink et al., 1994; Harlov et al., 2002; Engvik et al., 2009). The latter

27

ACCEPTED MANUSCRIPT process is probably more widespread than previously recognized, also occurring in (non- metasomatized) granite pegmatites such as Gloserheia (Åmli, 1975, 1977; Harlov, 2012a).

7. Geotectonic genesis and evolution of the Bamble Sector

In a regional geotectonic context, the evolution of the Bamble Sector has been discussed in terms of different models that may be generalized (ultimately) either in terms of a continental collisional setting in which southern Norway collided with southern Sweden, or in terms of a translateral model, where southern Norway was originally positioned together with southwest Sweden along the same continental margin, and subsequently displaced along a major shear zone. It is not the purpose of this review to discuss either model or their peculiarities in full, as far as the Southwest Scandinavian Domain as a whole is concerned. Instead, we will limit ourselves to the discussion of some points most directly related to the Bamble Sector.

The last version of the continental collision model was developed by Bingen et al. (2008b), whom reviewed the available geochronological data for the Southwest Scandinavian Domain. This model proposed a four stage model for the Sveconorwegian orogeny, involving one parautochtonous terrane and four displaced terranes. The parautochtonous terrane is identical to the Eastern Segment (in SW Sweden) of Berthelsen (1980; Fig. 2). The four allochtonousMANUSCRIPT terranes include, besides the Bamble and Kongsberg Sectors, two composite terranes, which consist of the Idefjorden terrane and the Telemarkia block introduced by the authors (Bingen et al. 2008b). The latter is the starting point of the model by Bingen et al. (2008b). This Telemarkia block is composed of the Telemark Sector proper, -Vest-, and -Ryfylke with Suldal. The Ideforjden terrane groups together the sectors or segments previously denoted as the Median segment, Ostfold, and Stora-Le Marstrand (Berthelsen 1980; Fig. 2). The evaluation of geochronological data also demonstrates the presence of significant pre-Sveconorwegian activity in all four allochtonous terranes. The Sveconorwegian orogeny itself has been divided into four stages, viz. thee Arendal (1140–1080 Ma), Agder (ca. 1050 and 1035–980 Ma), Falkstad (980–970 Ma), and Dalane stage (970–940 Ma and 940–900 Ma). The Bamble Sector was mainly affected by the Arendal stage, with ages related to peak amphibolite- to granulite-facies metamorphism clustering over two periods, 1140–1125 and 1110– 1080 Ma. Both datesACCEPTED can occasionally be found in one sample (Bingen et al., 2008a).

A model involving major translateral displacement of southern Norway along a shear zone, nowadays obscured by the Permian Oslo rift, was first proposed by Torske (1977, 1985) and Park et al. (1991).

28

ACCEPTED MANUSCRIPT It may involve a setting analogeous to that of the present day Canadian Cordillera (e.g. Umhoefer, 1987; Samson and Patchett, 1991). Varieties of the model, mainly based on geochemical data, have been proposed since by various authors, e.g. Andersen et al. (2004. 2005, 2009), Pedersen et al. (2009), and most recently by Slagstad et al. (2013).

Critical to any model are a few issues concerning the Bamble Sector. The first of these is the relationship between the suite of granitic to charnockitic augen gneisses, whose magmas were intruded over a considerable period, 1.19-1.12 Ga, and are traditionally considered to be related to the Sveconorwegian orogeny. They represent one of the several recurrent pulses of A-type granitic magmatism in the Southwest Scandinavian Domain, and reflect one of a series of anatectic melting events in the deep crust (Andersen et al., 2007, 2009). Only the latest part of this period of magmatism overlaps with the first stage of the Sveconorwegian orogeny as defined by Bingen et al. (2008b). They considered it to be a phase of Pre-Sveconorwegian magmatism. While all together occurring over 70 Ma, on the basis of field relationships and whole rock chemistry, these intrusions have generally been considered as belonging to one phase of synkinematic and synmetamorphic magmatic activity (e.g. Touret, 1967a. 1968; Milne and Starmer, 1982; Hagelia, 1989; Nijland and Senior, 1991; Andersen et al., 1994). Whether this magmatism is part of the early Sveconorwegian orogeny or not is crucial to interpretation of the Sveconorwegian orogeny. If different from the Sveconorwegian orogeny proper, it implies two major events in the Bamble Sector prior to the Arendal phase of the Sveconorwegian orogeny. Phase MANUSCRIPT one would involve intrusion of magmas from the augen gneiss suite. An older phase two would involve two phases of deformation and migmatization prior to their intrusion, possibly during the ill-defined Gothian orogeny.

The second issue critical to any interpretative model is the (tectonic) relationship between the Bamble Sector and other terranes. In the collisional model proposed by Bingen et al. (2008b), two hypothetical scenarios are considered. The first scenario involves subduction of (with the Idefjorden terrane at its margin, in the nomenclature of these authors) below an unidentified continent (Amazonia?), from which the Telemarkia block was derived during pre-Sveconorwegian times (1220–1140). In this scenario, the Bamble and Kongsberg Sectors were trapped between the Telemarkia block and Fennoscandian terrane during the Arendal phase of the Sveconowegian orogeny (1140–1080 Ma).ACCEPTED The second scenario involves collision between the Telemarkia block and the Idefjorden terrane, starting in pre-Sveconorwegian times (1220–1140 Ma) and coming to a halt during the Arendal phase of the Sveconorwegian orogeny (1140–1080 Ma). In this scenario, the Bamble and Kongsberg Sectors were also mangled between the Telemarkia block and the Idefjorden terrane. In either scenario, the origins of the Bamble and Kongsberg Sectors are unclear. In both scenarios, the

29

ACCEPTED MANUSCRIPT Bamble Sector represents a tectonic wedge upthrusted against the so-called Telemarkia block during the first Arendal stage of the Sveconorwegian orogeny in response to continental collision.

Geochemical data, including Pb, Hf, Sr, and Nd isotope data for igneous rocks from all over southern Norway, show that the Telemark, Bamble, and Kongsberg Sectors have an identical geochemical signature and imply they may have been part of the same Fennoscandian continental margin prior to 1.6 Ga (Andersen et al., 2001b, 2002a, 2004, 2009). A discontinuity, such as a fossil suture, would likely be expected to be manifest in the isotopic data (Andersen et al., 2009). This argues against an exotic Telemarkia block. The second scenario does not explain why the east-west sequences within both southern Norway and Sweden show considerable similarities, whilst they are currently positioned after each other such that they form one single east-west traverse (Berthelsen, 1980, 1987).

However, a prolonged, subduction related, destructive margin scenario, followed by continental collision during the Sveconorwegian orogeny, can be supported by several observations. Pesonen and Torsvik (1990) deduced from palaeomagnetic data that, after a period of strongly increased plate drift velocity between ca. 1.4 and 1.3 Ga, rather slow plate drift velocities occurred between 1.27–1.23 Ga. This can be interpreted to reflect a change from an overall extensional to a collisional setting. At ca. 1.2 Ga, the Tromøy igneous complex shows geochemical characteristics that have been interpreted as the remant of an oceanic (Smalley et al., 1983; Knudsen and Andersen, 1999; Andersen et al., 2002a, 2004), i.e. a subduction related setting. Evidence for an oceanic basin, however, has not been found yet. It is unclear to what extent older ductile MANUSCRIPT precursors (shear zones) exist for the late brittle faults between Tromøy and Hisøy and between Tromøy and the mainland, and what this would imply for the interpretation of the relationship between Tromøy and the mainland. Other indications of a closed oceanic basin in the Bamble Sector (or elsewhere) are, however, lacking. High pressure subduction related rocks () have not been encountered in the Bamble Sector, but occur elsewhere in the Sveconorwegian belt. These include late Sveconorwegian high pressure granulites and eclogites in SW Sweden (Johansson et al., 1991; Möller, 1998) and 1.08 Ga eclogites at Glen Elg, Scotland (Sanders et al., 1984; Sanders, 1989). These rocks are, however, much younger and belong to a later phase of the Sveconorwegian orogeny.

A third crucial aspect in any geotectonic model involving the Bamble Sector orogeny is the question concerns when theACCEPTED Bamble and Telemark Sectors were joined together. Did the Bamble and Telemark Sectors already amalgate prior to the Sveconorwegian orogeny or not? Some authors have argued that the two sectors were joined only during the late Sveconorwegian (e.g. Andresen and Bergundhaugen, 2001). Interpretation of the nature of the granitic to charnockitic augen gneisses and their relationship

30

ACCEPTED MANUSCRIPT with the Porsgrunn-Kristiansand shear zone is crucial with respect to answering this question. Members of this magmatic suite (the Gjerstad augen gneiss and Morkheia monzonite suite) intrude within this shear zone on the border between the Telemark Sector and the Bamble Sector, as may clearly be seen on the geologic map of Starmer (1987) as well as in more detail in Starmer (1990). The Gjerstad augen gneiss cuts older structures in the Telemark gneisses (Starmer, 1990). Given the intrusive ages of these granitic to charnockitic magmas (1.19–1.12 Ga; see above), and their synkinematic and synmetamorphic nature, this shear zone was already active, and the Bamble Sector and Telemark Sector joined together, prior to the Arendal phase of the Sveconorwegian orogeny.

The accretionary model for the Sveconorwegian orogeny in the Southwest Scandinavian Domain proposed by Slagstad et al. (2013) depends on three crucial observations, viz. the timing of 1050– 1025 Ma calcalkaline, subduction related magmatism (called the magmatic belt by the authors); the observation that it preceeds high grade metamorphism; and the observed peak metamorphic temperatures, which are higher than normally attained in collisional orogens. The last two key observations also apply for the Bamble Sector. However, the timing of metamorphism in the Bamble Sector is much older than in the westernmost part (Rogaland-Vest Agder) of the Southwest Scandinavian Domain. The model involves subduction of below the west of Fennoscandia, which is assumed by these authors to be identical to the so-called Idefjord terrane of Bingen et al. (2008b). Remains of this oceanic crust have not been identified yet. The position of the Bamble and Kongsberg Sectors in this model is uncle ar.MANUSCRIPT Any proposed cause for granulite-facies metamorphism depends on the geotectonic setting. The different clockwise and anti-clockwise PT paths found by Visser and Senior (1990) on the mainland and by Knudsen (1996) on the offshore islands have so far hampered any interpretation. A Sveconorwegian granulite-facies event, superimposed on an already high grade migmatitic gneiss terrane, is clear from the geochronological data (Table 2). The already high-grade nature of the rocks may form an example of metamorphic preconditioning as proposed by Caddick (2013). The cause of this granulite-facies metamorphism is, however, still subject to debate. Though intimately associated with granulite-facies rocks in the area, the 1.2 Ga Tromøy igneous complex predates peak metamorphism by about 100 Ma (Knudsen and Andersen, 1999), implying that the igneous complex could not have acted as a heat source. However, Sveconorwegian metamorphism did affect a high- grade gneiss terrane,ACCEPTED that had already been deformed and migmatized prior to 1.19–1.12 Ga (see above). The presence of carbonic and saline fluids appears to have exerted a strong local control on the development of H 2O-poor, high-grade mineral assemblages in the granulite-facies zone as well as in the granulite-facies islands in the amphibolite-facies zone (e.g. Touret and Nijland, 2012). A possible heat source for granulite-facies metamorphism could either have been thermal doming due to 31

ACCEPTED MANUSCRIPT the elevation of asthenosphere magmas below an overriding plate, or thinned lithosphere due to attempted rifting (Nijland and Maijer, 1993).

No definitive evidence exists to definitively confirm any of these hypotheses. Starmer (1985, 1990, 1991) distinguished five major phases of deformation in the Bamble Sector. Three predated the intrusion of the granitic-charnockitic augen gneisses, and four postdate them. The latter phases are tentatively correlated with the Svecnorwegian orogeny in the sense of Bingen et al. (2008b). The period between the 5 th and 6 th phases of deformation was considered by Starmer (1985, 1990, 1991) as an ´anorogenic phase of crustal extension ´, in which coronitic gabbros ( ´main hyperites´ ) and granitic magmas intruded. They were subsequently metamorphosed and deformed mainly along their margins. This caused him to suggest elevated heat flow due to rifting as the cause of metamorphism in this period, comparable to Hercynian metamorphism in the Pyrenees (cf. Wickham and Oxburgh, 1985). In this respect, it is noteworthy that on a larger scale, palaeomagnetic data indicate the break up and mutual rotation of amalgated -Fennoscandia between 1.10 and 1.05 Ma. This occurred after a pre-Sveconorwegian configuration in which Laurentia and Fennoscandia were in close proximity with their internal tectonic lineaments in alignment until about 1250 Ma (Piper, 2009).

8. Conclusions MANUSCRIPT The importance of the discovery of CO 2 in granulite-facies rocks from the Bamble Sector by Jacques Touret and its relevance with regard to the lower continental crust was grasped within a few years. Since then, the role of (Na,K)Cl brines as the other agent in granulite genesis has been recognized in the Bamble Sector and elsewhere (e.g. Newton et al., 1998; Harlov and Förster, 2002; Hansen and Harlov, 2007; Harlov, 2012b; Aranovich et al., 2013; see also discussion in Touret and Nijland, 2012). However, in a geotectonic context the development of an amphibolite- to granulite-facies transtion zone in the Bamble Sector is a regional phenomenon. How this transition zone formed in an already high-grade gneiss terrane is still unclear.

As will be clear from the brief discussion provided above, understanding the geological evolution of the Bamble Sector and the causes of formation behind the regional amphibolite- and granulite-facies zones would benefitACCEPTED from modelling based on the integration of geochronological, geochemical, structural, and field geological data. Topics that need to be considered to substantiate any large-scale concepts include the elucidation of the actual position of the granulite-facies islands of Tromøy and Hisøy relative to the granulite-facies areas on the mainland. These include any displacements by the

32

ACCEPTED MANUSCRIPT brittle faults identified in the sounds between the islands (chiefly Tromøy and Hisøy) and the mainland (and possible older ductile deformation zones currently obscured by these faults); the relationship between the intrusion of the granitic to charnockitic augen gneisses and the ductile precursor of the Porsgrunn-Kristiansand shear zone; and the relationship between synkinematic and synmetamorphic magmatism in the Bamble Sector and the Sveconorwegian orogeny.

Acknowledgements

Comments on a previous version of the paper by J.L.R. Touret and reviews by E.E. Sørensen and B. Bingen are greatly appreciated.

References

Adams, F.D., 1893. Über das Norian oder Ober-Laurentian von Canada. Neues Jahrbuch für Mineralogie, Beilageband 8, 466-470. Afework, Y., Olesen, O., Ebbing, J., Skilbrei, J.R., Nordgulen, Ø., Bingen, B., 2004. Reinterpretation of regional gravity data in the Permian Oslo Rift. Geologiska Föreningens i Stockholm Förhandlingar 126, 88-89. MANUSCRIPT Åhäll, K.I., Connelly, J., Brewer, T.S., 2000. Episodic rapakivi magmatism due to distal orogenesis ?: Correlation of 1.69-1.50 Ga orogenic and inboard 'anorogenic' events in the Baltic shield. Geology 28, 823-826. Åhäll, K.I., Cornell, D.H., Armstrong, R., 1998. Ion probe zircon dating of metasedimentary units across the Skagerrak: New constraints for early Mesoproterozoic growth of the Baltic shield. Precambrian Research 87, 17-134. Åmli, R., 1975. Mineralogy and rare earth geochemistry of apatite and xenotime from the Gloserheia granite pegmatite, Froland, southern Norway. American Mineralogist 60, 607-620. Åmli, R., 1977. Internal structure and mineralogy of the Gloserheia granite pegmatite, Froland, southern Norway. Norsk Geologisk Tidsskrift 57, 243-262. Andersen, O., 1931. Feltspat II. Norges Geologiske Undersøkelse Bulletin 128b, 109 pp. Andersen, T., 1997ACCEPTED Radiogenic isotope systematics of the Herefoss granite, South Norway: An indicator of Sveconorwegian (Grenvillian) crustal evolution in the Baltic Shield. Chemical Geology 135, 139-158.

33

ACCEPTED MANUSCRIPT Andersen, T., 2005. Terrane analysis, regional nomenclature and crustal evolution in the Southwest Scandinavian Domain of the Fennoscandian Shield. Geologiska Föreningens i Stockholm Förhandlingar 127, 159-168. Andersen, T., Andresen, A., Sylvester, A.G., 2001b. Nature and distribution of deep crustal reservoirs in the southwestern part of the Baltic Shield: evidence from Nd, Sr and Pb isotope data on late Sveconorwegian granites. Journal of the Geological Society (London) 158, 253-267. Andersen, T., Andresen, A., Sylvester, A.G., 2002b. Timing of late- to post-tectonic Sveconorwegian granitic magmatism in South Norway. Norges Geologiske Undersøkelse Bulletin 440, 5-18. Andersen, T., Graham, S., Sylvester, A.G., 2007. Timing and tectonic significance of Sveconorwegian A-type granitic magmatism in Telemark, southern Norway: New results from laser-ablation ICPMS U-Pb dating of zircon. Norges Geologiske Undersøkelse Bulletin 447, 17-31. Andersen, T., Graham, S., Sylvester, A.G., 2009. The geochemistry, Lu–Hf isotope systematics, and petrogenesis of late Mesoproterozoic a-type granites in southwestern Fennoscandia. Canadian Mineralogist 47, 1399-1422. Andersen, T., Griffin, W.L., Jackson, S.E., Knudsen, T.L., 2001a. Timing of mid-Proterozoic calcalkaline magmatism mplications for the evolution of the southwestern margin of the Baltic Shield. Geonytt (1), 25-26. Andersen, T., Griffin, W.L., Jackson, S.E., Knudsen, T.L., Pearson, N.L., 2004. Mid-Proterozoic magmatic arc evolution at the southwest margins of the Baltic shield. Lithos 73, 289-318. Andersen, T., Griffin, W.L., Pearson, N.J., 2002a. CrustalMANUSCRIPT evolution in the SW part of the Baltic Shield: The Hf isotope evidence. Journal of Petrology 43, 1725-1747. Andersen, T., Hagelia, P., Whitehouse, M.J., 1994. Precambrian multi-stage crustal evolution in the Bamble sector of S. Norway: Pb isotopic evidence from a Sveconorwegian deep-seated granitic intrusion. Chemical Geology 116, 327-343. Andersen, T., Maijer, C., Verschure, R.H., 1995. Metamorphism, provenance ages and source characteristics of Precambrian clastic sediments in the Bamble Sector, South Norway: An Ar, Sr, Nd and Pb isotope study. Petrology 3, 321-339. Andresen, A., Bergundhaugen, A., 2001. The Nesland-Nelaug shear zone a high-temperature reverse fault reactivated as an extensional (low temperature) shear zone/fault. Geonytt (1), 27. Annis, M.P., 1974. The highly differentiated Holtebu granite and its relation to the Herefoss pluton. Norsk GeologiskACCEPTED Tiddskrift 54, 169-176.

Antignano, A., Manning, C.E., 2008. Rutile solubility in H 2O, H 2O-SiO 2, and H 2O-NaAlSi 3O8 fluids at 0.7-2.0 GPa and 700-1000 °C: Implications for mobility of nominally insoluble elements. Chemical Geology 255, 283-293.

34

ACCEPTED MANUSCRIPT Aranovich, L.Y., Newton, R.C., Manning, C.E., 2013. Brine-assisted anatexis: Experimental melting in the system haplogranite-H2O-NaCl-KCl at deep-crustal conditions. Earth and Planetary Science Letters 374, 111-120. Ashworth, J.R., 1986. The role of magmatic reaction, diffusion and annealing in the evolution of coronitic microstructure in troctolitic gabbro from Risör, Norway: A discussion. Mineralogical Magazine 50, 469-473. Atkin, B.P., Brewer, T.S., 1990. The tectonic setting of basaltic magmatism in the Kongsberg, Bamble and Telemark sectors, southern Norway. In: Gower, C.F., Rivers, T., Ryan, B. (Eds.), Mid Proterozoic Laurentia-. Geological Association of Canada Special Paper 38, 471- 483. Austrheim, H., Putnis, C.V., Engvik, A.K.,.Putnis, A., 2008. Zircon coronas around Fe-Ti oxides: A physical reference frame for metamorphic and metasomatic reactions. Contributions to Mineralgoy and Petrology 156, 517-527. Baadsgaard, H., Chaplin, C., Griffin, W.L., 1984. Geochronology of the Gloserheia pegmatite, Froland, southern Norway. Norsk Geologisk Tidsskrift 54, 111-119. Bakken, R., Gleditsch, E. 1938. Analyses of a single crystal of cleveit, Auselmyren, Norway. American Journal of Science 236, 95-106. Barth, T.F.W., 1925. On contact minerals from Precambrian limestones in southern Norway. Norsk Geologisk Tidsskrift 8, 93-114. Barth, T.F.W., 1928. Kalk und Skarngesteine im UrgeMANUSCRIPTbirge bei Kristiansand. Neues Jahrbuch für Mineralogie, Beilageheft, 57A, 1069-1108. Barth, T.F.W., 1955. Température de formation de certains granites précambrien de Norvège méridionale. Science de la Terre 1, 119-178. Barth, T.F.W., 1963. Vesuvianite from Kristiansand, other occurrences in Norway, the general formula of vesuvianite. Norsk Geologisk Tiddskrift 43, 457-472. Barth, T.F.W., 1969. Granulite facies rocks of the Precambrian of south Norway, particularly around Arendal. Science de la Terre 14, 361-369. Beeson, R., 1988. Identification of cordierite-anthophyllite rock types associated with sulphide deposits of copper, lead and zinc. Transactions of the Instute of Mining and Metallurgy 97B, 108-115. Berthelsen, A., 1980.ACCEPTED Towards a palinspastic tectonic analysis of the Baltic shield. In: Cogné, J. & Slausky, M., eds., , from Precambrian to the post-Hercynian . Mémoire de B.R.G.M. 108, 5-21.

35

ACCEPTED MANUSCRIPT Berthelsen, A., 1987. A tectonic model for the crustal evolution of the Baltic shield. In: Schaer, J.P., Rodgers, J. (Eds.), The anatomy of mountain ranges. Princeton University Press, Princeton, pp. 31-57. Bingen, B., Davis, W.J., Hamilton, M.A., Engvik, A.K., Stein, H.J., Skår, Ø., Nordgulen, Ø., 2008a. Geochronology of high-grade metamorphism in the Sveconorwegian belt, S. Norway: U-Pb, Th-Pb and Re-Os data. Norwegian Journal of Geology 88, 13-42. Bingen, B., Nordgulen, Ø., Viola, G., 2008b. A four-phase model for the Sveconorwegian orogeny, SW Scandinavia. Norwegian Journal of Geology 88, 43-72. Bingen, B., Skår, Ø., Marker, M., Sigmond, E.M.O., Nordgulen, Ø., Ragnhildstveit, J., Mansfeld, J., Tucker, R.D., Liégois, J.P., 2005. Timing of continental building in the Sveconorwegian orogen, SW Scandinavia. Norwegian Journal of Geology 85, 87-116. Bjørlykke, H., 1937. Mineral paragenesis of some granite pegmatites near Kragerø, southern Norway. Norsk Geologisk Tidsskrift 7, 1-16. Bjørlykke, H., 1939. Feltspat V. De sjeldne mineraler på de norske granitiske pegmatittganger. Norges Geologiske Undersøkelse Bulletin 154, 78 pp. Bjørlykke, H. & Sverdrup, T.L., 1962. Feltspat. Norges Geologiske Undersøkelse Småskrift 7, 51 pp. Bodart, D.E., 1968. On the paragenesis of albitites. Norsk Geologisk Tidsskrift 48, 269-280. Bureau, H., Keppler, H., 1999. Complete miscibility between silicate melts and hydrous fluids in the upper mantle: experimental evidence and geochemical implications. Earth and Planetary Science Letters 165, 187-196. MANUSCRIPT Boyd, R. and Nixon, F., 1985. Norwegian nickel deposits: a review. In: Papunen, H., Gorbunov, G.I. (Eds.), Nickel-copper deposits of the Baltic Shield and Scandinavian Caledonides. Geological Survey of Finland Bulletin 333, 363-394. Brickwood, J.D., 1986. The geology and mineralogy of some Fe-Cu-Ni sulphide deposits in the Bamble area, Norway. Norsk Geologisk Tidsskrift 66, 189-208. Broekmans, M.A.T.M., Nijland, T.G., Jansen, J.B.H., 1994. Are stable isotopic trends in amphibolite to granulite facies transitions metamorphic or diagenetic ? - An answer for the Arendal area (Bamble sector, SE Norway) from Mid-Proterozoic carbon-bearing rocks. American Journal of Science 294, 1135-1165. Brøgger, W.C., 1906. Die Mineralen der südnorwegischen Granit-Pegmatitgänge. I. Det Konglige Norske VidenskapligACCEPTED Selskap Skrifter. I. Matematisk-Naturvidenskaplig Klasse 1906-6. Brøgger, W.C., 1934a. On several Archaean rocks from the south coast of Norway. II The South Norwegian hyperites and their metamorphism. Det Norske Videnskaps-Akademi i Oslo Skrifter, Matematisk-Naturvidenskapelig Klasse 1, 421 pp.

36

ACCEPTED MANUSCRIPT Brøgger, W.C., 1934b. On several Archaean rocks from the south coast of Norway. I Nodular granites from the environs of Kragerö. Det Norske Videnskaps Selskap i Oslo Skrifter, Matematisk- Naturvidenskapelig Klasse 8, 97 pp. Brøgger, W.C., Vogt, & Schetelig, J., 1922. Die Mineralien der südnorwegischen Granitpegmatitgänge. II. Silikate der seltenen Erde. Det Konglige Norske Videnskaplig Selskap Skrifter. I. Matematisk-Naturvidenskaplig Klasse 1, 151 pp. Brøgger, W.C., Reusch, H.H., 1875. Vorkommen des Apatit in Norwegen. Zeitschrift der deutsche geologische Gesellschaft 27, 646-702. Bugge, A., 1922. Nikkelgruber i Bamble. Norges Geologiske Undersøkelse Bulletin 87, 12-42. Bugge, A., 1928. En forkastning i det syd-norske grunnfjell. Norges Geologiske Undersøkelse Bulletin 130, 124 pp. Bugge, A., 1936. Kongsberg-Bamble formationen. Norges Geologiske Undersøkelse Bulletin 146, 117 pp. Bugge, A., 1965. Iakttagelser fra rektangelbladet Kragerö og den store grunnfjellbreksje. Norges Geologiske Undersøkelse Bulletin 229, 115 pp. Bugge, C., 1922. Statens apatitdrift i rationeringstiden. Norges Geologiske Undersøkelse Bulletin 110, 34 pp. Bugge, C., 1934. Gullforekomster i Norge. Norsk Geologisk Tidsskrift 14:319-320. Bugge, J.A.W., 1940. Geological and petrological investigations in the Arendal district. Norsk Geologisk Tidsskrift 20, 71-112. MANUSCRIPT Bugge, J.A.W., 1943. Geological and petrological investigations in the Kongsberg-Bamble formations. Norges Geologiske Undersøkelse Bulletin 160, 150 pp. Bugge, J.A.W., 1945. Löddesöl skarn forekomst. Norsk Geologisk Tidsskrift 25, 35-47. Bugge, J.A.W., 1951. Minerals from the skarn iron ore deposits at Arendal, Norway. I. Cahnite from Klodeborg Mine. Konglige Norske Videnskabers Selskab Forhandlinger 17, 79-81. Bugge, J.A.W., 1954. Minerals from the skarn iron ore deposits at Arendal, Norway. II. The zeolites. Konglige Norske Videnskabers Selskab Skrifter 3, 1-18. Bugge, J.A.W., 1960. Skarn iron ore deposits in the Arendal district. In: Vokes, F.M. (Ed.), Mines in south and central Norway. Guide to excursion no. C10. Norges Geologiske Undersøkelse Bulletin 212m, 26-38. Burns, R.G., M.D.ACCEPTED Dyar, 1991. Crystal chemistry and Mössbauer spectra of babbingtonite. American Mineralogist 76, 892-899. Caddick, M.J., 2013. Petrologic preconditioning: A predeposition to polymetamorphism. Mineralogical Magazine 77, 806.

37

ACCEPTED MANUSCRIPT Cameron, E.M., 1989. Derivation of gold by oxidative metamorphism of a deep ductile shear zone. Part 2. Evidence from the Bamble belt, south Norway. Journal of Geochemical Exploration 31, 149-169. Cameron, K.L., 1975. An experimental study of actinolite-cummingtonite phase relations with notes on the synthesis of Fe-rich anthophyllite. American Mineralogist 60, 375-390. Carstens, H., 1959. Comagmatic lamprophyrcs and diabases on the south coast of Norway. Contributions to Mineralogy and Petrology 6, 299-319. Černý, P., 1991. Rare-element granitic pegmatites. Part I: Anatomy and internal evolution of pegmatite deposits. Geoscience Canada 18, 49-67. Christie, O.H.J., Falkum, T., Ramberg, I.B., Thoresen, K., 1970. Petrology of the Grimstad granite. II Petrography, geochemistry, crystallography of alkali feldspars and genesis. Norges Geologiske Undersøkelse Bulletin 265, 78 pp. Christophersen, H.O., 1974. Fra jernverkenes histori i Norge. Grøndahl & søns, Oslo, 200 pp. Coolen, J.J.M.M.M., 1980. Chemical petrology of the Furua granulite complex, southern Tanzania. PhD thesis, Free University Amsterdam, GUA Papers of Geology 13. Copley, P.A., Gay, P., 1978. A scanning microscope investigation of some Norwegian aventurine feldspars. Norsk Geologisk Tidsskrift 58, 93-95. Copley, P.A., Gay, P., 1979. Crystallographic studies of some Norwegian aventurinised feldspars by optical, X-ray, and electron optical methods. Norsk Geologisk Tidsskrift 59, 229-237. Cosca, M.A., Mezger, K., Essene, E.J., 1998. The MANUSCRIPT Baltica-Laurentia connection: Sveconorwegian (Grenvillian) metamorphism, cooling, and unroofing in the Bamble sector, Norway. Journal of Geology 106, 539-552. Dahlgren, S., Bogoch, R., Magartiz, M., Michard, A., 1993. Hydrothermal dolomite marbles associated with charnockitic magmatism in Proterozoic Bamble shear belt, south Norway. Contributions to Mineralogy and Petrology 113, 394-409. Daubrée, M.A., 1843. Mémoire sur les dépôts metallifères de la Suède et de la Norvège. Annales des Mines 4, 199-282. de Haas, G.J.L.M., 1992. Source, evolution and age of coronitic gabbros from the Arendal - Nelaug area, Bamble, southeast Norway. Geologica Ultraiectina 86, 129 pp. de Haas, G.J.L.M., Andersen, T., Nijland, T.G., 2000. Mid-Proterozoic evolution of the south NorwegianACCEPTED lithosphere. Volume of Abstracts, 24 th Nordic Geological Winter Meeting Trondheim, 56-57. de Haas, G.J.L.M., Andersen, T., Vestin, J., 1999. Detrital zircon geochronology: New evidence for an old model for of the Southwest Baltic Shield. Journal of Geology 107, 569-586.

38

ACCEPTED MANUSCRIPT de Haas, G.J.L.M., Nijland, T.G., Andersen, T., Corfu, F., 2002a. New constraints on the timing of deposition and metamorphism in the Bamble sector, south Norway: Zircon and titanite U-Pb data from the Nelaug area. Geologiska Föreningens i Stockholm Förhandlingar 124, 73-78. de Haas, G.J.L.M., Nijland, T.G., Huijsmans, J.P.P., Maijer, C., Dam, B.P., 1992. The magmatic history of a gabbroic intrusion in the Bamble sector, Vestre Dale, Norway. Neues Jahrbuch für Mineralogie, Monatshefte, 221-240. de Haas, G.J.L.M., Nijland, T.G., Senior, A., Dam, B.P., 1993b. Preservation of whole rock chemical profiles and igneous structures during multiple high grade metamorphism (Flosta gabbro, Bamble, Norway). Proceedings of the Koninklijke Nederlandse Akademie van Wetenschappen 96, 389-410. de Haas, G.J.L.M. de, Nijland, T.G., Valbracht, P.J., Maijer, C., Verschure, R., Andersen, T., 2002b. Magmatic versus metamorphic origin of olivine-plagioclase coronas. Contributions to Mineralogy and Petrology 143, 537-550. de Haas, G.J.L.M., Verschure, R.H., Maijer, C., 1993a. Isotope constraints on the timing of the crustal accretion of the Bamble sector, Norway, as evidenced by coronitic gabbros. Precambrian Research 64, 403-417. Dons, J.A., 1975. Oljediabas fra Dyvika. Esso Perspektiv 4, 16-17. Divljan, S., 1960. The result of field and laboratory studies of aventurine plagioclases from some Norwegian pegmatites. Proceedings of the 21 st International Geological Congress, Norden 17, 94-101. MANUSCRIPT Eakin, P.A., 1989. The origin and properties of uranium-niobium-tantalum mineralised hydrocarbons at Narestö, Arendal, southern Norway. Norsk Geologisk Tidsskrift 69, 29-37. Ebbing, J., Afework, Y., Olesen, O., Nordgulen, Ø., 2005. Is there evidence for magmatic underplating beneath the Oslo rift ? Terra Nova 17, 129-134. Elders, W.A., 1963. On the form and mode of emplacement of the Herefoss granite. Norges Geologiske Undersøkelse Bulletin 214, 1-52. Eliasson, T., 1992. Magma genesis and emplacement characteristics of the peraluminous Sveconorwegian Bohus granite, SW Sweden. Geologiska Föreningens i Stockholm Förhandlingar 114, 452-455. Elliott, R.B., 1966. The association of amphibolite and albitite, Kragerö, south Norway. Geological MagazineACCEPTED 103, 1-7. Elliott, R.B., Morton, R.D., 1965. The nodular metamorphic rocks from the environments of Kragerö, south coast of Norway. Norges Geologiske Undersøkelse Bulletin 45, 1-20. Engvik, A.K., Austrheim, H., 2010. Formation of sapphirine and corundum in scapolitised and Mg- metasomatised gabbro. Terra Nova 22, 166-171. 39

ACCEPTED MANUSCRIPT Engvik, A.K., Golla-Schindler, U., Berndt, J., Austrheim, H., Putnis, A., 2009. Intragranular replacement of chlorapatite by hydroxy-fluor-apatite during metasomatism. Lithos 112, 236- 246. Engvik A.K., Mezger K., Wortelkamp S., Bast R., Corfu F., Korneliussen A., Ihlen P., Bingen B., Austrheim H., 2011. Metasomatism of gabbro-mineral replacement and element mobilization during the Sveconorwegian metamorphic event. Journal of Metmorphic Geology 29, 399-423. Engvik, A.K., Putnis, A., Fitzgerald, J.D., Austrheim, H., 2008. Albitization of granitic rocks: The mechanism of replacement of oligoclase by albite. Canadian Mineralogist 46, 1401-1415. Eugster, H.P., 1970. Thermal and ionic equilibria among muscovite, K-feldspar and aluminosilicate assemblages. Fortschritte der Mineralogie 47, 106-123. Falkum, T., 1966. Geological investigations in the Precambrian of southern Norway. I - The complex of metasediments and migmatites at , Kristiansand. Norsk Geologisk Tidsskrift 46, 85- 110. Falkum, T., Petersen, J.S., 1980. The Sveconorwegian orogenic belt, a case of late Proterozoic plate collision. Geologische Rundschau 69, 622-647. Field, D., Drury, S.A., Cooper, D.C., 1980. Rare-earth and LIL element fractionation in high grade charnockitic gneisses, south Norway. Lithos 13, 281-289. Field, D., Råheim, A., 1979. Rb-Sr total rock isotope studies on Precambrian charnockitic gneisses from south Norway: Evidence for isochron resetting during a low-grade metamorphic- deformational event. Earth and Planetary Science MANUSCRIPT Letters 45, 32-44. Field, D., Smalley, P.C., Lamb, R.C., Råheim, A., 1985. Geochemical evolution of the 1.6-1.5 Ga-old amphibolite-granulite facies terrain, Bamble sector, Norway: Dispelling the myth of Grenvillian high-grade reworking. In: Tobi, A.C., Touret, J.L.R. (Eds.), The deep Proterozoic crust in the North Atlantic provinces. D. Reidel, Dordrecht, pp. 567-578. Fløystad, I., 2007. Barbu jernverk. Fortuna 3, 26-39. Fonarev, V.I., Korolokov, G.J., 1980. The assemblage orthopyroxene + cummingtonite + quartz: The low temperature stability limit. Contributions to Mineralogy and Petrology 73, 413-420. Forbes, D., Dahll, T., 1855. Mineralogiske iagttagelser omkring Arendal og Kragerø. Nyt Magasine for Naturvidenskaberne 8, 213-229. Force, E.R., 1991. Geology of titanium-mineral deposits. Geological Society of America Special Paper 259.ACCEPTED Frodesen, S., 1968. Petrographical and chemical investigations of a Precambrian gabbro intrusion, Hiåsen, Bamble area, south Norway. Norsk Geologisk Tidsskrift 48, 281-306. Frodesen, S., 1973. Trace elements in a Precambrian gabbro intrusion, Hiåsen, Bamble area, south Norway. Norsk Geologisk Tidsskrift 53, 1-10. 40

ACCEPTED MANUSCRIPT Frost, B.R., Lindsley, D.H., Andersen, D.J., 1988. Fe-Ti oxide-silicate equilibria: Assemblages with fayalitic olivine. American Mineralogist 73, 727-740. Fujimori, S., Fyfe, W.S., 1984. Almanditic garnet-rich metamorphic rocks as an original soil developed during the Precambrian. Revista Brasileira de Geociencias 14, 194-202. Gaál, G., Gorbatschev, R., 1987. An outline of the Precambrian evolution of the Baltic shield. Precambrian Research 35, 15-52. Gammon, J.B., 1966. Fahlbands in the Precambrian of southern Norway. Economic Geology 61, 174- 188. Ghiorso, M.S., 1990. Thermodynamic properties of hematite-ilmenite-geikielite solid solutions. Contributions to Mineralogy and Petrology 104, 645-667. Ghiorso, M.S., Sack, R.O., 1991. Fe-Ti oxide geothermometry: thermodynamic formulation and the estimation of intensive variables in silicic magmas. Contributions to Mineralogy and Petrology 108, 485-510. Graham, S., Andersen, T., de Haas, G.J.L.M., 2005. Lu-Hf and U-Pb of zircon from the Jomasknutene gabbro, Bamble area, southern Norway. In: Vuollo, J., Mertanen, S. (Eds.), Abstracts and Program 5 th International Dyke Conference, Rovaniemi, p 17. Green, J.C., 1956. Geology of the Storkollen-Blankenberg area, Kragerö, Norway. Norsk Geologisk Tidsskrift 36, 89-140. Grønhaug, A., 2004. Klondyke i Kragerø. Da thoritt-feberen raste. Historieglimt, Årsskrift for Kragerø og Skåtøy historielag, 93-108. MANUSCRIPT Gupta, L.N., Johannes, W., 1982. Petrogenesis of a stromatic migmatite (Nelaug, southern Norway). Journal of Petrology 23, 548-567. Hagelia, P., 1989. Structure, metamorphism and geochronology of the Skagerrak shear belt, as revealed by studies in the Hovdefjell-Ubergsmoen area, south Norway. Unpublished Cand. Sci. thesis, University of Oslo, 236 pp. Hansen, E.C., Harlov, D.E., 2007. Whole-rock, phosphate, and silicate compositional trends across an amphibolite- to granulite-facies transition, Tamil Nadu, India. Journal of Petrology 48, 1641– 1680. Hansen, E.C., Newton, R.C., Janardhan, A.S., 1984. Fluid inclusions in rocks from amphibolite-facies gneiss to charnockite progression in southern Karnataka, India: Direct evidence concerning the fluidsACCEPTED of granulite metamorphism. Journal of Metamorphic Geology 2, 249-264. Harlov, D.E., 1992. Comparative oxygen barometry in granulites, Bamble Sector, S.E. Norway. Journal of Geology 100, 447-464. Harlov, D.E., 2000a. Pressure-temperature estimation in orthopyroxene-garnet bearing granulite facies rocks, Bamble sector, Norway. Mineralogy and Petrology 69, 11-33. 41

ACCEPTED MANUSCRIPT Harlov, D.E., 2000b. Titaniferous magnetite±ilmenite thermometry and titaniferous magnetite ± ilmenite ± orthopyroxene ± quartz oxygen barometry in granulite facies gneisses, Bamble

sector, SE Norway: Implications for the role of high-grade CO 2-rich fluids during granulite genesis. Contributions to Mineralogy and Petrology 140, 180-197. Harlov, D.E., 2000c. Apparent pyrrhotite-chalcopyrite solid solutions in charnockites: Shevaroy Hills massif, Tamil Nadu, S India and the Bamble Sector, SE Norway. Mineralogical Magazine 64, 853-865. Harlov, D.E., 2012a. Formation of monazite and xenotime inclusions in fluorapatite megacrysts, Gloserheia granite pegmatite, Froland, Bamble sector, southern Norway. Mineralogy and Petrology 102, 77-86. Harlov, D.E., 2012b. The potential role of fluids during regional granulite-facies dehydration in the lower crust. Geoscience Frontiers 3, 813-827. Harlov, D.E., Förster, H.J., 2002. High-grade fluid metasomatism on both a local and regional scale: the Seward Peninsula, Alaska and the Val Strona di Omegna, Ivrea-Verbano Zone, northern Italy part I: Petrography and silicate mineral chemistry. Journal of Petrology 43, 769–799. Harlov, D.E., Förster, H.J., Nijland, T.G., 2002. Fluid-induced nucleation of (Y + REE)-phosphate minerals within apatite: Nature and experiment. Part I. Chlorapatite. American Mineralogist 87, 245-261. Harlov, D.E., Hansen, E.C., Bigler, C., 1998. Petrologic evidence for K-feldspar metasomatism in granulite facies rocks. Chemical Geology 151, MANUSCRIPT 373-386. Hausmann, J.F.L., 1812. Reise durch Skandinavien in den Jahren 1806 und 1807. Volume 2. J.F. Römer, Göttingen, 380 pp.

Hayden, L.A., Manning, C.E., 2011. Rutile solubility in supercritical NaAlSi 3O8-H2O fluids. Chemical Geology 284, 74-81. Heaman, L.S., Smalley, P.C., 1994. A U-Pb study of the Morkheia complex and associated gneisses, southern Norway: Implications for disturbed Rb-Sr systems and for the temporal evolution of Mesoproterozoic magmatism in Laurentia. Geochimica et Cosmochimica Acta 58, 1899- 1911. Heier, K.S., 1965. Metamorphism and the chemical differentiation of the crust. Geologiska Föreningens i Stockholm Förhandlingar 87, 249-256. Heier, K.S., Adams,ACCEPTED J.A.S., 1963. The geochemistry of alkali metals. Physics and Chemistry of the Earth 5, 253-381. Henderson, I.H.C., Ihlen, P.M., 2004. Emplcement of polygeneration pegmatites in relation to Sveco- Norwegian contractional tectonics: Examples from southern Norway. Precambrian Research 133, 207-222. 42

ACCEPTED MANUSCRIPT Hoefs, J., Touret, J., 1975. Fluid inclusions and carbon isotope study from Bamble granulites (south Norway). Contributions to Mineralogy and Petrology 52, 165-174. Holmes, A., Shillibeer, H.A., Wilson, J.T., 1955. Potassium-argon ages of some Lewisian and Fennoscandian pegmatites. Nature 176, 390-392. Hysingjord, J., 1990. Skapolitt-undersøkelser i Bamblefeltet. NGU, Trondheim, Norges Geologiske Undersøkelse Rapport 90.042, 12 pp. Ihlen, P.M., Lynum, R., Henderson, Larsen, R.B., 2001. Potensielle ressurser av kvarts- of feltspat- råstoffer på Sørlandet, I: Regional prøvetakning av utvalgte feltspatbrudd i Frolandsområdet. Norges Geologiske Undersøkelse Report 2001-044, 46 pp. Jars, G., 1774. Voyages métallurgiques. Volume 1. Gabriel Regnault, Lyon, 416 pp. Jerpseth, S., 1979. En geologisk undersøkelse av området rundt Meikjær og Stoltz nikkelgruver. Unpublished MSc thesis, University of Oslo, Oslo, 99 pp. Joesten, R., 1986a. The role of magmatic reaction, diffusion and annealing in the evolution of coronitic microstructure in troctolitic gabbro from Risör, Norway. Mineralogical Magazine 50, 441-467. Joesten, R., 1986b. Reply. Mineralogical Magazine 50, 474-479. Johannsen, A., 1937. A descriptive petrography of the igneous rocks. Volume III. The intermediate rocks. University of Chicago Press, Chicago, 300 pp. Johansen, N.V., 2007a. Christian IV´s gullgruver ved Arendal. Fortuna 3, 40-55. Johansen, N.V., 2007b. Gull- og sølvgruvedrift på H isøy.MANUSCRIPT Hisøy Historielag, Hisøy, 183 pp. Johansson, L., Lindh, A., Möller, C., 1991. Late Sveconorwegian (Grenville) high-pressure granulite facies metamorphism in southwest Sweden. Journal of Metamorphic Geology 9, 283-292. Jøsang, O., 1966. Geologiske og petrografiske undersøkelser i Modumfeltet. Norges Geologiske Undersøkelse Bulletin 235, 148 pp. Kihle, J., Harlov, D.E., Frigaard, Ø., Jamtveit, B., 2010. Epitaxial quartz inclusions in corundum from

a sapphirine-garnet boudin, Bamble Sector, SE Norway: SiO 2-Al 2O3 miscibility at high P–T dry granulite facies conditions. Journal of Metamorphic Geology 28, 769-784. Kinck, J.J., Husebye, E.S., Lund, C.E., 1991. The south Scandinavian crust: Structural complexities from seismic reflection and refraction profiling. Tectonophysics 189, 117-133. Kjerulf, T., Dahll, T., 1861. Om jernertsener forekomst ved Arendal, Næs og Kragerø. Nyt Magasine for NaturvidenskaberneACCEPTED 11, 293-359. Kjerulf, T., Dahll, T., 1866. Mémoire sur les gîtes de fer de la côte sud-ouest de la Norvège, Arendal- Naes-Kragerö. Annales des Mines 9, 269-300. Kloprogge, J.T., 1987. Veldwerkverslag gebied Åmdal (Bamble), Noorwegen. Unpublished MSc thesis, Utrecht University, Utrecht, 53 pp. 43

ACCEPTED MANUSCRIPT Knudsen, T.L., 1996. Petrology and geothermobarometry of granulite-facies metapelites from the Hisøy-Torungen area, south Norway: New data on the Sveconorwegian p-T-t path of the Bamble sector. Journal of Metamorphic Geology 14, 267-287. Knudsen, T.L., Andersen, T., 1999. Petrology and geochemistry of the Tromøy gneiss complex, south Norway, an alleged exampled of Proterozoic depleted lower continental crust. Journal of Petrology 40, 909-933. Knudsen, T.L., Andersen, T., Whitehouse, M.J., Vestin, J., 1997. Detrital zircon ages from southern Norway - Implications for the Proterozoic evolution of the southwestern Baltic shield. Contributions to Mineralogy and Petrology 130, 47-58.

Knudsen, T.L., Lidwin, A., 1996. Magmatic CO 2, brine and nitrogen inclusions in Sveconorwegian enderbitic dehydration veins and a gabbro from the Bamble sector, southern Norway. European Journal of Mineralogy 8, 1041-1064. Korneliussen, A., 1995. Rutile associated with eclogites in and scapolitised gabbros in southern Norway. Norges Geologiske Undersøkelse Bulletin 427, 112-115. Korneliussen, A., Furuhaug, L., 1993. Ødegården rutilforekomst: En rutilførende skapolittomvandlet gabbro ved Ødegårdens Verk, Bamble. Norges Geologiske Undersøkelse Rapport 93.078, 46 pp. Kullerud, L., Dahlgren, S., 1993. Sm-Nd geochronology of Sveconorwegian granulite facies mineral assemblages in the Bamble shear belt, south Norway. Precambrian Research 64, 347-360. Kullerud, L., Machado, N., 1991. End of a controver MANUSCRIPTsy: U-Pb geochronological evidence for significant Grenvillian activity in the Bamble area, Norway. Terra Abstracts 3, 504. Kulp, J.L., Ecklemann, W.R., 1957. Discordant U-Pb ages and mineral type. American Mineralogist 42, 154-164. Kulp, J.L., Neumann, H., 1961. Some potassium-argon ages from the Norwegian basement. Annals of the New York Academy of Science 91, 469-475. Lacroix, A., 1889. Contribution à l'étude des gneiss à pyroxène et des roches à wernérites. Bulletin de la Société Française de Minéralogie 12, 83-350. Lamb, R.C., Smalley, P.C., Field, D., 1986. P-T conditions for the Arendal granulites, southern

Norway: Implications for the roles of P, T and CO 2 in deep crustal LILE depletion. Journal of Metamorphic Geology 4, 143-160. Lamb, W.M.,, Valley,ACCEPTED J.W., 1985. C-O-H fluid calculations and granulite genesis. In: Tobi A.C., Touret, J.L.R. (Eds.), The deep Proterozoic crust in the North Atlantic provinces. D. Reidel, Berlin, pp. 119-131. Larsen, K.E., 2008. Lindvikskollen-Kalstadgangen, Kragerø, en klassisk Norsk granittpegmatitt. Norsk Bergverks Museum Skrifter 38, 37-44. 44

ACCEPTED MANUSCRIPT Larsen, R.B., 2002. The distribution of rare-earth elements in K-feldspar as an indicator of petrogenetic processes in granitic pegmatites: Examples from two pegmatite fields in southern Norway. Canadian Mineralogist 40, 137-151. Lie, J.E., Husebye, E.S., Kinck, J.J., Larsen, F.R., 1993. Geophysical evidence of - sedimentary rocks in the northern Skagerrak. Geologiska Föreningens i Stockholm Förhandlingar 115, 181-188. Lie, J.E., Pedersen, T., Husebye, E.S., 1990. Observations of seismic reflectors in the lower lithosphere beneath the Skagerrak. Nature 346, 165-168. Lieftink, D.J., 1992. Geologie van het gebied rond Ubergsmoen, Bamble sector, zuid-Noorwegen. Unpublished MSc thesis, Utrecht University, Utrecht, 122 pp. Lieftink, D.J., Nijland, T.G., Maijer, C., 1993. Cl-rich scapolite from Ødegårdens Verk, Bamble, Norway. Norsk Geologisk Tidsskrift 73, 55-57. Lieftink, D.J., Nijland, T.G., Maijer, C., 1994. The behavior of rare-earth elements in high- temperature Cl-bearing aqueous fluids: Results from the Ødegårdens Verk natural laboratory. Canadian Mineralogist 32, 149-158. Lindsley, D.H., Frost, B.R,, Andersen, D.J., Davidson, P.M., 1990. Fe-Ti oxide-silicate equilibria: Assemblages with orthopyroxene. In: Spencer, R.J., Chou, I.M. (Eds.), Fluid-mineral interactions: A tribute to H.P. Eugster. The Geochemical Society Publication 2, 103-119. Losert, J., 1968. On the genesis of nodular sillimanitic rocks. Proceedings of the 23 rd International Geological Congress, Prague, 4, 109-122. MANUSCRIPT Macaudière, J., Touret, J., 1969. La fibrolitisation tectonique: Un méchanisme possible de formation des gneisses nodulaires du Bamble. Science de la Terre 14, 199-214. Maijer, C., 1990. Metamorphism in the Froland-Nelaug-Tvedestrand-Arendal-area, Bamble: Revaluation of the Sveconorwegian as a high grade event. Geonytt 17, 75. Michel-Lévy, M.A., Lacroix, A., 1888. Minéralogie sur nouveau gisement de dumortiérite. Comptes Rendus de l'Académie des Sciences à Paris 106, 1546-1548. Milne, K.P., Starmer, I.C., 1982. Extreme differentiation in the Proterozoic Gjerstad-Morkheia complex of south Norway. Contributions to Mineralogy and Petrology 79, 381-393. Moine, B., de la Roche, H., Touret, J., 1972. Structures géochimique et zonéographie métamorphique dans le Précambrien catazonal du sud de la Norvège. Science de la Terre 17, 131-164. Möller, C., 1998.ACCEPTED Decompressed eclogites in the Sveconorwegian (-Grenvillian) orogen of SW Sweden: Petrology and tectonic implications. Journal of Metamorphic Geology 16, 641-657. Moree, M., Maijer, C., Nijland, T.G., 1996. Post-Sveconorwegian basic dikes in the central part of the Bamble sector. Abstract, 7 th SNF excursion Numedal-Telemark-Bamble, 1 p.

45

ACCEPTED MANUSCRIPT Morshuis, J., 1991. Albietpegmatieten in Bamble (zuid-Noorwegen). Unpublished MSc thesis, Utrecht University, Utrecht, 137 pp. Morton, R.D., 1971. Geological investigations in the Bamble sector of the Fennoscandian shield, S. Norway. II Metasediments and metapyroclastics (?) within the Precambrian metamorphic suite of the S. Norwegian skaergaard. Norsk Geologisk Tidsskrift 51, 63-83. Morton, R.D., Batey, R. & O'Nions, R.K., 1970. Geological investigations in the Bamble sector of the Fennoscandian shield, S. Norway. I The geology of the eastern Bamble sector. Norges Geologiske Undersøkelse Bulletin 263, 72 pp. Mulch, A., Cosca, M.A., Andresen, A., Fiebig, J., 2005. Time scales of deformation and exhumation in extensional detacment systems determined by high-spatial resolution in situ UV-laser 40 Ar/ 39 Ar. Earth and Planetary Science Letters 233, 375-390. Müller, A., Ihlen, P.M., Kronz, A., 2008. Quartz chemistry in polygeneration Sveconorwegian pegmatites, Froland, Norway. European Journal of Mineralogy 20, 447-463. Munz, I.A., Wayne, D., Austrheim, H., 1994. Retrograde fluid infiltration in the high-grade Modum complex, south Norway: Evidence for age, source and REE mobility. Contributions to Mineralogy and Petrology 116, 32-46. Munz, I.A., Yardley, B.W.D., Banks, D.A., Wayne, D. 1995. Deep penetration of sedimentary fluids in basement rocks from southern Norway: Evidence from hydrocarbon and brine inclusions in quartz veins. Geochimica et Cosmochimica Acta 59, 239-254. Naik, M.S., 1975. Silver sulphosalts in galena from MANUSCRIPTEspeland, Norway. Norsk Geologisk Tidsskrift 55, 185-189. Naik, M.S., Griffin, W.L., Cabri, L.J., 1976. (Co,Ni)SbS phases and argentian boulangerite in galena from Espeland, Norway. Norsk Geologisk Tidsskrift 56, 449-454. Neumann, E.R., 1980. Petrogenesis of the Oslo region larvikites and associated rocks. Journal of Petrology 21, 499-531. Neumann, H., 1985. Norges mineraler. Norges Geologiske Undersøkelse Skrifer 68, 278 pp. Neumann, H., Jøsang, O., Morton, R.D., 1960. Mineral occurrences in southern Norway. Norges Geologiske Undersøkelse Bulletin 212o, 18 pp. Newton, R.C., Aranovich, L.Y., Hansen, E.C., Vandenheuvel, B.A., 1998. Hypersaline fluids in Precambrian deep-crustal metamorphism Precambrian Research 91, 41-63. NGU, 1971. AreomagnetiskACCEPTED kart over Norge 1:250,000 Arendal. NGU, Trondheim. Nijland, T.G., 1993. The Bamble amphibolite-granulite transition zone, Norway. Geologica Ultraiectina 101, 166 pp.

46

ACCEPTED MANUSCRIPT Nijland, T.G., de Haas, G.J.L.M., Andersen, T., 2000. Rifting-related (sub)alkaline magmatism in the Bamble sector (Norway) during the ‘Gothian’-Sveconorwegian interlude. Geologiska Föreningens i Stockholm Förhandlingar 122, 297-305. Nijland, T.G., Jansen, J.B.H., Maijer, C., 1993c. Halogen geochemistry of fluid during amphibolite- granulite metamorphism as indicated by apatite and hydrous silicates in basic rocks from the Bamble sector, south Norway. Lithos 30, 167-189. Nijland, T.G., Liauw, F., Visser, D., Maijer, C., Senior, A., 1993b. Metamorphic petrology of the Froland corundum-bearing rocks: The cooling and uplift history of the Bamble Sector, South Norway. Norges Geologiscke Undersøkelse Bulletin 424, 51-63. Nijland, T.G., Maijer, C., 1991. Primary sedimentary structures and infiltration metamorphism in the Håvatn-Bårlindåsen-Tellaugstjern area, Froland. Abstract, 2 nd SNF Excursion, Bamble, 3 pp. Nijland, T.G., Maijer, C., 1993. The regional amphibolite to granulite facies transition at Arendal, Norway: Evidence for a thermal dome. Neues Jahrbuch für Mineralogie, Abhandlungen 165, 191-221. Nijland, T.G., Maijer, C., Senior, A., Verschure, R.H., 1993a. Primary sedimentary structures and composition of the high-grade metamorphic Nidelva Quartzite Complex (Bamble, Norway), and the origin of nodular gneisses. Proceedings of the Koninklijke Nederlandse Akademie van Wetenschappen 96, 217-232. Nijland, T.G., Senior, A., 1991. Sveconorwegian granulite facies metamorphism of polyphase migmatites and basic dikes, south Norway. Journal MANUSCRIPT of Geology 99, 515-525. Nijland, T.G., Touret, J.L.R., 2000. Brine control of ‘apparent’ metamorphic grade: A case from the Ubergsmoen augen gneiss, south Norway. Volume of Abstracts, 24 th Nordic Geological Winter Meeting, Trondheim, 126-127. Nijland, T.G., Touret, J.L.R., 2001. Replacement of graphic pegmatite by graphic albite-actinolite- clinopyroxene intergrowths (Mjåvatn, southern Norway). European Journal of Mineralogy 13, 41-50. Nijland, T.G., Touret, J.L.R., 2013a. De historische mijnbouw in Zuid-Noorwegen (Aust-Agder en zuidoost Telemark). Deel 1. Grondboor en Hamer 67, 80-85. Nijland, T.G., Touret, J.L.R., 2013b. De historische mijnbouw in Zuid-Noorwegen (Aust-Agder en zuidoost Telemark). Deel 2. Grondboor en Hamer 67, 188-194. Nijland, T.G., Touret,ACCEPTED J.L.R., Visser, D., 1998b. Anomalously low temperature orthopyroxene, spinel and sapphirine occurrences in metasediments from the Bamble amphibolite to granulite facies transition zone (South Norway): Possible evidence for localized action of saline fluids. Journal of Geology 106, 575-590.

47

ACCEPTED MANUSCRIPT Nijland, T.G., Zwaan, J.C., Touret, L., 1998a. Topographical mineralogy of the Bamble sector, south Norway. Scripta Geologica 118, 46 pp. Oftedahl, C., 1963. Contributions to the mineralogy of Norway. No. 19. Red corundum of Froland at Arendal. Norsk Geologisk Tidsskrift 43, 431-443. Olesen, O., Smethurst, M.A., Torsvik, T.H., Bidstrup, T., 2004. Sveconorwegian igneous complexes beneath the Norwegian-Danish Basin. Tectonophysics 387, 105-130. Olmi, F., Viti, C., Bindi, L., Bonazzi, P. & Menchetti, S., 2000. Second occurrence of okayamalite,

Ca 2SiB 2O7: chemical and TEM characterization. American Mineralogist 85, 1508-1511. Padget, P., 1990. Tectonic and lithostratigraphic relationships in the Bamble sector, south Norway: An interpretative view. In: Gower, C.F., Rivers, T., Ryan, B. (Eds.), Mid-Proterozoic Laurentia-Baltica. Geological Association of Canada Special Publication 38, 307-316. Padget, P., 1993a. Gjerstad berggrunskart 1612 I M 1:50,000. Preliminary issue. NGU, Trondheim. Padget, P., 1993b. Risør berggrunskart 1712 III M 1:50,000. Preliminary issue. NGU, Trondheim. Padget, P., 1993c. berggrunskart 1512 II M 1:50,000. Preliminary issue. NGU, Trondheim. Padget, P., 1997. Nelaug berggrunnskart 1612 III M 1:50,000. Preliminary issue. NGU, Trondheim. Padget, P., 1999. Kragerø berggrunnskart 1712 IV M 1:50,000. Preliminary issue. NGU, Trondheim. Padget, P., 2004. Metasedimentary rocks, associated intrusions and tectonic features of the Precambrian in eastern Bamble, South Norway: An interpretative study. Norges Geologiske Undersøkelse Bulletin 442, 39-51. Padget, P., 2010. Metasedimentary rocks in the MANUSCRIPT Bamble terrane, Norway: Their lithological expression, possible correlations and depositional scenarios. Norges Geologiske Undersøkelse Report 2010-068, 26 pp. Padget, P., Brekke, H., 1996. Geologisk kart over Norge, berggrunnskart Arendal 1:250,000. NGU, Trondheim. Park, R.G., Åhäll, K.I., Boland, M.P., 1991. The Sveconorwegian shear-zone network of SW Sweden in relation to Mid-Proterozoic plate movements. Precambrian Research 49, 245-260. Pedersen, J., 1984. Bamble project 1984 – The E18 trend. Norges Geologiske Undersøkelse report 024/86.013D. Pedersen, S., Andersen, T., Konnerup-Madsen, J., Griffin, W.L., 2009. Recurrent Mesoproterozoic continental magmatism in south-central Norway. International Journal of Earth Science 98, 1151-1171.ACCEPTED Pedersen, T., Larsson, F.R., Lie, J.E., Husebye, E.S., 1990. Deep and ultradeep seismic studies in the Skagerrak (Scandinavia). In: Piner, B., Bois, C. (Eds.), The potential of deep seismic profiling for hydrocarbon exploration. Technip, Paris, pp. 345-351.

48

ACCEPTED MANUSCRIPT Pesonen, L.J., Torsvik, T.H., 1990. The Fennoscandian palaeomagnetic database: Compilation of palaeomagnetic directions and poles from the northern segment of the EGT. In: Freeman, R., Mueller, S. (Eds)., Proceedings of the 6 th workshop of the European Geotraverse (EGT) project: Data compilations and synoptic interpretations, 389-399. Petersen, I.E., 1979. En geologisk undersøkelse av området rundt Nystein, Vissestad og Hansås nikkelgruver, Bamble i Telemark. Unpublished MSc thesis, University of Oslo, Oslo, 125 pp. Petersen, J.S., Koed, J.O., Sundblad, K., 1995. Stratiform, sediment-hosted Zn-Pb mineralization at Espeland in the Proterozoic Bamble shear belt, southern Norway. In: Pasava, Kribek, Zak, (Eds.), Mineral deposits: From their origin to their environmental impacts. Balkema, Leiden, pp. 307-311. Piper, J.D.A., 2009. Uplift and cooling magnetisation record in the Bamble and Telemark terranes, Sveconorwegian orogenic belt, SE Norway, and the Grenville-Sveconorwegian loop. Tectonophysics 463, 185-207. Ploegsma, M., 1990. Fluid inclusions in the Hovdefjell-Vegårshei augengneiss. In: Ploegsma, M., Shear zones in the West Uusimaa area, SW Finland. Unpublished PhD thesis, Free University Amsterdam, Amsterdam, 91-110. Pontoppidan, E., 1752. Det første forsøg paa Norges naturlige historie. Kopenhagen, 338 pp. Ramberg, I.B., 1976. Gravimetric interpretation of the and associated igneous rocks. Norges Geologiske Undersøkelse Bulletin 325, 194. Ramberg, I.B., Smithson, S.B., 1975. Geophysical MANUSCRIPT interpretation of crustal structure along the southeasteren coast of Norway and Skagerrak. Geological Society of America Bulletin 86, 769-774. Robyn, T.L., Pedersen, J., Geyti, A., 1985. Reconnaissance study of and mineralization in the Bamble region, southern Norway. Norges Geologiske Undersøkelse report 88-131, 42 pp. Sack, R.O., Ghiorso, M.S., 1991a. An internally consistent model for the thermodynamic properties of Fe-Mg-titanomagnetite-aluminate spinels. Contributions to Mineralogy and Petrology 106, 474-505. Sack, R.O., Ghiorso, M.S., 1991b. Chromian spinels as petrogenetic indicators: Thermodynamics and a petrologic application. American Mineralogist 76, 827-847. Samson, S.D., Patchett,ACCEPTED P.J., 1991. The Canadian Cordillera as a modern analogue of Proterozoic crustal growth. Australian Journal of Earth Science 38, 595-611. Sanders, I.S., 1989. Phase relations and P-T conditions for -facies rocks at Glenelg, north-west Scotland. In: Daly, J.S., Cliff, R.A., Yardley, B.W.D. (Eds.), Evolution of metamorphic belts. Geological Society Special Publication 43, 513-517. 49

ACCEPTED MANUSCRIPT Sanders, I.S., Van Calsteren, P.W.C., Hawkesworth, C.J., 1984. A Grenville Sm-Nd age for the Glenelg eclogite in north-west Scotland. Nature 312, 439-440. Sandstad, J.S., Bjerkgård, T., Boyd, R., Ihlen, P., Korneliussen A., Nilsson, L.P., Often, M., Eilu, P., Hallberg, A. 2012. Metallogenic areas in Norway. In: Eilu, P. (Ed.), Metallogeny of Fennoscania. Geological Survey of Finland Special Paper 53, 35-138. Scheerer, T., 1845. Geognostisk-mineralogiske skizzer, samelede paa en Reise i Sommeren 1842. Nyt Magasine for Naturvidenskaberne 4, 126-164. Scherer, E., Mücker, C., Mezger, K., 2001. Calibration of the lutetium-hafnium clock. Science 293, 683-687. Serdyuchenko, D.P., 1968. Metamorphosed weathering crusts of the Precambrian, their metallogenic and petrographic features. Proceedings of the 23 rd International Geological Congress, Prague 4, 37-42.

Shen, A.H., Keppler, H., 1997. Direct observation of complete miscibility in the albite-H2O system. Nature 385, 710-712. Sjögren, H., 1883. Om de norska apatitförekomsterna och om sannolikheten att anträffa apatit i Sverige. Geologiska Föreningens i Stockholm Förhandlingar 6, 447-498. Slagstad, T., Roberts, N.M.W., Marker, M., Røhr, T.S., Schiellerup, H., 2013. A non-collisional, accretionary Sveconorwegian orogen. Terra Nova 25, 30-37. Smalley, P.C., Field, D., Lamb, R.C.m Clough, P.W.L., 1983. Rare-earth, Th, Hf, Ta and large-ion lithophile element variations in metabasites MANUSCRIPT from the Proterozoic amphibolite-granulite transition zone at Arendal, south Norway. Earth and Planetary Science Letters 63, 446-458. Smithson, S.B., 1963. Granite studies. I A gravity investigation of two Precambrian granites in S. Norway. Norges Geologiscke Undersökelse 214, 53-140. Solås, E.M., 1990. Minner fra de gamle feltspatgruvene i Tvedestrand-området. In: Sørlandets Geologiforening 20 år, pp. 52-56. Sørensen, B.E., 2007. Metamorphic refinement of quartz under influence of fluids during exhumation with reference to the metamorphic / metasomatic evolution observed in amphibolites. PhD thesis, NTNU, Trondheim, 214 pp. Starmer, I.C., 1969a. The migmatite complex of the Risør area, Aust-Agder, Norway. Norsk Geologisk Tidsskrift 49, 33-56. Starmer, I.C., 1969b.ACCEPTED Basic plutonic intrusions of the Risør-Söndeled area, south Norway: The original lithologies and their metamorphism. Norsk Geologisk Tidsskrift 49, 403-431. Starmer, I.C., 1972a. The Sveconorwegian regeneration and earlier orogenic events in the Bamble series, south Norway. Norges Geologiske Undersøkelse Bulletin 277, 37-52.

50

ACCEPTED MANUSCRIPT Starmer, I.C., 1972b. Polyphase metamorphism in the granulite facies terrain of the Risør area, south Norway. Norsk Geologisk Tidsskrift 52, 43-71. Starmer, I.C., 1976. The early major structure and petrology of rocks in the Bamble series, Söndeled - Sandnesfjord, Aust-Agder. Norges Geologiske Undersøkelse Bulletin 327, 77-97. Starmer, I.C., 1977. The geology and evolution of the southwestern of the Kongsberg series. Norsk Geologisk Tidsskrift 57, 1-22. Starmer, I.C., 1978. The major tectonics of the Bamble series between Söndeledfjord and Kilsfjord (Aust-Agder and Telemark). Norges Geologiske Undersøkelse Bulletin 338, 37-58. Starmer, I.C., 1985. The evolution of the South Norwegian Proterozoic as revealed by major and mega-tectonics of the Kongsberg and Bamble sectors. In: Tobi, A.C., Touret, J.L.R. (Eds.), The deep Proterozoic crust in the North Atlantic provinces. D. Reidel, Dordrecht, pp. 259- 290. Starmer, I.C., 1987. Geological map of the Bamble sector, south Norway (1:100,000). In: Maijer, C., Padget, P. (Eds.), The geology of southernmost Norway. Norges Geologiske Undersøkelse Special Publication 1. Starmer, I.C., 1990. Mid-Proterozoic evolution of the Kongsberg-Bamble belt and adjacent areas, southern Norway. In: Gower, C.F., Rivers, T., Ryan, B. (Eds.), Mid-Proterozoic Laurentia- Baltica. Geological Association of Canada Special Paper 38, 279-305. Starmer, I.C., 1991. The Proterozoic evolution of the Bamble sector shear belt, southern Norway: Correlations across southern Scandinavia andMANUSCRIPT the Grenvillian controversy. Precambrian Research 49, 107-139. Starmer, I.C., 1993. The Sveconorwegian orogeny in southern Norway, relative to deep crustal structures and events in the North Atlantic Proterozoic . Norsk Geologisk Tidsskrift 73, 109-132. Starmer, I.C., 1996. Accretion, rifting, rotation, and collision in the North Atlantic supercontinent, 1700-950 Ma. In: Brewer, T., Atkin, B.P. (Eds.), Precambrian crustal evolution in the North Atlantic region. Geological Society Special Publication 112, 226-252. Storetvedt, K.M., 1968. The permanent magnetism of some basic intrusions in the Kragerø archipelago, S. Norway, and its geological implications. Norsk Geologisk Tidsskrift 48, 153- Sundvoll, B., Larsen, B.T., 1993. Rb-Sr and Sm-Nd relationships in dyke and sill intrusions in the Oslo rift andACCEPTED related areas. Norges Geologiske Undersøkelse Bulletin 425:25-41. ter Haar, J.H., 1988. De sub-solidus geschiedenis van actinoliet uit een actinoliet-amfibool (Alb.-Act.- Qtz.) gesteente van Bamble, SE-Noorwegen. Unpublished MSc thesis, Utrecht University, Utrecht, 18 pp. Tørdal, K., 1990. Espeland sølvgruve. In: Sørlandets Geologiforening 20 år, pp. 15-20. 51

ACCEPTED MANUSCRIPT Törnebohm, A.E., 1877. Om Sveriges viktigare diabas-och gabbroarter. Svensk Vetenskaps-Akademi Handlingar B14. Torske, T., 1977. The south Norwegian Precambrian region - A Proterozoic cordilleran type orogenic segment. Norsk Geologisk Tidsskrift 57, 97-120. Torske, T., 1985. Terrane displacement and Sveconorwegian rotation of the Baltic shield: A working hypothesis. In: Tobi, A.C., Touret, J.L.R. (Eds.), The deep Proterozoic crust in the North Atlantic provinces. D. Reidel, Dordrecht, pp. 333-343. Touret, J.L.R., 1966. Sur l'origine supracrustale des gneiss rubanés de Selås (formation de Bamble, Norvège méridionale). Comptes Rendus de l'Académie des Sciences à Paris 262, 9-12. Touret, J.L.R., 1967a. Les gneiss oeillés de la région de Vegårshei - Gjerstad (Norvège méridionale). I Étude pétrographique. Norsk Geologisk Tidsskrift 47, 131-148. Touret, J.L.R., 1967b. Sur la présence de mangérite à fayalite au NW de Gjerstad. Comptes Rendus de l'Académie des Sciences à Paris 263, 252-253. Touret, J.L.R., 1968. The Precambrian metamorphic rocks around the Lake Vegår (Aust-Agder, southern Norway). Norges Geologiske Undersøkelse Bulletin 257, 45 pp. Touret, J.L.R., 1969. Le socle Précambrien de la Norvège méridionale (Région de Vegårshei- Gjerstad). Unpublished PhD thesis, University of Nancy, CNRS no.AO 2902, 316 pp. Touret, J.L.R., 1970. Le faciès granulite, métamorphisme en milieu carbonique. Comptes Rendus de l'Académie des Sciences à Paris 271D, 2228-2231. Touret, J.L.R., 1971a. Le faciès granulite en Norvège MANUSCRIPTméridionale. II Les inclusions fluides. Lithos 4, 423-436. Touret, J.L.R., 1971b. Le faciès granulite en Norvège méridionale. I Les associations minéralogiques. Lithos 4, 239-249.

Touret, J.L.R., 1971c. Controle du faciès granulite dans le Bamble par le CO 2 de la phase fluide. Comptes Rendus Sommaire de la Société Française de Géologie 3, 143-146. Touret, J.L.R., 1972. Les faciès granulite en Norvège méridionale et les inclusions fluides: Paragneiss et quartzites. Science de la Terre 17, 179-193. Touret, J.L.R., 1974. Faciès granulite et fluides carboniques. In: Bellière, J., Duchesne, J.C. (Eds.), Géologie des domaines cristallins. Société belge de Géologie, Liège, pp. 267-287. Touret, J.L.R., 1979. Les roches à tourmaline-cordiérite-disthène de Bjordammen (Norvège méridionale)ACCEPTED sont-elles liées a d'anciennes évaporites ? Science de la Terre 23, 95-97. Touret, J.L.R., 1985. Fluid regime in southern Norway: the record of fluid inclusions. In: Tobi, A.C., Touret, J.L.R. (Eds.), The deep Proterozoic crust in the North Atlantic provinces. D. Reidel, Dordrecht, pp. 517-549.

52

ACCEPTED MANUSCRIPT Touret, J.L.R. & Huizenga, J.M., 2011. Fluids in granulites. In: van Reenen, D.D., Kramers, J.D., McCourt, S., Perchuk, L.L. (Eds.), Origin and evolution of Precambrian high-grade gneiss terranes, with special emphasis on the Limpopo complex of southern Africa. Geological Society of America Memoir 207, 25-38. Touret, J.L.R. & Huizenga, J.M., 2012. Fluid-assisted granulite metamorphism: A continental journey. Gondwana Research 21, 224-235. Touret, J.L.R. & Nijland, T.G. 2012. Prograde, peak and retrograde metamorphic fluids and associated metasomatism in upper amphibolite to granulite facies transition zones. In: Harlov, D.E., Austrheim H. (Eds.), Metasomatism and the chemical transformation of rocks. Springer, Berlin & Heidelberg, pp. 411-469. Touret, J.L.R., Olsen, S.N., 1985. Fluid inclusions in migmatites. In: Ashworth, J.R. (Ed.), Migmatites, Blackie, Glasgow, pp. 265-288. Umhoefer, P.J., 1987. Northward translation of 'Baja British Colombia' along the Late to margin of western North America. Tectonics 6, 377-394.

van den Kerkhof, A.M., Touret, J.L.R., Kreulen, R., 1994. Juvenile CO 2 in enderbites of Tromøy near Arendal, southern Norway: A fluid inclusion and stable isotope study. Journal of Metamorphic Geology 12, 301-310. van Linschoten, P., 1988. Veldwerkverslag Jomasknuten '86 (Bamble). Unpublished MSc thesis, Utrecht University, Utrecht, 72 pp. Verheul, M.M., 1992. On the PTt-evolution of the UbMANUSCRIPTergsmoen granitic/charnockitic augen gneiss (Bamble sector, S.E. Norway): Geothermobarometry of hornblende-bearing assemblages. Unpublished MSc thesis, Utrecht University, Utrecht, 72 pp. Vevstad, A., 2008. Egelands jernverk - jernverket i skogbygda. Gjerstad Historielag, Gjerstad, 224 pp. Visser, D., 1992. Gedrite breakdown in a gedrite-oligoclase rock, Blengsvatn, Bamble sector, South Norway. Neues Jahrbuch für Mineralogie, Monatshefte, 513-527. Visser, D., 1993. The metamorphic evolution of the Bamble sector, south Norway: A paragenetic and mineral chemical study of cordierite-orthoamphibole-bearing rocks with special reference to borosilicate-bearing mineral assemblages. Geologica Ultraiectina 103, 159 pp. Visser, D., 1995. Kornerupine in a biotite-spinel-garnet schist near Böylefossbru, Bamble sector, south Norway: Implications for early and late metamorphic fluid activity. Neues Jahrbuch für Mineralogie,ACCEPTED Abhandlungen 169, 1-34. Visser, D., Kloprogge, J.T., Maijer, C., 1994. An infrared spectroscopic (IR) and light element (Li, Be, Na) study of cordierites from the Bamble sector, south Norway. Lithos 32, 95-107. Visser, D., Maijer, C., Senior, A., 1990. Retrograde talc-kyanite-quartz assemblage from Bjordammen, Bamble sector, south Norway. Geonytt 17, 119. 53

ACCEPTED MANUSCRIPT Visser, D., Nijland, T.G., Lieftink, D.J., Maijer, C., 1998. The occurrence of preiswerkite in a tourmaline-biotite-scapolite rock (Blengsvatn, Bamble, Norway). American Mineralogist 84, 977-982. Visser, D., Senior, A., 1990. Aluminous reaction textures in orthoamphibole bearing rocks: The P-T path of the high grade Proterozoic of the Bamble sector, south Norway. Journal of Metamorphic Geology 8, 231-246. Visser, D., Senior, A., 1991. Mg-rich dumortierite in cordierite-orthoamphibole-bearing rocks from the high-grade Bamble sector, south Norway. Mineralogical Magazine 55, 563-577. Vogels, R.J.M.J., 1991. Geothermometry on two high-grade mineral assemblages from the charnockitic Ubergsmoen augen gneiss. Unpublished MSc thesis, Utrecht University, Utrecht 69 pp. Vogt, J.H.L., 1893. Bildung von Erzlagerstätten durch Differentiationsprocesse in basischen Eruptivmagma II. ´Sulphidische´ Ausscheidungen von Nickelsulphiderzen in basischen Eruptivgesteinen. Zeitschrift für praktische Geologie 1, 125-143. Vogt, J.H.L., 1908. De gamle Norske jernverk. Norges Geologiske Undersøkelse Bulletin 46, 83 pp. Vogt, J.H.L., 1910. Norges jernmalmforekomster. Norges Geologiske Undersøkelse Bulletin 51, 225 pp. von Buch, L., 1813. Travels through Norway and Lapland in the years 1806, 1807, and 1808. George Goldie, Edingburgh / John Cumming, Dublin. Weibye, P.C., 1847. Bemerkungen über die geognostis MANUSCRIPTchen Verhöltnisse der Küste von Arendal bis Laurvig im südlichen Norwegen. Neues Jahrbuch für Mineralogie, Geologie, Geognosie und Petrefaktenkunde, 697-709. Wickham, M.S., Oxburgh, E.R., 1985. Continental as a setting for regional metamorphism. Nature 318, 330-333.

ACCEPTED

54

ACCEPTED MANUSCRIPT

Table captions

Table 1. Age constraints on magmatic activity in the Bamble sector (Rb-Sr and K-Ar ages excluded).

Table 2. Mineral ages constraining high grade metamorphism in four areas in the Bamble sector, viz. the Tromøy-Arendal-Tvedestrand area, i.e. the granulite facies part of the transition zone, the Froland area, i.e. in the middle of the amphibolite facies part of the transition zone, the Nelaug area, i.e. the amphibolite facies stretch along the Porsgrunn-Kristiansand shear zone separating teh Bamble sector from the Telemark block, and, for comparison, the Risør-Kragerø amphibolite facies area in the northeast. Data from: Kullerud and Machado (1991), Kullerud and Dahlgren (1993), Cosca et al. (1998), Knudsen and Andersen (1999), De Haas et al. (2002a), Graham et al. (2005), Bingen et al. (2008a).

MANUSCRIPT

ACCEPTED

55

ACCEPTED MANUSCRIPT

Figure 1 Geological sketch map of the central part of the Bamble sector, South Norway, with isograds and major intrusions (Modified after Padget and Brecke, 1996; Nijland et al., 1998a). Isograds: +Opx1 – orthopyroxene-in in basic rocks, +Crd – cordierite-in, +Opx2 – orthopyroxene-in in felsic rocks, -All and -Ttn – allanite-out and titanite-out isograds (all lithologies). Lithological units: 1 – Gjerstad augen gneiss and Morkheia monzonite suite, 2 – Hovdefjell-Vegårshei augen gneiss, 3 – Ubergsmoen augen gneiss, 4 – Gjeving augen gneiss, 5 – Vimme amphibolite, 6 – Jomåsknutene gabbro, 7 – Blengsvatn gabbro, 8 – Nidelva quartzite complex, 9 – Herefoss granite, 10 – Grimstad granite, 11 – Coastal quartzite complex.

Figure 2 Descriptive division of the Southwest Scandinavian Domain (Berthelsen 1980, Gaál and Gorbatschev, 1987). The division does not imply any genetic connotations, as discussed in paragraph 7.

Figure 3 Deep structure of the Bamble sector and its relationship to the Telemark block and Skagerrak graben (Modified after Lie et al., 1993).

Figure 4 Fossil dessication cracks in the Nidelva QuartziteMANUSCRIPT Complex at Tellaugstjern (Froland area).

Figure 5 Sillimanite nodular gneiss (Oksevatn).

Figure 6 Metamorphosed but otherwise well preserved modally graded layering in the small Kverve gabbro (Froland area).

Figure 7 SEM microphotograph of subsolidus coronitic microstructure in the Vestre Dale gabbro with an inner shell of columnar orthopyroxene, and an original outer shell of orthopyroxene + spinel symplectite, partially replaced by amphibole (After de Haas et al., 2002b). ACCEPTED

56

ACCEPTED MANUSCRIPT

Figure 8 Well developed, folded leucosomes in granodioritic to tonalitic gneiss truncated by metamorphosed basic dykes. As the dykes themselves have a contact metamorphic granulite-facies imprint by the Early Sveconorwegian Ubergsmoen augen gneiss, the truncated leucosomes provide evidence for older, pre-Sveconorwegian high-grade metamorphism (Nijland and Senior, 1991).

Figure 9 Orthopyroxene-bearing leucosomes in mafic gneiss at Hove on the island of Tromøy.

Figure 10 Dehydration band between amphibolite and tonalitic gneiss, Tromøy.

Figure 11 BSE image of K-feldspar microveins at the contact between plagioclase and quartz (Harlov et al., 1998).

Figure 12 Summary of prograde and retrograde P-T paths for the central part of the Bamble area. In black, the P-T path as recorded by cordierite-orthoamphibole rocks in the amphibolite facies Froland area (Visser and Senior, 1990); in red, the P-T path as recorded by metapelites in the granulite facies Hisøy-Torungen area (Knudsen, 1996); in green, the cooling and uplift path deduced from the Froland corundum-bearing rocks (Nijland et al., 1993b). Note that modelling by Sørensen (2007) shifts temperatures of the latter by about hundred degrees lower.MANUSCRIPT

Figure 13 Microphotographs of orthopyroxene + K-feldspar rims between biotite + quartz and sapphirine + albite symplectites, both in response to brine-controlled formation of a 'granulite facies island' at Hauglandsvatn, well in the amphibolite facies part of the transition zone (Fig. 1) (Nijland et al., 1998a).

Figure 14 Examples of titaniferous magnetite grains from the granulite-facies rocks showing ilmenite (Ilm) in varying stages of exsolution in the magnetite host (Mt) including a trellis pattern of thin lamellae (a) and multiple horizontal, linear thin lamellae (b). The bar in each figure is 100 m. Figure 1(c) shows an ilmenite grain with hematite (Hm) exsolution lamellae in ilmenite (Ilm). The hematite lamellae contain ACCEPTED secondary ilmenite exsolution lamellae. The bar is 200 m. Fig. 14d shows a pyrrhotite grain with a chalcopyrite exsolution lamella. Both the oxide and sulphide grains are surrounded by plagioclase and quartz. The bar is 100 m.

57

ACCEPTED MANUSCRIPT Figure 15 Plot of titaniferous magnetite-ilmenite temperatures and oxygen fugacities estimated for samples from Tromøy and Hisøy (a) and the mainland along the coast (b) using the titaniferous magnetite-ilmenite thermometer/oxygen barometer of Ghiorso and Sack (1991a,b). The isopleth representing the mean molar fraction of ulvospinel in the samples (XUsp = 0.235) (a) and (XUsp = 0.238) (b) is shown for reference. The quartz-fayalite-magnetite oxygen buffer (QFM) (Berman, 1988) and the upper stability limit for graphite (Lamb and Valley, 1985) are also plotted. Figure 15c shows a plot of magnetite-hematite (white circles) and ferrosilite-magnetite-quartz (black circles) oxygen fugacities connected by tie lines for samples from the mainland (Harlov, 2000b). Also plotted for comparison are magnetite-hematite (white squares) and ferrosilite-magnetite-quartz (dark squares) oxygen fugacities from titaniferous magnetite-ilmenite-orthopyroxene samples from Tromøy and Hisøy (Harlov, 1992).

Figure 16 Replacement of quartz in graphic intergrowths by actinolite + clinopyroxene, with simultaneous albitization of feldspars (Nijland and Touret, 2001).

MANUSCRIPT

ACCEPTED

58

ACCEPTED MANUSCRIPT Age (Ma) Intrusion Method Reference 1601 ± 11 Gjerstadvatn tonalite U-Pb zircon (concordant) Andersen et al., 2004 1592 ± 13 Justøy tonalite U-Pb zircon (concordant) Andersen et al., 2004 (Hornborgsund) 1591 ± 14 Justøy tonalite (Justøya) U-Pb zircon (concordant) Andersen et al., 2004 1584 +17/-14 Arendal charnockitic gneiss U-Pb zircon A. Råheim unpubl.data 1542 ± 8 Flosta gneiss U-Pb zircon Kullerud and Machado, 1991 1524 ± 11 Jomås granodiorite U-Pb zircon (concordant) Andersen et al., 2004 1479 ± 22 Nelaug gneiss U-Pb zircon De Haas et al., 2002a 1472 ± 69 Blengsvatn basic dykes Sm-Nd whole rock Nijland et al., 2000 1420 ± 18 Flosta charnockitig gneiss U-Pb zircon (concordant) Andersen et al., 2004 1235 ± 13 Jomåsknutene gabbro U-Pb zircon Graham et al., 2005 1207 ± 14 Vestre Dale gabbro Sm-Nd WR+Pl+Opx De Haas et al., 2002b 1205 ± 9 Drivheia gneiss U-Pb zircon Heaman and Smalley, 1994 1198 ± 8 Tromøy mafic gneiss U-Pb zircon (concordant) Knudsen and Andersen, 1999 1187 ± 2 Gjerstad augen gneiss U-Pb zircon Heaman and Smalley, 1994 1183 ± 8 Hisøy tonalite U-Pb zircon (concordant) Andersen et al., 2004 1175 ± 37 Kragerø hydrothermal Sm-Nd whole rock Dahlgren et al., 1993 dolomite 1168 ± 2 Hovdefjell-Vegårshei augen U-Pb zircon A. Råheim & T.E. Krogh gneiss unpubl. data in Field et al., 1985 1152 ± 2 Gjeving augen gneiss U-Pb zircon Kullerud and Machado, 1991 1134 +7/-2 Morkheia monzonite U-Pb zircon Heaman and Smalley, 1994 1094 ± 11 Tvedestrand pegmatite U-Pb xenotime Scherer et al., 2001 1060 +8/-6 Gloserheia pegmatite U-Pb euxenite Baadsgaard et al., 1984 989 ± 8 Grimstad granite U-Pb zircon Kullerud and Machado, 1991 926 ± 8 Herefoss granite Pb-PbMANUSCRIPT minerals Andersen, 1997

ACCEPTED ACCEPTED MANUSCRIPT Mineral/method Tromøy Froland Nelaug Risør Arendal Kragerø Tvedestrand Titanite, Pb-Pb 1103-1141 994, 1091 1104-1107 Allanite, Pb-Pb 1108-1128 Monazite, U-Pb 1135-1145 1107-1134 1127 Zircon, U-Pb (incl. lower intercepts & 1105-1125 1097 overgrowths) WR + minerals, Sm-Nd 1073-1107 1201

MANUSCRIPT

ACCEPTED ACCEPTED MANUSCRIPT

MANUSCRIPT

ACCEPTED ACCEPTED MANUSCRIPT

MANUSCRIPT

ACCEPTED ACCEPTED MANUSCRIPT

MANUSCRIPT

ACCEPTED ACCEPTED MANUSCRIPT

MANUSCRIPT

ACCEPTED ACCEPTED MANUSCRIPT

MANUSCRIPT

ACCEPTED ACCEPTED MANUSCRIPT

MANUSCRIPT

ACCEPTED ACCEPTED MANUSCRIPT

MANUSCRIPT

ACCEPTED ACCEPTED MANUSCRIPT

MANUSCRIPT

ACCEPTED ACCEPTED MANUSCRIPT

MANUSCRIPT

ACCEPTED ACCEPTED MANUSCRIPT

MANUSCRIPT

ACCEPTED ACCEPTED MANUSCRIPT

MANUSCRIPT

ACCEPTED ACCEPTED MANUSCRIPT

MANUSCRIPT

ACCEPTED ACCEPTED MANUSCRIPT

MANUSCRIPT

ACCEPTED ACCEPTED MANUSCRIPT

MANUSCRIPT

ACCEPTED ACCEPTED MANUSCRIPT

MANUSCRIPT

ACCEPTED ACCEPTED MANUSCRIPT

MANUSCRIPT

ACCEPTED ACCEPTED MANUSCRIPT

MANUSCRIPT

ACCEPTED ACCEPTED MANUSCRIPT Review of the Bamble sector, South Norway – Sedimentary petrology – Amphibolite-granulite transition – Role of fluids – Oxide mineralogy – Albitization & scapolitization – Geotectonic position

MANUSCRIPT

ACCEPTED Geological bibliography of the Bamble Sector, South Norway ACCEPTED MANUSCRIPT Electronic supplement to: Nijland, T.G., Harlov, D. and Andersen, T., 2014. The Bamble sector, South Norway: A petrologic review. Geoscience Frontiers.

This supplement comprises a geological bibliography of the Bamble Sector, southern Norway, including all earth scientific disciplines, as well as unpublished theses, unpbulished reports by Norges Geologisk Undersøkelse or mining companies have also been included, as far as known to the authors. In case of publications not directly dealing with the Bamble sector, but using mineral speciments from the area, these are indicated in italics after the reference. anonymous, undated. Froland copper property, Norway. Norges Geologiske Undersøkelse Bergarkivet fagrapport BA 4156, 5 pp. anonymous, 1978. Mineralogisch-petrografische Exkursion nach Schweden und Norwegen. Unpublished excursion guide, University of Kiel, Kiel, 105 pp. Aggerholm, W., 1979. En geologisk undersøgelse av nogle vanadiumholdige jern-titan forekomster i Bamble-Formationen, Syd-Norge. Unpublished thesis, University of Århus, Århus, 138 pp. Åhäll, K.I., Cornell, D.H., Armstrong, R., 1998. Ion probe zircon dating of metasedimentary units across the Skagerrak: New constraints for early Mesoproterozoic growth of the Baltic shield. Precambrian Research 87, 117-134. Alberti, A.A., Comin Chiaramonti, P., 1974. Hypersolvus granitic bodies in the Tromöy migmatites (Arendal district - southern Norway). BolletinoMANUSCRIPT della Società Geologica Italiana 93, 901-911. Alberti, A.A., Comin Chiaramonti, P., 1974. The arendalites of Tromöy (Arendal district, south Norway). Memorie della Società Geologica Italiana 13, 655-677. Alberti, A.A., Comin Chiaramonti, P., 1976. The metamorphic evolution of Tromöy (Arendal area - south Norway). Tschermaks Mitteilungen zu Petrographie und Mineralogie 23, 205-220. Alirezaei, S., 1999. Geochemical investigation of the lower crustal rocks in Bamble shear belt, southern Norway: Implications for the source of gold in lode gold deposits. Unpublished PhD thesis, University of Ottawa, Ottawa, 440 pp. Alirezaei, S., Cameron, E.M., 2001. Variations of sulfur isotopes in metamorphic rocks from Bamble sector, southern Norway: A laser probe study. Chemical Geology 181, 23-45. Alirezaei, S., Cameron, E.M., 2002. Mass balance during gabbro-amphibolite transition, Bamble sector, Norway:ACCEPTED Implications for petrogenesis and tectonic setting of the gabbros. Lithos 60, 21-45. Al Khatib, M., 1971. Les fluides dans les quartzites du Bamble. Report DEA, University of Nancy, Nancy. Al Khatib, M., Touret, J., 1973. Fluides carboniques dans les roches du faciès granulite du sud de la Norvège. Utilisation semi-quantitative de la surplatine à écrasement. Bulletin de la Société Géologique de France 15, 321-325.

1

Alnæs, L., 1987. Undersøkelser av kvartsitt i Aust-Agder fylke. Norges Geologiske Undersøkelse Report 87-013, 51 pp. ACCEPTED MANUSCRIPT Aminoff, G., 1916. Calcitgrupp från Garta (Arendal). Geologiska Föreningens i Stockholm Förhandlingar 38, 201-206. Åmli, R., 1975. Mineralogy and rare earth geochemistry of apatite and xenotime from the Gloserheia granite pegmatite, Froland, southern Norway. American Mineralogist 60, 607-620. Åmli, R., 1977. Internal structure and mineralogy of the Gloserheia granite pegmatite, Froland, southern Norway. Norsk Geologisk Tidsskrift 57, 243-262. Andersen, O., 1926. Feltspat I. Norges Geologiske Undersøkelse 128a, 142 pp. Andersen, O., 1928. The genesis of some types of feldspar from granite pegmatites. Norsk Geologisk Tidsskrift 10, 116-207. Andersen, O., 1931. Feltspat II. Norges Geologiske Undersøkelse 128b, 109 pp. Andersen, T., 1992. A progress report on whole-rock Pb isotope studies in the Bamble sector, S. Norway. Program with Abstracts, Symposium ‘The geology of the Sveconorwegian (Gothian) provinces of the Baltic Shield’, Utrecht, 7-8. Andersen, T., 1993. Radiogenic Pb in Precambrian supracrustal gneisses from south Norway: Timing of U-Pb differentiation and petrogenetic implications. Geonytt 20, 14-15. Andersen, T., 1993. Pre-Sveconorwegian crustal evolution in southern Norway. Abstract, IGCP 304 meeting, Lund, 1 p. Andersen, T., 1996. Granites and crustal evolution. In: Eurogranites 1996. South Norway Stavanger - Oslo, 85-92. Andersen, T., 1996. Syntectonic Sveconorwegian granMANUSCRIPTites in the Bamble sector. In: Eurogranites 1996. South Norway Stavanger-Oslo, 95-96. Andersen, T., 1996. The Ettedal mine: A deformed Sveconorwegian hydrothermal deposit with uncommon lead isotope systematics ? Abstract, 7 th SNF Excursion Numedal-Telemark- Bamble, 1 p. Andersen, T., 1997. The composition and evolution of the lower crust in the southwestern part of the Baltic shield: Information from post-tectonic granites. Geonytt 24, 20. Andersen, T., 1997. Radiogenic isotope systematics of the Herefoss granite, south Norway: An indicator of Sveconorwegian (Grenvillian) crustal evolution in the Baltic shield. Chemical Geology 135, 139-158. Andersen, T., 1997. Sveconorwegian (Grenvillian) rejuvenation of the continental crust in S. Norway. Norges GeologiskeACCEPTED Underøkelse Report 97-131 (abstract, 2 pp). Andersen, T., 2005. Terrane analysis, regional nomenclature and crustal evolution in the Southwest Scandinavian Domain of the Fennoscandian Shield. Geologiska Föreningens i Stockholm Förhandlingar 127, 159-168. Andersen, T., Andresen, A., Sylvester, A.G., 2001. Nature and distribution of deep crustal reservoirs in the southwestern part of the Baltic Shield: Evidence from Nd, Sr and Pb isotope data on late Sveconorwegian granites. Journal of the Geological Society, London 158, 253-267.

2

Andersen, T., Andresen, A., Sylvester, A.G., 2002. Timing of late- to post-tectonic Sveconorwegian granitic magmatism in southACCEPTED Norway. Norges MANUSCRIPT Geologiske Undersøkelse 440, 5-18. Andersen, T., Griffin, W.L., Jackson, S.E., Knudsen, T.L.,2001. Timing of mid-Proterozoic calcalkaline magmatism across the Oslo Rift: Implications for the evolution of the southwestern margin of the Baltic Shield. Geonytt (1), 25-26. Andersen, T., Griffin, W.L., Jackson, S.E., Knudsen, T.L., Pearson, N.L., 2004. Mid-Proterozoic magmatic arc evolution at the southwest margins of the Baltic shield. Lithos 73, 289-318. Andersen, T., Griffin, W.L., Pearson, N.J., 2002. Crustal evolution in the SW part of the Baltic Shield: The Hf isotope evidence. Journal of Petrology 43, 1725-1747. Andersen, T., Hagelia, P., Whitehouse, M.J., 1994. Precambrian multi-stage crustal evolution in the Bamble sector of S. Norway: Pb isotopic evidence from a Sveconorwegian deep-seated granitic intrusion. Chemical Geology 116, 327-343. Andersen, T., Knudsen, T.L., 1996. Precambrian crustal components in south Norway. Volume of Abstracts, 22 nd Nordic Geological Winter Meeting, Turku-Åbo, 12. Andersen, T., Maijer, C., Verschure, R.H., 1995. Metamorphism, provenance ages and source characteristics of Precambrian clastic sediments in the Bamble sector, south Norway: An Ar, Sr, Nd and Pb isotope study. Petrology 3, 321-339. Andersen, T., Munz, I., 1995. Radiogenic whole-rock lead in Precambrian metasedimentary gneisses from south Norway: Evidence of Sveconorwegian LILE mobility. Norsk Geologisk Tidsskrift 75, 156-168. Andersen, T., Sundvoll, B., 1995. Neodymium isotope systematics of the mantle beneath the Baltic shield: Evidence for depleted mantle evolutionMANUSCRIPT since the Archaean. Lithos 35, 235-243. Andreae, M.O., 1974. Chemical and stable isotope co mposition of the high grade metamorphic rocks from the Arendal area, southern Norway. Contributions to Mineralogy and Petrology 47, 299- 316. Andresen, A., Bergundhaugen, Å., 2001. The Nesland – Nelaug shear zone: A high-temperature reverse fault reactivated as an extensional (low temperature) shear zone/fault. Geonytt (1), 27. Anijs, H., 1988. Verslag veldwerk Bamble '84/'85. Unpublished MSc thesis, Utrecht University, Utrecht, 36 pp. Anijs, H., Pieters, W.E., 1988. Mineraalchemisch en microscopisch onderzoek aan het Froland Verke gabbro-amfiboliet lichaam, Bamble sector, zuid Noorwegen. Unpublished MSc thesis, Utrecht University, Utrecht. Annis, M.P., 1974.ACCEPTED The highly differentiated Holtebu granite and its relation to the Herefoss pluton. Norsk Geologisk Tidsskrift 54, 169-176. Ashworth, J.R., 1986. The role of magmatic reaction, diffusion and annealing in the evolution of coronitic microstructure in troctolitic gabbro from Risör, Norway: A discussion. Mineralogical Magazine 50, 469-473. Atkin, B.P., Brewer, T.S., 1990. The tectonic setting of basaltic magmatism in the Kongsberg, Bamble and Telemark sectors, southern Norway. In: Gower, C.F., Rivers, T., Ryan, B. (Eds.),

3

Mid Proterozoic Laurentia-Baltica. Geological Association of Canada Special Paper 38, 471- 483. ACCEPTED MANUSCRIPT Austrheim, H., Putnis, C.V., Engvik, A.K., Putnis, A., 2008. Zircon coronas around Fe-Ti oxides: A physical reference frame for metamorphic and metasomatic reactions. Contributions to Mineralogy and Petrology 156, 517-527. Baadsgaard, H., Chaplin, C., Griffin, W.L., 1984. Geochronology of the Gloserheia pegmatite, Froland, southern Norway. Norsk Geologisk Tidsskrift 54, 111-119. Bäckström, 1898. Fenakit från Kragerø. Geologiska Föreningens i Stockholm Förhandlingar 20, 295- 303. Bakken, K.O., 1976. En malmgeologisk undersøkelse i Meselfeltet, Arendal distriktet. Unpublished thesis, NTH Trondheim, Trondheim. Bakken, R., Gleditsch, E., 1938. Analyses of a single crystal of cleveite, Auselmyren, Norway. American Journal of Science 236, 95-106. Balling, N.P., 1976. Geothermal models of the crust and uppermost mantle of the Fennoscandian shield in south Norway and the Danish embayment. Journal of Geophysics 42, 237-256. Bancroft, G.M., Burns, R.G., 1967. Interpretation of the electronic spectra of iron in pyroxenes. American Mineralogist 52, 1278-1287. orthopyroxene, Bamble Bancroft, G.M., Burns, R.G., Howie, R.A., 1967. Determination of the cation distribution in the orthopyroxene series by the Mössbauer effect. Nature 213, 1221-1223. orthopyroxene, Bamble Bannister, S.C., Ruud, B.O., Husebye, E.S., 1991. Tomographic estimates of sub-Moho seismic velocities in Fennoscandia and structural implicatiMANUSCRIPTons. Tectonophysics 189, 37-53. Barbarand, J., Pagel, M., 2001. Cathodoluminescence study of apatite crystals. American Mineralogist 86, 473-484. apatite, Ødegårdens Verk Barth, T.F.W., 1925. On contact minerals from Precambrian limestones in southern Norway. Norsk Geologisk Tidsskrift 8, 93-114. Barth, T.F.W., 1927. The structure of risørite. Norsk Geologisk Tidsskrift 9, 37-39. Barth, T.F.W., 1928. Kalk und Skarngesteine im Urgebirge bei Kristiansand. Neues Jahrbuch für Mineralogie, Beilageheft, 57A, 1069-1108. Barth, T.F.W., 1929. Die Temperatur der Anatexis des Urgebirges in südlichsten Norwegen. Centralbladt für Mineralogie A, 120-127. Barth, T.F.W., 1930. Zur Genesis der Pegmatite im Urgebirge. II. Ein syntektischer Gesteinskomplex aus dem südlichstenACCEPTED Norwegen. Chemie der Erde 4, 95-136. Barth, T.F.W., 1933. The large Precambrian intrusive bodies in the southern part of Norway. Proceedings of the 26 th International Geological Congress, Washington, 297. Barth, T.F.W., 1947. The Birkeland granite a case of petroblastesis. Comptes Rendus de la Société Géologique de Finlande 20, 173-179. Barth, T.F.W., 1955. Température de formation de certains granites Précambrien de Norvège méridionale. Science de la Terre 1, 119-178.

4

Barth, T.F.W., 1955. The temperature of the formation of certain Pre-cambrian granites of southern Norway. Colloquium InternationaleACCEPTED de Pétrographie, MANUSCRIPT Nancy. Barth, T.F.W., 1960. Precambrian of southern Norway. In: Holtedahl, O. (Ed.), Geology of Norway. Norges Geologiske Undersøkelse 208, 6-48. Barth, T.F.W., 1963. Vesuvianite from Kristiansand, other occurrences in Norway, the general formula of vesuvianite. Norsk Geologisk Tidsskrift 43, 457-472. Barth, T.F.W., 1969. Granulite facies rocks of the Precambrian of south Norway, particularly around Arendal. In: Le faciès granulite. Ses caractères et sa signification dans les domaines métamorphiques. Chalet Universitaire de la Schlucht, 35-39. Barth, T.F.W., 1969. Granulite facies rocks of the Precambrian of south Norway, particularly around Arendal. Science de la Terre 14, 361-369. Barth, T.F.W., 1970. Deep-seated volcanism along the major Precambrian breccia in south Norway. II. Svarten at Ny Hellesund. Norsk Geologisk Tidsskrift 50, 253-256. Barth, T.F.W., Bugge, J.A.W., 1960. Precambrian gneisses and granites of the Skagerak coastal area, south Norway. Norges Geologiske Undersøkelse 212f, 35 pp. Barth, T.F.W., Dons, J.A., 1960. Precambrian of southern Norway. In: Holtedahl, O. (Ed.), Geology of Norway. Norges Geologiske Undersøkelse 208, 6-66. Barth, T.F.W., Reitan, P.H., 1963. The Precambrian of Norway. In: Rankama, K. (Ed.), The Precambrian. Vol. 1. Interscience, New York, 27-80. Batey, R., 1965. The geology of eastern Bamble. Unpublished PhD thesis, University of Nottingham, 256 pp. Batey, R., 1965. Preliminary observations on a portionMANUSCRIPT of the Kongsberg - Bamble area, east of Feset, south Norway. Norsk Geologisk Tidsskrift 45, 136. Beeson, R., 1972. The geology of the country between Songe and Ubergsmoen, southern Norway. Unpublished PhD thesis, University of Nottingham. Beeson, R., 1975. Metasedimentary gneisses from the area between Songe and Ubergsmoen, Aust- Agder, south Norway. Norges Geologiske Undersøkelse 321,:87-102. Beeson, R., 1976. The orthoamphibole-bearing rocks of the Söndeled-Tvedestrand area, Aust-Agder, south Norway. Norsk Geologisk Tidsskrift 56, 125-139. Beeson, R., 1978. The geochemistry of orthoamphiboles and coexisting cordierites and phlogopites from south Norway. Contributions to Mineralogy and Petrology 66, 5-14. Beeson, R., 1978. The geochemistry of meta-igneous rocks from the amphibolite facies terrain of south Norway.ACCEPTED Norsk Geologisk Tidsskrift 58, 1-16. Beeson, R., 1988. Identification of cordierite-anthophyllite rock types associated with sulphide deposits of copper, lead and zinc. Transactions of the Instute of Mining and Metallurgy 97B, 108-115. Beijschlag, F., Krusch, P., Vogt, J.H.L., 1910. Eisenerzvorkommen im Grundgebirge von Arendal in Norwegen und von Persberg, Dannemora u.s.w. im mittleren Schweden. In: Beijschlag, F., Krusch, P., Vogt, J.H.L., Die Lagerstätten der Nützbaren Mineralien und Gesteine. I. Ferdinand Enke, Stuttgart, 371-374. 5

Bergundhaugen, Å., 2002. Et studium av den tektonometamorfe utviklingen av grensen mellom Bamble- og Telemarksektoren,ACCEPTED ved Neslandsvatn. MANUSCRIPT Unpublished Cand. Sci. thesis, University of Oslo, Oslo, 117 pp. Bergundhaugen, Å., Andresen, A., 2000. The Kristiansand-Porsgrunn shear zone - a high strain zone associated with growth and collapse of the Sveconorwegian orogen. Volume of Abstracts, 24 th Nordic Geol. Wintermeeting Trondheim, 39-40. Berthelsen, A., 1977. Himalayan tectonics: A key to the understanding of Precambrian shield patterns. Colloques internationaux du C.N.R.S. No. 267. Écologie et géologie de l'Himalaya. Part 2, 61-67. Berthelsen, A., 1978. Himalayan and Sveconorwegian tectonics - a comparison. In: Saklani, P.S. (Ed.), Tectonic geology of the Himalayas. Today and Tomorrow's, New Delhi, 187-294. Berthelsen, A., 1980. Towards a palinspastic tectonic analysis of the Baltic shield. In: Cogné, J., Slausky, M. (Eds.), Geology of Europe, from Precambrian to the post-Hercynian sedimentary basin. Mémoire de B.R.G.M. 108:5-21. Berthelsen, A., 1987. A tectonic model for the crustal evolution of the Baltic shield. In: Schaer, J.P. & Rodgers, J. (Eds.), The anatomy of mountain ranges. Princeton University Press, Princeton, 31-57. Beyer, H., 1992. Norwegen ist zwei Reisen wert. Der Aufschluss 43, 345-360. Bingen, B., Boven, A., Punzalan, L., Wijbrans, J.R., Demaiffe, D., 1998. Hornblende 40Ar/39Ar geochronology across terane boundaries in the Sveconorwegian province of S. Norway. Precambrian Research 90, 159-185. Bingen, B., Davis, W.J., Hamilton, M.A., Engvik, A.MANUSCRIPTK., Stein, H.J., Skår, Ø., Nordgulen, Ø., 2008. Geochronology of high-grade metamorphism in the Sveconorwegian belt, S. Norway: U-Pb, Th-Pb and Re-Os data. Norsk Geologisk Tidsskrift 88, 13-42. Bingen, B., Demaiffe, D., Breemen, O. van, 1996. Rb-Sr isotopic signature of augen gneiss suites in the Sveconorwegian province of SW Norway. In: Demaiffe, D. (Ed.), Petrology and geochemistry of rocks in the continental and oceanic crusts. Université Libre Bruxelles, Brussels & Royal Museum for Central Africa, Tervuren, 161-174. Bingen, B., Nordgulen, Ø., Sigmond, E.M.O., Tucker, R.D., Mansfeld, J., Högdahl, K., 2002. Relations between 1.19 and 1.13 Ga continental magmatism, sedimentation and metamorphism, Sveconorwegian province, S. Norway. Precambrian Research 124, 215-241. Bingen, B., Nordgulen, Ø., Viola, G., 2008. A four-phase model for the Sveconorwegian orogeny, SW Scandinavia.ACCEPTED Norsk Geologisk Tidsskrift 88, 43-72. Bingen, B., Skår, Ø., Marker, M., Sigmond, E.M.O., Nordgulen, Ø., Ragnhildstveit, J., Mansfeld, J., Tucker, R.D., Liégois, J.P., 2005. Timing of continental building in the Sveconorwegian orogen, SW Scandinavia. Norwegian Journal of Geology 85, 87-116. Birkeland, T., Bjørlykke, A., 1972. Fluid inclusion studies from the lead- and zinc-bearing veins at Tråk, Bamble. Norges Geologiske Undersøkelse 277, 1-5. Bjerkgård, T., Marker, M., Gjelle, S., Slagstad, T. & Solli, A., 2008 Potensialet for murestein i Bamble og Kragerø kommuner. Norges Geologiske Undersøkelse report 2008.051, 39 pp. 6

Bjerkgård, T. & Nordgulen, Ø.,A 2002.CCEPTED Sulfidførende MANUSCRIPT gneiss E18: Geokjemi og petrografi. Norges Geologiske Undersøkelse report 2002.052, 14 pp. Bjørlykke, A., Ihlen, P.M., Olerud, S., 1990. Metallogeny and lead isotope data from the Olso paleorift. Tectonophysics 178, 109-126. Bjørlykke, H., 1931. Ein Betafit mineral von Tangen bei Kragerö. Norsk Geologisk Tidsskrift 12, 73- 88. Bjørlykke, H. 1937. Mineral paragenesis of some granite pegmatites near Kragerö, southern Norway. Norsk Geologisk Tidsskrift 17, 1-16. Bjørlykke, H., 1937. The granite pegmatites of southern Norway. American Mineralogist 22, 241-255. Bjørlykke, H., 1939. Feltspat V. De sjeldne mineraler på norske granitische pegmatitganger. Norges Geologiske Undersøkelse 154, 78 pp. Bjørlykke, H., 1949, Rapport over befaring av uranforekomster ved Tvedestrand. Norges Geologiske Undersøkelse Bergarkivet fagrapport BA 3467, 3 pp. Bjørlykke, H., 1949. nikkelgruve. Norges Geologiske Undersøkelse 172, 1-38. Bjørlykke, H., Sverdrup, T.L., 1962. Feltspat. Norges Geologiske Undersøkelse Småskrift 7, 51 pp. Bjørlykke, K.O., 1924. En vulkanrest ved Skaar i , Vestagder. Norsk Geologisk Tidsskrift 7, 271-280. Blanc, P., Baumer, A., Cesbron, F., Ohnenstetter, D., 1995. Les activateurs de cathodoluminescence dans des chlorapatites préparées par synthèse hydrothermale. Comptes Rendus de l'Académie des Sciences à Paris, série IIa, 321, 1119-1126. chlorapatite, Kragerø Blomstrand, C.W., 1887. Analys af cer- och ytter-fosfaterMANUSCRIPT från södra Norge, ett bidrag till frågan om dessa mineraliers kemiska byggnad. Geologiska Föreningens i Stockholm Förhandlingar 9, 160-187. Bodart, D.E., 1964. The geochemistry of certain Precambrian rocks in Bamble. Unpublished MSc thesis, University of Nottingham, Nottingham. Bodart, D.E., 1968. On the paragenesis of albitites. Norsk Geologisk Tidsskrift 48, 269-280. Boyd, R., Nixon, F., 1985. Norwegian nickel deposits. A review. Bulletin of the Geological Survey of Finland 333, 363-394. Brandvoll, P., 1959. Langø jernmalmsgruber geologi. Unpublished thesis, NTH, Trondheim, 37 pp. Brekke, O.G., 1959. Geologisk og petrografisk beskrivelse av Klodeborg gruber. Unpublished thesis, NTH, Trondheim. Brickwood, J.D.,ACCEPTED 1984. Basic intrusions and related iron-copper-nickel sulphide deposits in the Kongsberg and Bamble sectors of south Norway. Unpublished PhD thesis, University of London, London, 240 pp. Brickwood, J.D., 1986. The geology and mineralogy of some Fe-Cu-Ni sulphide deposits in the Bamble area, Norway. Norsk Geologisk Tidsskrift 66, 189-208. Brickwood, J.D., Craig, J.W., 1987. Primary and re-equilibrated mineral assemblages from the Sveconorwegian mafic intrusion of the Kongsberg and Bamble areas, Norway. Norges Geologiske Undersøkelse 410, 1-23. 7

Broch, O.A., 1964. Age determinations of Norwegian minerals up to March 1964. Norges Geologiske Undersøkelse 228, 84-113.A CCEPTED MANUSCRIPT Broekmans, M.A.T.M., 1988. Skarns around Arendal. Unpublished internal report, Utrecht University, Utrecht, 9 pp. Broekmans, M.A.T.M., 1991. Metamorphic petrology and stable isotopes of Lofstad calcites. Abstract, 2nd SNF Excursion, Bamble, 3 pp. Broekmans, M.A.T.M., 1992. Chemical and other properties of an axinite from a calcite vein in skarn, Arendal area, Bamble sector, SE Norway. Unpublished internal report, Utrecht University, Utrecht, 15 pp. Broekmans, M.A.T.M., 1992. Stable isotopic trends and mineral chemistry of carbon-bearing rocks from the Arendal area, Bamble sector, SE Norway. Unpublished MSc thesis, Utrecht University, Utrecht, 68 pp. Broekmans, M.A.T.M., Nijland, T.G., Jansen, J.B.H., 1992. Lower crustal transitions. III. Stable isotopic trends in carbonic rocks during amphibolite to granulite facies transition - Survival of diagenetic features (Bamble, Norway). Volume of Abstracts, 1 st Netherlands Earth Scientific Congress, Veldhoven, 115. Broekmans, M.A.T.M., Nijland, T.G., Jansen, J.B.H., 1994. Are stable isotopic trends in amphibolite to granulite facies transitions metamorphic or diagenetic ? - An answer for the Arendal area (Bamble sector, SE Norway) from Mid-Proterozoic carbon-bearing rocks. American Journal of Science 294, 1135-1165. Brøgger, W.C., 1883. Om uranbergerts og xenotim fra norske forekomster. Geologiska Föreningens i Stockholm Förhandlingar 6, 744-752. MANUSCRIPT Brøgger, W.C., 1888. Om en norsk forekomst av pseudobrookit i store krystaller. Geologiska Föreningens i Stockholm Förhandlingar 10, 21-24. Brøgger, W.C. 1903. Uber Hellandit, ein neues Mineral. Nyt Magazine for Naturvidenskaberne 41, 213-219. Brøgger, W.C., 1906. Die Mineralen der südnorwegischen Granit-Pegmatitgänge. I Det Norske Videnskaps-Akademi I Oslo Skrifter, Matematisk-Naturvidenskapelig Klasse 1906-6, II Det Norske Videnskaps-Akademi I Oslo Skrifter, Matematisk-Naturvidenskapelig Klasse 1934-1. Brøgger, W.C., 1906. Hellandit von Lindvikskollen bei Kragerö, Norwegen. Zeitschrift für Kristallographie und Mineralogie B42, 417-439. Brøgger, W.C., 1922. Hellandit. Det Norske Videnskaps Selskagp I Oslo Skrifter, Matematisk NaturvidenskapeligACCEPTED Klasse 6, 1-16. Brøgger, W.C., 1933. Rombeporfyrgang ved Grimstad. Norges Geologiske Undersøkelse 139, 47-48. Brøgger, W.C., 1934. On several Archaean rocks from the south coast of Norway. I Nodular granites from the environs of Kragerö. Det Norske Videnskaps Selskagp I Oslo Skrifter, Matematisk- Naturvidenskapelig Klasse 8, 97 pp. Brøgger, W.C., 1934. On several Archaean rocks from the south coast of Norway. II The South Norwegian hyperites and their metamorphism. Det Norske Videnskaps-Akademi I Oslo Skrifter, Matematisk-Naturvidenskapelig Klasse 1, 421 pp. 8

Brøgger, W.C., Bäckström, H., 1888. Über den Dahllit, ein neues Mineral von Ødegården, Bamble, Norwegen. Ofversigt KongligeACCEPTED Videnskaps-Akademi MANUSCRIPT Forhandlinger 45, 493-496. Brøgger, W.C., Reusch, H.H., 1875. Vorkommen des Apatit in Norwegen. Zeitschrift der deutsche geologische Gesellschaft 27, 646-702. Brøgger, W.C., Reusch, H.H., 1880. Norske apatitforekomster. Nyt Magazine for Naturvidenskaberne, 255-300. Brøgger, W.C., Vogt, T., Schetelig, J., 1922. Die Mineralien der südnorwegischen Granitpegmatitgänge. II. Silikate der seltenen Erde. Det Konglige Norske Videnskaplig Selskap Skrifter. I. Matematisk-Naturvidenskaplig Klasse 1, 151 pp. Brøgger, W.C., vom Rath, G., 1876. Über grosse Enstatit-Krystalle von Kjörrestad im Kirchspiel Bamle, südliches Norwegen. Monatsbericht der Kaiserliche Akademie der Wissenschaften zu Berlin 26. Brøgger, W.C., vom Rath, G., 1877. Über grosse Enstatit-Krystalle, aufgefunden von W.C. Brøgger und H.H. Reusch bei Kjørrestad, Bamle. Zeitschrift für Kristallografie 1, 18-30. Brueckner, H.K., 1972. Interpretation of Rb-Sr ages from Precambrian and rocks of southern Norway. American Journal of Science 272, 334-358. Buch, L. von, 1813. Travels through Norway and Lapland during the years 1806, 1807, and 1808. H. Colburn, London, 467 pp. Bugge, A., 1922. Nikkelgruber i Bamble. Norges Geologiske Undersøkelse 87, 12-42. Bugge, A., 1922. Et forsøk på inndeling av det syd-norske grunnfjell. Norges Geologiske Undersøkelse 95, 16 pp. Bugge, A., 1928. En forkastning i det syd-norske grunnfjell.MANUSCRIPT Norges Geologiske Undersøkelse 130, 124 pp. Bugge, A., 1936. Kongsberg - Bamble formationen. Norges Geologiske Undersøkelse 146, 117 pp. Bugge, A., 1941. En oversikt over arbeidet i det syd-norske grunnfjell. Norsk Geologisk Tidsskrift 21, 2-3. Bugge, A., 1944. Hvideberg kvartsforekomst ved Songevannet i Holt. Norges Geologiske Undersøkelse Fagrapport BA 6189, 2 pp. Bugge, A., 1945. Kvartsforekomster ved Lauvrak, Tiurryggen ved Vigeland, Søisdal i Aust-Agder. Norges Geologiske Undersøkelse Fagapport BA 6195, 2 pp. Bugge, A., 1961. Rapport fra befaring av Lauvrak feltspatforekomst, Froland, Aust-Agder fylke. Norges Geologiske Undersøkelse Bergarkivet Fagrapport BA 6197, 11 pp. Bugge, A., 1965.ACCEPTED Iakttagelser fra rektangelbladet Kragerö og den store grunnfjellbreksje. Norges Geologiske Undersøkelse 229, 115 pp. Bugge, C., 1922. Statens apatitdrift i rationeringstiden. Norges Geologiske Undersøkelse 110, 34 pp. Bugge, C., 1934. Gullforekomster i Norge. Norsk Geologisk Tidsskrift 14, 319-320. Bugge, J.A.W., 1940. Geological and petrological investigations in the Arendal district. Norsk Geologisk Tidsskrift 20, 71-112. Bugge, J.A.W., 1943. Geological and petrological investigations in the Kongsberg- Bamble formations. Norges Geologiske Undersøkelse 160, 150 pp. 9

Bugge, J.A.W., 1945. Löddesöl skarn forekomst. Norsk Geologisk Tidsskrift 25, 35-47. Bugge, J.A.W., 1951. Minerals fromACCEPTED the skarn iron MANUSCRIPT ore deposits at Arendal, Norway. I. Cahnite from Klodeborg Mine. Konglige Norske Videnskabers Selskab Forhandlinger 17, 79-81. Bugge, J.A.W., 1954. Minerals from the skarn iron ore deposits at Arendal, Norway. II. The zeolites. Konglige Norske Videnskabers Selskab Skrifter 3, 1-18. Bugge, J.A.W., 1960. Skarn iron ore deposits in the Arendal district. In: Vokes, F.M. (Ed.), Mines in south and central Norway. Guide to excursion no. C10. Norges Geologiske Undersøkelse 212m, 26-38. Bugge, J.A.W., 1960. The geology of the Bamble-Arendal district. Guide to excursion no. A8. Norges Geologiske Undersøkelse 212f, 3-12. Bugge, J.A.W., 1978. Kongsberg - Bamble complex. In: Bowie, S.H.O., Kvalheim, A., Haslam, M.W. (Eds.), Mineral deposits of Europe. Vol. 1. Northwest Europe. Institution of Mining and Metallurgy and Mineralogical Society, London, 213-217. Burg, B., Liphard, M., Schreck, B., Speckmann, H.D., 1990. On the absorption of surfactants on non- sulfide minerals. Progress in Colloid and Polymer Science 83, 127-135. hornblende, Kragerø Burns, R.G., Dyar, M.D., 1991. Crystal chemistry and Mössbauer spectra of babbingtonite. American Mineralogist 76, 892-899. babingtonite, Arendal Burrell, D.C., 1964. The geology of the country west of Levang peninsula, south Norway. Unpublished PhD thesis, University of Nottingham, Nottingham. Burrell, D.C., 1965. The geochemistry and origin of amphibolites from Bamble, south Norway. 1. The determination of zinc in amphibolites by atomic absorption spectroscopy. Norsk Geologisk Tidsskrift 45, 21-30. MANUSCRIPT Burrell, D.C., 1966. Garnets from upper amphibolite lithologies of the Bamble series, Kragerö, south Norway. Norsk Geologisk Tidsskrift 46, 3-19. Burrell, D.C., Pettersson, M.J., 1965. Possible origin of certain Bamble amphibolites. Norsk Geologisk Tidsskrift 45, 138. Bylund, G., Pesonen, L.J., 1987. Paleomagnetism of mafic dykes of the Fennoscandian shield. In: Halls, H.C. & Fahrig, W.F. (Eds.), Mafic dyke swarms. Geological Association of Canada Special Paper 34, 201-219. Calcagnile, G., 1982. The lithosphere-asthenosphere system in Fennoscandia. Tectonophysics 90, 19- 35. Cameron, E.M., 1989. Scouring of gold from the lower crust. Geology 17, 26-29. Cameron, E.M., 1989.ACCEPTED Derivation of gold by oxidative metamorphism of a deep ductile shear zone. Part 1. Conceptual model. Journal of Geochemical Exploration 31, 135-147. Cameron, E.M., 1989. Derivation of gold by oxidative metamorphism of a deep ductile shear zone. Part 2. Evidence from the Bamble belt, south Norway. Journal of Geochemical Exploration 31, 149-169. Cameron, E.M., 1993. Reintroduction of gold, other chalcophile elements and LILE during retrogression of depleted granulite, Tromøy, Norway. Lithos 29, 303-309.

10

Cameron, E.M., 1993. Precambrian gold: perspectives from the top and bottom of shear zones. Canadian Mineralogist 31,A 917-944.CCEPTED MANUSCRIPT Cameron, E.M., 1994. Depletion of gold and LILE in the lower crust: Lewisian complex, Scotland. Journal of the Geological Society, London 151, 747-754. Cameron, E.M., Cogulu, E.H., Stirling, J., 1993. Mobilization of gold in the deep crust: Evidence from mafic intrusions in the Bamble belt, Norway. Lithos 30, 151-166. Carstens, H., 1958. The origin of feldspar inclusions in the lamprophyre of Kristiansand. Norsk Geologisk Tidsskrift 38, 245. Carstens, H., 1959. Comagmatic lamprophyres and diabases on the south coast of Norway. Contributions to Mineralogy and Petrology 6, 299-319. Carstens, H., 1979. Liquid immiscibility in basic alkaline magmas. Chemical Geology 27, 297-307. Carstens, H., 1982. Spherulitic crystallization in lamprophyric magmas and the origin of ocelli. Nature 297, 493-494. Carstens, H., 1983. Simultaneous crystallization of quartz-feldspar intergrowths from granitic magmas. Geology 11, 339-341. Cassell, B.R., Mykkeltveit, S., Kaneström, R., Husebye, E.S., 1983. A North Sea - southern Norway seismic crustal profile. Geophysical Journal of the Royal Astronomical Society 72, 733-753. Cederstrøm, A., 1889. Pseudobrookit in grossen Krystallen von Havredal, Bamble, Norwegen. Zeitschrift für Kristallographie 17, 133-136. Černý, P., 1991. Fertile granites of Precambrian rare-element pegmatite fields. Is geochemistry controlled by tectonic setting or source lithologies ? Precambrian Research 51, 429-468. Chaplin, C.E., 1981. Isotope geology of the GloserheiaMANUSCRIPT granite pegmatite, south Norway. Unpublished MSc thesis, University of Alberta. Chopin, C., Ferraris, G., Ivaldi, G., Schertl, H.P., Schreyer, W., Compagnoni, R., Davidson, C., Davis, A.M., 1995. Magnesiodumortierite, a new mineral from very-high-pressure rocks (western Alps). II. Crystal chemistry and petrological significance. European Journal of Mineralogy 7, 525-535. magnesiodumortierite, Böylefossbru Christie, O.H.J., 1964. Petrokjemiske variasjoner i Kragerø-områdets basaltsverm. Abstract, 6 th Nordic Geological Winter Meeting, Trondheim. Christie, O.H.J., Falkum, T., Ramberg, I.B., Thoresen, K., 1965. Petrology of the Grimstad granite. I - Progress report. Norsk Geologisk Tidsskrift 45, 315-321. Christie, O.H.J., Falkum, T., Ramberg, I.B., Thoresen, K., 1970. Petrology of the Grimstad granite. II -Petrography,ACCEPTED geochemistry, crystallography of alkali feldspars and genesis. Norges Geologiske Undersøkelse 265, 78 pp. Christie, O.H.J., Mohn, E., 1971. Investigation of element-specific reflected x-rays of the older Langø -Gumø gabbro, Kragerø archipelago, south Norway. Norsk Geologisk Tidsskrift 51, 379-390. Closmann, C., Knittle, E., Bridges, F., 1996. An XAFS study of the crystal chemistry of Fe in orthopyroxene. American Mineralogist 81, 1321-1331. orthopyroxene, Bamble

11

Clough, P.W.L., 1977. The petrochemistry of metabasites from a Precambrian amphibolite-granulite transition zone, south A Norway.CCEPTED Unpublished MANUSCRIPT PhD thesis, University of Nottingham, Nottingham. Clough, P.W.L., Field, D., 1980. Chemical variation in metabasites from a Proterozoic amphibolite- granulite transition zone, south Norway. Contributions to Mineralogy and Petrology 73, 277- 286. Comin Chiaramonti, P., 1967. Studio geopetrografica dell' isola di Tromöy (Norvegia meridionale). Unpublished thesis, University of Trieste,Trieste 95 pp. Comin Chiaramonti, P., 1974. Stato strutturale del feldispato potassico dell' isola di Tromöy (Norvegia meridionale). Bolletino della Società Adriatica di Scienze 59, 10-22. Comin Chiaramonti, P., 1974. Iron titanium minerals in the Tromöy island (south Norway). Atti e Memorie dell'Accademia Patavina di Scienze Lettere ed Arti 86, 243-247. Comin Chiaramonti, P., Frangipane, M., 1974. The amphyclasite of Bråt (Tromöy, southern Norway). Tschermaks Mitteilungen zu Petrographie und Mineralogie 21, 280-290. Cooper, D.C., 1971. The geology of the area around Eydehavn, south Norway. Unpublished PhD thesis, University of Nottingham, Nottingham. Cooper, D.C., Field, D., 1977. The chemistry and origins of Proterozoic low potash high iron charnockitic gneisses from Tromöy, south Norway. Earth and Planetary Science Letters 35, 105-115. Copley, P.A., Gay, P., 1978. A scanning microscope investigation of some Norwegian aventurine feldspars. Norsk Geologisk Tidsskrift 58, 93-95. Copley, P.A., Gay, P., 1979. Crystallographic studiesMANUSCRIPT of some Norwegian aventurinised feldspars by optical, X-ray, and electron optical methods. Norsk Geologisk Tidsskrift 59, 229-237. Cosca, M.A., 1992. A reexamination of the influence of composition on argon retentivity in metamorphic calcic amphiboles. Eos 73:642. Cosca, M.A., Mezger, K., Essene, E.J., 1998. The Baltica-Laurentia connection: Sveconorwegian (Grenvillian) metamorphism, cooling, and unroofing in the Bamble sector, Norway. Journal of Geology 106, 539-552. Cosca, M.A., O'Nions, R.K., 1994. A re-examination of the influence of composition on argon retentivity in metamorphic calcic amphiboles. Chemical Geology 112, 39-56. Craig, J.W., 1984. Metamorphism and magmatic activity around a Proterozoic thrust zone, south Norway. Unpublished PhD thesis, University of London., London. Dahlgren, S., 1991.ACCEPTED Sm-Nd age of the metamorphic mineral assemblage in the Brårvik mafic granulite, Flosta. Abstract, 2 nd SNF Excursion, Bamble, 2 pp. Dahlgren, S., 1991. Lamproite dikes at Tromøy - The first record of ultrapotassic magmatism in the Sveconorwegian Province. Abstract, 2 nd SNF Excursion, Bamble, 4 pp. Dahlgren, S., 1993. Sveconorwegian ultra-potassic magmatic activity in the Bamble shear belt: Minor intrusions - major implications. Abstract, IGCP 304 meeting, Lund.

12

Dahlgren, S., Bogoch, R., Magartiz, M., Michard, A., 1993. Hydrothermal dolomite marbles associated with charnockiticACCEPTED magmatism MANUSCRIPT in Proterozoic Bamble shear belt, south Norway. Contributions to Mineralogy and Petrology 113, 394-409. Dahlgren, S., Hagelia, P., 1984. Major Precambrian events in the Telemark - Bamble area, south Norway. Volume of Abstracts, NATO ASI Conference, Moi, 8. Dahlgren, S., Heaman, L., Krogh, T., 1990. U-Pb dating of coronitic metagabbros, hornblende- phlogopite-apatite pegmatites and albitites in the Proterozoic Bamble shear belt, south Norway. Volume of Abstracts, 2 nd Symposium on the Baltic Shield, Lund, 29. Dahll, J., 1864. Om Bamle og Mejnkjær nikkelgruber. Polyteknisk Tidsskrift. Dahll, T., 1855. Om granitens optræden i de Arendalske jernleiesteder. Nyt Magazine for Naturvidenskaberne 8, 230-233. Dahll, T., 1861. Om det geologiske kort av en deel af Norge. Forhandlinger ved de Skandinavische Naturforser, 8 may 1860, Copenhagen. Dahm, S., Risnes, S., 1999. A comparative infrared spectroscopic study of hydroxide and carbonate absorption bands in spectra of shark enameloid, shark dentin, and a geological apatite. Calcified Tissue Research 65, 459-465. apatite, Kragerø Dam, B.P., 1986. Veldwerkverslag Bamble. Unpublished MSc thesis, Utrecht University, Utrecht, 38 pp. Dam, B.P., 1995. Geodynamics in the Bamble area during Gothian- and Sveconorwegian times. Geologica Ultraiectina 117, 114 pp. Dam, B.P., van Roermund, H.L.M., 1989. The thermal and metamorphic history of intercumulus augite from the Bamble area, SE Norway. UltramicrosMANUSCRIPTcopy 17, 201-202. Dam, B.P., van Roermund, H.L.M., Senior, A., 1990. A TEM study of olivine coronas from the Jomasknutene and Messel metagabbros, Bamble area, Norway. Geonytt 17, 39-40. Dam, B.P., Verdonk, E.M., 1986. Na-metasomatism in SE Norway. Unpublished MSc thesis, Utrecht University, Utrecht, 12 pp. Daubrée, M.A., 1843. Mémoire sur les dépôts metallifères de la Suède et de la Norvège. Annales des Mines 4, 199-282. de Fellenberg, T. & Lunde, G., 1927. Contribution à la géochimie de l'iode. Norsk Geologisk Tidsskrift 9, 48-64. de Haas, G.J.L.M., 1992. Source, evolution and age of coronitic gabbros from the Arendal-Nelaug area, Bamble, southeast Norway. Geologica Ultraiectina 86, 129 pp. de Haas, G.J.L.M.,ACCEPTED 1997. Identification of the source of Proterozoic gabbroic intrusions from the Bamble sector and implications for the mantle evolution. Geonytt 24, 50. de Haas, G.J.L.M., 1997. Proterozoic gabbroic intrusions from SE Norway: Evidence for interaction between asthenospheric and metasomatized lithospheric mantle. Volume of Abstracts, 7 th Annual V.M. Goldschmidt Conference. Contribution no. 921, Lunar and Planetary Institute, Houston, 57.

13 de Haas, G.J.L.M., Andersen, T., Nijland, T.G., 2000. Mid-Proterozoic evolution of the south th Norwegian lithosphere. A VolumeCCEPTED of Abstracts, MANUSCRIPT 24 Nordic Geological Winter Meeting Trondheim, 56-57. de Haas, G.J.L.M., Andersen, T., Vestin, J., 1999. Detrital zircon geochronology: New evidence for an old model for accretion of the Southest Baltic Shield. Journal of Geology 107, 569-586. de Haas, G.J.L.M., Huijsmans, J.P.P., Verschure, R.H., 1990. The magmatic evolution of the Vestre Dale gabbro, Bamble, south Norway, and the Sm-Nd systematics of two hyperites. Geonytt 17, 51-52. de Haas, G.J.L.M., Nijland, T.G., Andersen, T., 2000. Zircon U-Pb age determination of the Nelaug gneiss: New evidence for crustal growth between 1.45 and 1.50 Ga in the Bamble sector, south Norway. Volume of Abstracts, 24 th Nordic Geological Winter Meeting, 57. de Haas, G.J.L.M., Nijland, T.G., Andersen, T., Corfu, F., 2002. New constraints on the timing of deposition and metamorphism in the Bamble sector, south Norway: Zircon and titanite U-Pb data from the Nelaug area. Geologiska Föreningens i Stockholm Förhandlingar 124:73-78. de Haas, G.J.L.M., Nijland, T.G., Huijsmans, J.P.P., 1991. The pre-corona magmatic evolution and emplacement of a gabbroic crystal mush, Vestre Dale. Abstract, 2 nd SNF Excursion, Bamble, 9-10. de Haas, G.J.L.M., Nijland, T.G., Huijsmans, J.P.P., Maijer, C., Dam, B.P., 1992. The magmatic history of a gabbroic intrusion in the Bamble sector, Vestre Dale, Norway. Neues Jahrbuch für Mineralogie, Monatshefte, 221-240. de Haas, G.J.L.M., Nijland, T.G., Senior, A., 1991. A small layered gabbro in the Proterozoic lower continental crust of south Norway. Terra AbstractsMANUSCRIPT 3:428. de Haas, G.J.L.M., Nijland, T.G., Senior, A., Dam, B.P., 1993. Preservation of whole rock chemical profiles and igneous structures during multiple high grade metamorphism (Flosta gabbro, Bamble, Norway). Proceedings of the Koninklijke Nederlandse Akademie van Wetenschappen 96, 389-410. de Haas, G.J.L.M., Nijland, T.G., Valbracht, P.J., Maijer, C., Verschure, R., Andersen, T., 2002. Magmatic versus metamorphic origin of olivine-plagioclase coronas. Contributions to Mineralogy and Petrology 143, 537-550. de Haas, G.J.L.M., Valbracht, P., Nijland, T.G., Maijer, C., Verschure, R.H., 1998. Mineral Sm-Nd isotope and REE constraints on formation of olivine - plagioclase coronas. In: Wilson, J.R., (Ed.), Volume of Abstracts, 23 rd Nordic Geological Wintermeeting, Århus, 59. de Haas, G.J.L.M.,ACCEPTED Verschure, R.H., 1990. Isotopic variations in gabbroic intrusions perforating the Proterozoic continental crust, Bamble, south Norway. Implications for the evolution of the underlying mantle. Geological Society of Australia Abstracts 27, 42. de Haas, G.J.L.M., Verschure, R.H.,Maijer, C., 1992. Rb-Sr isotope systematics of the coronitic Vestre Dale gabbro and its country rocks, Bamble, Norway. Volume of Abstracts, 1 st Netherlands Earth Scientific Congress, Veldhoven, 128.

14 de Haas, G.J.L.M., Verschure, R.H., Maijer, C., 1993. Isotope constraints on the timing of the crustal accretion of the BambleA sector,CCEPTED Norway, MANUSCRIPT as evidenced by coronitic gabbros. Precambrian Research 64, 403-417. de Haas, G.J.L.M., Verschure, R.H., Maijer, C., Valbracht, P.J., 1992. Isotopic age determinations in south Norway. III. Rb-Sr isotope systematics of the coronitic Vestre Dale gabbro and its country rocks, Bamble, Norway. Geologiska Föreningens i Stockholm Förhandlingar 114, 417-422. de la Roche, H., 1969. Domaines et tendances géochimique dans la zone des arendalites et les formations de Bamble (Norvège du sud). In: Le faciès granulite. Ses caractères et sa signification dans les domaines métamorphiques. Chalet Universitaire de la Schlucht, 39. de la Roche , H., Moine, B., Touret, J., 1971. Surviances géochimique et metasomatose dans un domaine catazonal, origine des arendalites. Comptes Rendus de la Société Française de Géologie 4, 141-142. Dickson, F.W., Ball, K., 1965. Chemical variation within the granitic Herefoss pluton, southern Norway. Geological Society of America Special Paper 82, 44-45. Dietrich, R.V., 1959. Geological reconnaissance of the area between Kristiansand and . Norges Geologiske Undersøkelse 205, 41-78. Dietrich, R.V., 1960. Banded gneisses of the area, southeastern Norway. Norsk Geologisk Tidsskrift 40, 13-63. Dietrich, R.V., 1963. Banded gneisses of eight localities. Norsk Geologisk Tidsskrift 43, 89-119. Divljan, S., 1960. The result of field and laboratory studies of aventurine plagioclases from some Norwegian pegmatites. Proceedings of the 21 stMANUSCRIPT International Geological Congress, Norden 17, 94-101. Dons, J.A., 1956. Coal blend and uraniferous hydrocarbon in Norway. Norsk Geologisk Tidsskrift 36, 249-266. Dons, J.A., 1975. Oljediabas fra Dyvika. Esso Perspektiv 4, 16-17. Dorenfelt, M., 1923. Relative determination of the atomic weight of chlorine in Bamle apatite. Journal of the American Chemical Society 45, 1577-1579. apatite, Ødegårdens Verk Dugstad, P. 2000. Håndskeiding af feldspat og kvarts. In: Carstens, H. (Ed.), Bygger i berge. En beretning om Norsk bergverksdrift. Tapir Akademisk Forlag, 138-139. Eakin, P.A., 1989. The origin and properties of uranium-niobium-tantalum mineralised hydrocarbons at Narestö, Arendal, southern Norway. Norsk Geologisk Tidsskrift 69, 29-37. Eggenkamp, H.G.M.,ACCEPTED Schuiling, R.D., 1995. δ37Cl variations in selected minerals: a possible tool for exploration. Journal of Geochemical Exploration 55, 249-255. Cl-apatite, Ødegårdens Verk; ferroan pargasite, Jomåsknutene Elders, T.G., 1964. A petrological and structural study of the Levang gneiss dome, southern Norway. Unpublished PhD thesis, University of Durham, Durham, 246 pp. Elders, W.A., 1959. Geological environment of the Herefoss and Grimstad granites (map 1:200.000). Norges Geologiske Undersøkelse 208.

15

Elders, W.A., 1963. On the form and mode of emplacement of the Herefoss granite. Norges Geologiske UndersøkelseA 214,CCEPTED 1-52. MANUSCRIPT Elders, W.A., 1964. Tectonically induced features resembling sedimentary structures in banded gneisses of southern Norway. Geological Society of America Abstracts with Program, 54-55. Elders, W.A., 1964. Geological and petrological studies in the Precambrian gneisses and granites of the south-east part of Aust-Agder, southern Norway. Unpublished PhD thesis, University of Durham, Durham. Ellefsen, D., 2007. Næs Jernverk på 1950-tallet – sett fra et gutteperspektiv. Nes Jernverk, Fortuna 3, 17-25. Elliott, R.B., 1966. The association of amphibolite and albitite, Kragerö, south Norway. Geological Magazine 103, 1-7. Elliott, R.B., 1973. The chemistry of gabbro/amphibolite transitions in south Norway. Contributions to Mineralogy and Petrology 38, 71-79. Elliott, R.B., Morton, R.D., 1965. The nodular metamorphic rocks from the environments of Kragerö, south coast of Norway. Norges Geologiske Undersøkelse 45, 1-20. Engvik, A.K., Austrheim, H., 2010. Formation of sapphirine and corundum in scapolitised and Mg- metasomatised gabbro. Terra Nova 22, 166-171. Engvik, A.K., Golla-Schindler, U., Berndt, J., Austrheim, H., Putnis, A., 2009. Intragranular replacement of chlorapatite by hydroxy-fluor-apatite during metasomatism. Lithos 112, 236- 246. Engvik, A.K., Golla-Schneider, U., Putnis, A., Austrheim, H., 2007. Intragranular replacement of chlorapatite by hydroxyapatite during scapolitisatiMANUSCRIPTon. Goldschmidt Conference Abstracts, abstract A257. Engvik, A.K., Ihlen, P., Korneliussen, A., Austrheim, H., Putnis, A., 2012. Metasomatic formation and replacement of apatite (Bamble sector, South Norway). In: Broekmans, M.A.T.M., ed., Proceedings of the 10 th International Congress for Applied Mineralogy (ICAM), Springer, Berlin, 163-170. Engvik, A.K., Mezger, K., Wortelkamp, S., Bast, R., Corfu, F., Kornelisussen, A., Ihlen, P., Bingen, B., Austrheim, H., 2011. Metasomatism of gabbro-mineral replacement and element mobilization during the Sveconorwegian metamorphic event. Journal of Metamorphic Geology 29, 399-423. Engvik, A.K., Putnis, A., Fitzgerald, J.D., Austrheim, H., 2008. Albitization of granitic rocks: The mechanismACCEPTED of replacement of oligoclase by albite. Canadian Mineralogist 46, 1401-1415. Erdmann, A., 1842. Undersökning af ett Scapolithartadt mineral, från Bamle i trakten af Brewig i Norge. Kungliga Svenske Vetenskaps-Akademien Förhandlingar, 1-4. Erdmann, A., 1844. Undersökning af et nytt Ytterjords- och Titansyrehaltig Mineral från Buø, i trakten af Arendal i Norrige. Konglige Svenske Vetenskaps-Akademi Forhandlinger, 355-361. Estifanos, B., Sta hl,̊ K., Andréasson, P.G., Bylund, G., Johansson, L., 1997. A mineralogical and

structural study of red corundum, Al 1.98 Cr 0.02 O3, from Froland, Norway. Norsk Geologisk Tidsskrift 77, 119-122. 16

Falkum, T., 1963. En geologisk undersökelse av metasediment komplekset i Tveit. Unpublished PhD thesis, University of Oslo,A OsloCCEPTED 124 pp. MANUSCRIPT Falkum, T., 1966. Geological investigations in the Precambrian of southern Norway. I - The complex of metasediments and migmatites at Tveit, Kristiansand. Norsk Geologisk Tidsskrift 46, 85- 110. Falkum, T., 1969. Geological investigations in the Precambrian of southern Norway. II - Geology of the island in the Precambrian of southern Norway. Norges Geologiske Undersøkelse 258, 185-227. Falkum, T., 1969. Geological investigations in the Precambrian of southern Norway. III - A deformed agglomerate in the Precambrian migmatites of southern Norway. Norsk Geologisk Tidsskrift 49, 367-386. Falkum, T., 1972. On large-scale tectonic structures in the Agder-Rogaland region, southern Norway. Norsk Geologisk Tidsskrift 52, 371-376. Falkum, T., 1985. Geotectonic evolution of southern Scandinavia in light of a late Proterozoic plate collision. In: Tobi, A.C. & Touret, J.L.R. (Eds.), The deep Proterozoic crust in the North Atlantic Provinces. D. Reidel, Dordrecht, 309-322. Falkum, T., 1990. The Proterozoic evolution of the southwestern Fennoscandia - crustal accretion or ensialic rejuvenation ? Volume of Abstracts, 2 nd Symposium on the Baltic Shield, Lund, 35. Falkum, T., 1991. Deformed skarns and amphibolites in high-grade metamorphic charnockitic to enderbitic gneisses at Tromøy, Arendal. Abstract, 2nd SNF Excursion, Bamble, 3 pp. Falkum, T., Petersen, J.S., 1980. The Sveconorwegian orogenic belt, a case of late Proterozoic plate collision. Geologische Rundschau 69, 622-647.MANUSCRIPT Field, D., 1969. The geology of the country around Tvedestrand, south Norway. Unpublished PhD thesis, University of Nottingham, Nottingham. Field, D., Clough, P.W.L., 1976. K/Rb ratios and metasomatism in metabasites from a Precambrian amphibolite - granulite transition zone. Journal of the Geological Society, London 132, 277- 288. Field, D., Drury, S.A., Cooper, D.C., 1980. Rare-earth and LIL element fractionation in high grade charnockitic gneisses, south Norway. Lithos 13, 281-289. Field, D., Elliott, R.B., 1974. The chemistry of gabbro/amphibolite transition in south Norway. Contributions to Mineralogy and Petrology 47, 73-76. Field, D., Råheim, A., 1979. Rb-Sr total rock isotope studies on Precambrian charnockitic gneisses from southACCEPTED Norway: Evidence for isochron resetting during a low-grade metamorphic- deformational event. Earth and Planetary Science Letters 45, 32-44. Field, D., Råheim, A., 1979. A geologically meaningless Rb-Sr total rock isochron. Nature 282, 497- 499. Field, D., Råheim, A., 1980. Secondary meaningless Rb-Sr isochrons, low 87 Sr/ 86 Sr initial ratios and crustal residence times of high-grade gneisses. Lithos 13, 295-309. Field, D., Råheim, A., 1981. Age relationships in the Proterozoic high-grade gneiss regions of southern Norway. Precambrian Research 14, 261-275. 17

Field, D., Råheim, A., 1983. Age relationships in the Proterozoic high-grade gneiss regions of southern Norway: ReplyA toCCEPTED "discussion andMANUSCRIPT comment" by Weis and Demaiffe. Precambrian Research 22, 157-161. Field, D., Rodwell, J.R., 1968. The occurrence of prehnite in a high-grade metamorphic sequence from south Norway. Norsk Geologisk Tidsskrift 48, 58-61. Field, D., Smalley, P.C., Lamb, R.C., Råheim, A., 1985. Geochemical evolution of the 1.6-1.5 GA-old amphibolite-granulite facies terrain, Bamble sector, Norway: Dispelling the myth of Grenvillian high-grade reworking. In: Tobi, A.C. & Touret, J.L.R. (Eds.), The deep Proterozoic crust in the North Atlantic provinces. D. Reidel, Dordrecht, 567-578. Field, D., Starmer, I.C., 1982. Graphite genesis in high-grade metamorphic rocks. Nature 298, 303- 304. Finne, T.E., 2000. Field notes for stream sediment collection Bamble-Arendal. Norges Geologiske Undersøkelse report 2000.141, 8 pp. Fløystad, I., 1986. Arbeidere og arbeiderlevekår ved Næs jernverk. In: Try, H. (Ed.), 1986. Jernverk på Agder. Agder Distrikshøgskole, Kristiansand, Skrifter 3, 75-104. Fløystad, I., 2007. Barbo Jernverk. Nes Jernverk, Fortuna 3, 27-39. Forbes, D., 1857. Gæologiske undersögelser over det metamorfiske territorium ved Norges sydkyst. Nyt Magazine for Naturvidenskaberne 9, 165-184. Forbes, D., Dahll, T., 1855. Mineralogiske iagttagelser omkring Arendal og Kragerø. I. Nyt Magazine for Naturvidenskaberne 8, 213-229. Forbes, D., Dahll, T., 1857. Mineralogiske iagttagelser omkring Arendal og Kragerø. II. Nyt Magazine for Naturvidenskaberne 9, 14-20. MANUSCRIPT Force, E.R., 1991. Rutile-bearing albitites. In: Force, E.R., Geology of titanium-mineral deposits. Geological Society of America Special Paper 259, 24-25. Force, E.R., 1991. Kragerø district, Norway. In: Force, E.R., Geology of titanium-mineral deposits. Geological Society of America Special Paper 259, 35-36. Foslie, S., 1925. Syd-Norges gruber og malmforekomster. Norges Geologiske Undersøkelse 126, 89 pp. Fossum, G.P., 1995. Fluid-indusert retrogradering av granulitter i Gjevingkomplekset, Aust-Agder. Unpublished MSc thesis, University of Oslo, Oslo, 112 pp. Fossum, G.P., Simonsen, S., 1996. Fluid induced retrograde metamorphism in Gjeving complex, southernmost Norway. Abstract, 7 th SNF Excursion, Numedal-Telemark-Bamble, 6 pp. Frigstad, O.F., 1996.ACCEPTED Geologiske severdigheter i Kristiansand. Agder Naturmuseum og Botaniske Hage Årbok 1994 og 1995, 17-48. Frodesen, S., 1968. Coronas around olivine in a small gabbro intrusion, Bamble area, south Norway. Norsk Geologisk Tidsskrift 48, 201-206. Frodesen, S., 1968. Petrographical and chemical investigations of a Precambrian gabbro intrusion, Hiåsen, Bamble area, south Norway. Norsk Geologisk Tidsskrift 48, 281-306. Frodesen, S., 1973. Trace elements in a Precambrian gabbro intrusion, Hiåsen, Bamble area, south Norway. Norsk Geologisk Tidsskrift 53, 1-10. 18

Frost, B.R., Frost, C.D., Touret, J.L.R., 1989. Magmas as a source of heat and fluids in granulite metamorphism. In: Bridgwater,ACCEPTED D. (Ed.), MANUSCRIPT Fluid movements, element transport and the composition of the deep crust. Kluwer, Dordrecht, 1-18. Gaál, G., Gorbatschev, R., 1987. An outline of the Precambrian evolution of the Baltic shield. Precambrian Research 35, 15-52. Gerling, E., Kratz, K., Lobach-Zhuchenko, S., 1968. Precambrian geochronology of the Baltic shield. Proceedings of the 23 rd International Geological Congress, Prague, 4, 265-273. Ginsburg, A.I., Gorzhevskaya, S.A., Erofeeva, E.A., Sidorenko, G.A., 1958. The chemical composition of isometric titanium tantalum niobates. Geochemistry (5), 615-636. betafite, Tangen (Kragerø)

Giuli, G., Bindi, L. Bonazzi, P., 2000. Rietveld refinement of okayamalite, Ca 2SiB 2O7: Structural evidence for the B/Si ordered distribution. American Mineralogist 85, 1512-1515. okayamalite, Arendal Glaveris, M., 1970. The occurrence of olivine hyperite at Odegardens Verk, Bamble, south Norway. Norsk Geologisk Tidsskrift 50, 15-17. Gleditsch, E., 1945. A rapid survey of the Pre-cambrian areas around the Oslo-fiord (the waters Oslo- Son). Norsk Geologisk Tidsskrift 25, 147-158. Gleditsch, E., Qviller, B., 1932. Investigation of uranothorite from the Arendal district, Norway. Philosophical Magazine 7(14), 233-243. Gleditsch, E., Samdahl, B., 1922. Sur le poids atomique du chlor dans un mineral ancien, l’apatite de Bamle. Comptes Rendus Seances 174, 746. Goldman, D.S., Rossman, G.R., 1976. Identification MANUSCRIPTof a mid-infrared electronic adsorption band of 2+ Fe in the distorted M(2) site of orthopyroxene (Mg,Fe)SiO 3. Chemical Physics Letters 41, 474-475. orthopyoxene, bamble Goldman, D.S., Rossman, G.R., 1977. The spectra of iron in orthpyroxene revisited: The splitting of the ground state. American Mineralogist 62, 151-157. orthopyroxene, Bamble Gorbatschev, R., Gaál, G., 1987. The Precambrian history of the Baltic shield. In: Kröner, A., (Ed.), Proterozoic lithospheric evolution. AGU Geodynamics Series 17, 149-159. Goreva, J.S., Ma, C., Rossman, G.R., 2001. Fibrous nanoinclusions in massive rose quartz: The origin of rose coloration. American Mineralogist 86, 466-472. rose quartz, Åmdal Graham, S., Andersen, T., de Haas, G.J.L.M., 2005. Lu-Hf and U-Pb of zircon from the Jomasknutene gabbro, Bamble area, southern Norway. In: Vuollo, J. & Mertanen, S. (Eds)., Abstracts and Program ACCEPTED5 th International Dyke Conference, Rovaniemi, 17. Grant, J.A., 1978. Orthoamphibole and orthopyroxene relations in high-grade metamorphism of pelitic rocks. Geological Society of America Abstracts with Programm 10, 411. Green, J.C., 1956. Geology of the Storkollen-Blankenberg area, Kragerö, Norway. Norsk Geologisk Tidsskrift 36, 89-140. Griffin, W.L., Åmli, R., Heier, K.S., 1972. Whitlockite and apatite from lunar rock 14310 and from Ødegården, Norway. Earth and Planetary Science Letters 15, 53-58.

19

Griffin, W.L., Heier, K.S., 1971. The occurrence of olivine hyperite at Ødegårdens Verk, Bamble, south Norway, by M. Glaveris.ACCEPTED Norsk Geologisk MANUSCRIPT Tidsskrift 51, 89-91. Grønhaug, A., 2004. Klondyke i Kragerø. Da thoritt-feberen raste. In: Historieglimt, Årsskrift for Kragerø og Skåtøy historielag, 93-108. Gupta, L.N., 1986. Secondary and primary growths in the zircons from paragneisses and migmatites of Arvika (Sweden) and Nelaug (Norway) regions. Journal of the Geological Society of India 28, 320-324. Gupta, L.N., Johannes, W., 1982. Petrogenesis of a stromatic migmatite (Nelaug, southern Norway). Journal of Petrology 23, 548-567. Gupta, L.N., Johannes, W., 1985. Effect of metamorphism and partial melting of host rocks on zircons. Journal of Metamorphic Geology 3, 311-323. Haack, U., 1975. Aussagemöglichkeiten der Spaltspurenmethode und Spaltspuren-Geochronologie des Damara-Orogens in S.W. Afrika. Unpublished Habilitationsschrift, Georg August Universität Götttingen, Götttingen. Hagelia, P., 1984. Rb-Sr data on the Ubergsmoen augen gneiss and its country rock, Bamble, south Norway: Evidence for a Sveconorwegian (Grenvillian) high grade event superimposing ca. 1500 Ma old crust. Volume of Abstracts, NATO ASI Conference, Moi, 15. Hagelia, P., 1989. Structure, metamorphism and geochronology of the Skagerrak shear belt, as revealed by studies in the Hovdefjell - Ubergsmoen area, South Norway. Unpublished MSc thesis, University of Oslo, Oslo, 236 pp. Hagelia, P., 1991. Introduction to the Ubergsmoen augen gneiss (UAG); structural setting, metamorphism, age and geochemistry. Abstract,MANUSCRIPT 2 nd SNF Excursion, Bamble, 6 pp. Hagelia, P., 1991. The Hovdefjell summit and the Hovdefjell-Vegårshei igneous suite (HVIS). Abstract, 2 nd SNF Excursion, Bamble, 3 pp. Hagelia, P., 1991. Contact aureole of the Hovdefjell-Vegårshei igneous suite. Anatectic noritic neosomes in metabasite; thermal doming and associated strain softening. Abstract, 2 nd SNF Excursion, Bamble, 2 pp. Hagelia, P., 1991. Principal deformations in the mylonitic Porsgrunn-Nelaug shear zone, demonstrated in the HVAG. Abstract, 2 nd SNF Excursion, Bamble, 3 pp. Hagelia, P., 1991. Intrusive relationships of leuconorite, norite and Hovdefjell-Vegårshei augen gneiss at Espeland. Abstract, 2 nd SNF Excursion, Bamble, 1 p. Hagelia, P., 1991. Structural setting of the Tvedestrand "homophaneous" granite and its significance for datingACCEPTED high-grade deformations in the Bamble sector. Abstract, 2 nd SNF Excursion, Bamble, 2 pp. (Also in: Eurogranites 1996. South Norway Stavanger-Oslo, 103-105). Hagelia, P., 1996. Tectonic filter pressing in the synkinematic Ubergsmoen augen gneiss, southern Norway. Implications for granulite genesis and LILE depletion. In: Eurogranites 1996. South Norway Stavanger-Oslo, 97-102. Hagelia, P., 2000. Anomalously low temperature orthopyroxene, spinel and sapphirine occurrences in metasediments from the Bamble amphibolite to granulite facies transition zone (South

20

Norway): Possible evidence for localized action of saline fluids: A discussion. Journal of Geology 108, 243-246. ACCEPTED MANUSCRIPT Hagelia, P., Touret, J.L.R., Ploegsma, M., 1996. Hovdefjell summit. Abstract, 7 th SNF Excursion, Numedal-Telemark-Bamble, 7 pp. Hageskov, B., 1980. The Sveconorwegian structures of the Norwegian part of the Kongsberg- Bamble-Østfold segment. Geologiska Föreningens i Stockholm Förhandlingar 102, 150-155. Halvorsen, A., 1973. En malmgeologisk undersøkelse av rutilforekomster ved Lofthaug, Kragerø kommune. Unpublished thesis, NTH, Trondheim. Halvorsen, E., 1970. Paleomagnetism and the age of the younger diabases in the Ny-Hellesund area. Norsk Geologisk Tidsskrift 50, 157-166. Halvorsen, E., 1972. On the palaeomagnetism of the Arendal diabases. Norsk Geologisk Tidsskrift 52, 217-228. Hamberg, A., 1886. Anatas og titanit från apatitførekomsten vid Kragerø. Geologiska Föreningens i Stockholm Förhandlingar 8, 475-476. Harlov, D.E., 1992. Comparative oxygen barometry in granulites, Bamble sector, SE Norway. Journal of Geology 100, 423-445. Harlov, D.E., 2000. Titaniferous magnetite-ilmenite thermometry and and titaniferous magnetite- ilmenite-orthopyroxene-quartz oxygen barometry in granulite facies gneisses, Bamble sector,

SE Norway: Implications for the role of high grade CO 2-rich fluids during granulite genesis. Contributions to Mineralogy and Petrology 139, 180-198. Harlov, D.E., 2000. Pressure-temperature estimation in orthopyroxene-garnet bearing granulite facies rocks, Bamble sector, Norway. Mineralogy andMANUSCRIPT Petrology 69, 11-33. Harlov, D.E., 2000. Apparent pyrrhotite - chalcopyr ite solid solutions in charnockites: The Sheravoy Hills massif, Tamil Nadu, S India and the Bamble sector, SE Norway. Mineralogical Magazine 64, 853-865. Harlov, D.E., 2012. Formation of monazite and xenotime inclusions in fluorapatite megacrysts, Gloserheia granite pegmatite, Froland, Bamble sector, southern Norway. Mineralogy and Petrology 102, 77-86. Harlov, D., Förster, H.J., 2000. Experimental nucleation of co-existing monazite and xenotime grains in chlorapatite. Journal of Conference Abstracts 5, 486. Harlov, D.E., Förster, H.J., Nijland, T.G., 2002. Fluid-induced nucleation of (Y + REE)-phosphate minerals within apatite: Nature and experiment. Part I. Chlorapatite. American Mineralogist 87, 245-261.ACCEPTED Harlov, D.E., Hansen, E.C., Bigler, C., 1998. Petrologic evidence for K-feldspar metasomatism in granulite facies rocks. Chemical Geology 151, 373-386. Harlov, D., Tropper, P., Seifert, W., Nijland, T., Förster, H.J., 2006. Formation of Al-rich titanite

(CaTiSiO 4O-CaAlSiO 4OH) reaction rims on ilmenite in metamorphic rocks as a function of

fH2O and f O2 . Lithos 88, 72-84. Hauser, O., 1908. Risørit ein neues Mineral. Zeitschrift für Anorganisch Chemie 60, 230-236.

21

Hausmann, J.F.L., 1812. Reise durch Skandinavien in den Jahren 1806 und 1807. Zweiter Teil. J.F. Römer, Göttingen. ACCEPTED MANUSCRIPT Hawthorne, F.C., Groat, L.A., Raudsepp, M., Ball, N.A., Kimata, M., Spike, F.D., Gaba, R., Halden, N.M., Lumpkin, G.R., Ewing, R.C., Greegor, R.B., Lytle, F.W., Ecrit, T.S., Rossman, G.R., Wicks, F.J., Ramik, R.A., Sherriff, B.L., Fleet, M.E., Mccammon, C., 1991. Alpha-decay damage in titanite. American Mineralogist 76, 370-396. titanite, Gjerstad, Arendal Heaman, L.S., Smalley, P.C., 1994. A U-Pb study of the Morkheia complex and associated gneisses, southern Norway: Implications for disturbed Rb-Sr systems and for the temporal evolution of Mesoproterozoic magmatism in Laurentia. Geochimica et Cosmochimica Acta 58, 1899-1911. Heier, K.S., Palmer, P.D., Taylor, S.R., 1967. Comment on the Pb distribution in southern Norwegian alkali feldspars. Norsk Geologisk Tidsskrift 47, 185-189. Heier, K.S., Taylor, S.R., 1958. Alkali elements in potash feldspar from the pre-Cambrian of southern Norway. Geochimica et Cosmochimica Acta 13, 293-302. Heier, K.S., Taylor, S.R., 1959. Distribution of Ca, Sr and Ba in southern Norwegian pre-Cambrian alkali feldspars. Geochimica et Cosmochimica Acta 17, 286-304. Heier, K.S., Taylor, S.R., 1959. Distribution of Li, Na, K, Rb, Cs, Pb and Tl in southern Norwegian pre-Cambrian alkali feldspars. Geochimica et Cosmochimica Acta 15, 284-304. Heinrich, E.W., 1966. Other Norwegian occurrences. In: Heinrich, E.W., The geology of carbonatite. Rand McNelly, Chicago, 423-424. Heldal, T., 1992. Naturstein i Sør-Norge: Befaring av Grimstad og Herefoss granitt, Aust-Agder. Norges Geologiske Undersøkelse report 92.217, 14 pp. Helland, A., 1874. Apatit i forekommende i rene staMANUSCRIPTkke og gange i Bamle i Norge. Geologiska Föreningens i Stockholm Förhandlingar 2, 148-156. Henderson, I.H.C., Ihlen, P.M., 2004. Emplcement of polygeneration pegmatites in relation to Sveco- Norwegian contractional tectonics: Examples from southern Norway. Precambrian Research 133, 207-222. Hoefs, J., Touret, J., 1975. Fluid inclusions and carbon isotope study from Bamble granulites (south Norway). Contributions to Mineralogy and Petrology 52, 165-174. Hofseth, B., 1940. Levanhalvøen (geologisk beskrivelse as Levanghalvøen med omgivelser). Unpublished MSc thesis, University of Oslo, Oslo. Hofseth, B., 1942. Geologiske undersökelser ved Kragerø, i Halleia og . Norges Geologiske Undersøkelse 157, 47 pp. Hogarth, D.D. ,Chao,ACCEPTED G.Y., Harris, D.C., 1972. New data on hellandite. Canadian Mineralogist 11, 760-766. hellandite, Kragerø Holm, C., 1824. Samlinger til Norges topografiske mineralogi. Magazin for Naturvidenskaberne 2, 110-115. Holm, C., 1824. Fortegnelse over de i omegnen af Arendal forekommende fossilier, meddeelt af C. Holm. Magazin for Naturvidenskaberne 3, 111-115. Holmes, A., Shillibeer, H.A., Wilson, J.T., 1955. Potassium-argon ages of some Lewisian and Fennoscandian pegmatites. Nature 176, 390-392. 22

Holtedahl, O., 1917. Kalkstensforekomster på Sörlandet. Norges Geologiske Undersøkelse 81, 1-26. Holtedahl, O., 1953. Kongsberg-BambleACCEPTED formasjonen. MANUSCRIPT In: Holtedahl, O., Norges geologi. Bind I. Norges Geologiske Undersøkelse 164, 61-86. Holtedahl, O. (Ed.), 1960. Geology of Norway. Norges Geologiske Undersøkelse 208. Horvath, 1946. Die kupfergruben Skytemyr und Bøylestad. Norges Geologiske Undersøkelse Bergarkivet Fagrapport BA 1169, 1 p. Hounslow, A.W., Chao, G.Y., 1970. Monoclinic chlorapatite from Ontario. Canadian Mineralogist 10, 252-259. Cl-apatite, Ødegårdens Verk

Howie, R.A., Wooley, A.R., 1951. The role of titanium and the effect of TiO 2 on the cell-size, refractive index, and specific gravity in the andradite-melanite-schorlomite series. American Mineralogist 36, 775-790. garnet, Arendal Hulzebos-Sijen, N.M.P.E., Visser, D., Maarschalkerweerd, M.H., Maijer, C., 1990. Two new kornerupine localities in the Bamble sector, Norway. Geonytt 17, 58. Husebye, E.S., Ro, H.E., Kinck, J.J., Larsson, F.R., 1988. Tectonic studies in the Skagerrak province: The "Mobil Search" cruise. In: Kristoffersen, Y. (Ed.), Progress in studies of the lithosphere in Norway. Norges Geologiske Undersøkelse Special Publication 3, 14-20. Hysingjord, J., 1965. Geologisk undersøkelse av Hiåsen kvarts- og feltspatforekomst, Søndeled, Aust- Agder fylke. Norges Geologiske Undersøkelse Report 601, 6 pp. Hysingjord, J., 1990. Skapolitt-undersøkelser i Bamblefeltet. Norges Geologiske Undersøkelse Report 90-042, 12 pp. Ihlen, P., Furuhaug, L., Lynum, R., Müller, A. & Larsen, R.B., 2004. Gutterbundete sporelementer i kvarts fra pegmatitter, hydrothermale ganger,MANUSCRIPT kvartsitter og graniter i Sør-Norge. Norges Geologiske Undersøkelse report 2004.020, 48 pp. Ihlen, P., Henderson, I., Larsen, R.B. & Lynum, R., 2002. Potensielle ressurser av kvarts- og feltspatråstoffer på Sørlandet. II: Resultater av undersøkelsene i Frolandsområdet i 2001. Norges Geologiske Undersøkelse report 2002.009, 29 pp. Ihlen, P.M., Lynum, R., Henderson, Larsen, R.B., 2001. Potensielle ressurser av kvarts- of feltspat- råstoffer på Sørlandet, I: Regional prøvetakning av utvalgte feltspatbrudd i Frolandsområdet. Norges Geologiske Undersøkelse Report 2001.044, 46 pp. Ihlen, P.M., Schiellerup, H., Gautneb, H., Skår, Ø., 2014. Characterization of apatite resources in Norway and their REE potential - A review. Ore Geology Reviews 58, 126-147. Jacobsen, S., Heier, K.S., 1975. Rb-Sr systematics in metamorphic rocks, Kongsberg sector, south Norway. ACCEPTEDLithos 11, 257-276. Jansen, J.B.H., Blok, R.J.P., Bos, A., Scheelings, M., 1985. Geothermometry and geobarometry in Rogaland and preliminary results from the Bamble area, south Norway. In: Tobi, A.C., Touret, J.L.R. (Eds.), The deep Proterozoic crust in the North Atlantic provinces. D. Reidel, Dordrecht, 499-516. Jerpseth, S., 1979. En geologisk undersøkelse av området rundt Meikjær og Stoltz nikkelgruver. Unpublished MSc thesis, University of Oslo, Oslo, 99 pp.

23

Joesten, R., 1986. The role of magmatic reaction, diffusion and annealing in the evolution of coronitic microstructure in troctoliticACCEPTED gabbro from Risör,MANUSCRIPT Norway. Mineralogical Magazine 50, 441-467. Joesten, R., 1986. Reply. Mineralogical Magazine 50, 474-479. Johannes, W., 1983. On the origin of layered migmatites. In: Atherton, M.P., Gribble, C.D. (Eds.), Melting, migmatites and metamorphism. Shiva, Nantwich, 234-249. Johannes, W., 1988. What controls partial melting in migmatites ? Journal of Metamorphic Geology 6, 451-465. Johannes, W., Holtz, F., Möller, P., 1995. REE distribution in some layered migmatites: Constraints on their petrogenesis. Lithos 35, 139-152. Johansen, N.V., 2007. Gull- og sølvgruvedrift på Hisøy. Hisøy Historielag, Hisøy, 183 pp. Johansen, N.V., 2007. Christian IV’s gullgruver ved Arendal. Nes Jernverk, Fortuna 3, 41-55. Johanson, E.W., 1976. Amphibolites in the Bamble series of the Skardvatn area, Risör, south Norway. Unpublished PhD thesis, University of London, London. Judd, J.W., 1889. On the processes by which a plagioclase feldspar is converted into scapolite. Mineralogical Magazine 8, 186-198. Kihle, J., 1989. Polymetamorf utvikling av cordieritt-förende metapeliter i Bamble-sektoren, syd- Norge. Unpublished MSc thesis, University of Oslo, Oslo, 360 pp. Kihle, J., 1990. Na-, Al- and Ti-contents of coexisting orthoamphiboles of the polymetamorphic Bamble-sector, southern Norway. A potential tool. Geonytt 17, 64.

Kihle, J., 1990. CO 2-CO-H2O distribution within the polymetamorphic cordierite-bearing metapelites of the Bamble sector, southern Norway. Geonytt 17,:64-65. Kihle, J., 1991. Orthopyroxene-sillimanite- and peraluminousMANUSCRIPT sapphirine granulites from Hasleholmen, Fevik; high pressure granulite facies relics. Abstr act, 2 nd SNF Excursion, Bamble, 4 pp. Kihle, J., 1992. Liquid and solid hydrocarbons in a Permian diabase dyke from Tvedestrand, Norway. Program with Abstracts, Symposium ‘The geology of the Sveconorwegian (Gothian) provinces of the Baltic Shield’, Utrecht, 19. Kihle, J., 1993. Cordieritt - Bamble-sektorens gåtefulle blå mineral. Stein 20, 88-94. Kihle, J., Bucher-Nurminen, K., 1992. Orthopyroxene-sillimanite-sapphirine granulites from the Bamble granulite terrain, southern Norway. Journal of Metamorphic Geology 10, 671-683. Kihle, J., Harlov, D.E., Frigaard, Ø., Jamtveit, B., 2010. Epitaxial quartz inclusions in corundum from

a sapphirine-garnet boudin, Bamble Sector, SE Norway: SiO 2-Al 2O3 miscibility at high P–T dry granulite facies conditions. Journal of Metamorphic Geology 28, 769-784. Killeen, P.G., Heier,ACCEPTED K.S., 1974. Radioelement variation in the Levang granite-gneiss, Bamble region, south Norway. Contributions to Mineralogy and Petrology 48, 171-177. Killeen, P.G., Heier, K.S., 1975. A uranium and thorium enriched province of the Fennoscandian shield in southern Norway. Geochimica et Cosmochimica Acta 39, 1515-1524. Killeen, P.G., Heier, K.S., 1975. Radioelement distribution and heat production in Precambrian granitic rocks, southern Norway. Det Norske Videnskaps-Akademi I Oslo Skrifter, Matematisk-Naturvidenskapelig Klasse 35, 1-30.

24

Kinck, J.J., Husebye, E.S., Larsson, F.R., 1993. The Moho depth distribution in Fennoscandia and the regional tectonic evolutionA CCEPTEDfrom MANUSCRIPTto Permian times. Precambrian Research 64, 23-51. Kinck, J.J., Husebye, E.S., Lund, C.E., 1991. The south Scandinavian crust: Structural complexities from seismic reflection and refraction profiling. Tectonophysics 189, 117-133. Kinck, J.J., Lie, J.E., Husebye, E.S., Larsson, F.R., 1990. The Sveconorwegian deep geology down to 100 km. by reflection seismics. Volume of Abstracts, 2 nd Symposium on the Baltic Shield, Lund, 50. Kjerulf, T., 1881. Udsigt over det sydige Norges geologi. Fabritius, Christiania, 262 pp. Kjerulf, T., Dahll, T., 1861. Om jernertsener forekomst ved Arendal, Næs og Kragerö. Nyt Magazine for Naturvidenskaberne 11, 293-359. Kjerulf, T., Dahll, T., 1866. Mémoire sur les gîtes de fer de la côte sud-ouest de la Norvège, Arendal- Naes-Kragerö. Annales des Mines 9, 269-300. Kjølle, I. & Heldal, T., 2001. Natursteinundersøkelse av Tråkfjell porfygranitte, Bamble kommune, Telemark. N Norges Geologiske Undersøkelse report 2001.005, 11 pp. Klingenberg H.O., undated. Nickel copper ore deposits, Arendal, Norway (the Brataasen and Ramsefodfjeld ore deposits). Norges Geologiske Undersøkelse Bergarkivet Fagrapport BA 4048, 3 pp. Kloprogge, J.T., 1987. Veldwerkverslag gebied Åmdal (Bamble), Noorwegen. Unpublished MSc thesis, Utrecht University, Utrecht, 53 pp. Kloprogge, J.T., 1987. Albite-actinolite (hedenbergite) containing rocktypes in the Bamble area, southeast Norway. Unpublished MSc thesis, Utrecht University, Utrecht, 33 pp. Knudsen, T.L., 1996. Petrology and geothermobarometMANUSCRIPTry of granulite-facies metapelites from the Hisøy -Torungen area, south Norway: New data on the Sveconorwegian p-T-t path of the Bamble sector. Volume of Abstracts, 22 nd Nordic Geological Winter Meeting, Turku-Åbo, 90. Knudsen, T.L., 1996. Petrology and geothermobarometry of granulite-facies metapelites from the Hisøy-Torungen area, south Norway: New data on the Sveconorwegian p-T-t path of the Bamble sector. Journal of Metamorphic Geology 14, 267-287. Knudsen, T.L., 1996. The Sveconorwegian (Grenvillian) evolution of high-grade metasediments and associated rocks of the Bamble sector, southern Norway. Program and Abstracts, COPENA / ECSOOT / IBTA Conference ‘Proterozoic evolution in the North Atlantic realm’, Goose Bay, 96-97. Knudsen, T.L., 1996. Enderbitic intrusion veins crosscutting a coronitic gabbro. Abstract, 7 th SNF Excursion,ACCEPTED Numedal-Telemark-Bamble, 1 p. Knudsen, T.L., 1996. Semipelites at Hisøy. Abstract, 7 th SNF Excursion, Numedal-Telemark-Bamble, 2 p. Knudsen, T.L., 1997. Trace element characteristics and selective elemental depletion during the Sveconorwegian medium- to high-grade metamorphism of metasediments and associated rocks from the Bamble sector, southern Norway. Geonytt 24, 57.

25

Knudsen, T.L., 1997. From protocrust to lower cruts: The geochemical evolution of metasediments and associated rocks fromACCEPTED the Bamble sector,MANUSCRIPT southern Norway. Unpublished PhD thesis, University of Oslo, Oslo. Knudsen, T.L., 1997. From protocrust to lower crust: The geochemical evolution of metasediments from the Bamble sector, southern Norway. NGU, Trondheim, Norges Geologiske Undersøkelse Report 97-131 (abstract, 2 pp). Knudsen, T.L., Andersen, T., 1997. Detrital zircon ion probe ages of metasediments - Implications for the Proterozoic evolution of southern Norway. Volume of Abstracts, GAC/ MAC annual meeting, Ottawa, A80. Knudsen, T.L., Andersen, T., 1997. Fluid inclusions in granulite facies metasediments from the Proterozoic lower crust in the Hisøy-Torungen area, Bamble sector, south Norway. Proceedings of the Koninklijke Nederlandse Akademie van Wetenschappen 100, 79-101. Knudsen, T.L., Andersen, T., 1999. Petrology and geochemistry of the Tromøy gneiss complex, south Norway, an alleged exampled of Proterozoic depleted lower continental crust. Journal of Petrology 40, 909-933. Knudsen, T.L., Andersen, T., Maijer, C., Verschure, R.H., 1997. Trace-element characterisitics and Pb isotopic evolution of metasediments and associated Proterozoic rocks from the amphibolite- to granulite-facies Bamble sector, southern Norway. Chemical Geology 143, 145-169. Knudsen, T.L., Andersen, T., Whitehouse, M.J., Vestin, J., 1997. Detrital zircon ages from southern Norway - Implications for the Proterozoic evolution of the southwestern Baltic shield. Contributions to Mineralogy and Petrology 130,MANUSCRIPT 47-58. Knudsen, T.L., Lidwin, A., 1995. Melt-related fluid -rock interaction processes in polymeamorphic, high-grade rocks: A fluid inclusion study of enderbitic dehydration veins and a mafic intrusion from the Bamble sector, southern Norway. Abstract, NorFa meeting, Copenhagen.

Knudsen, T.L., Lidwin, A., 1996. Magmatic CO 2, brine and nitrogen inclusions in Sveconorwegian enderbitic dehydration veins and a gabbro from the Bamble sector, southern Norway. European Journal of Mineralogy 8, 1041-1064. Koop, M.H.M., 1988. Veldwerk Bamble 1987. Unpublished MSc thesis, Utrecht University, Utrecht, 48 pp. Korneliussen, A., 1982. Malmforekomster i Kragerø-Risør distriktet, Langøy jernforekomster og Rekevik-Lindvigkollen titanforekomster. Norges Geologiske Undersøkelse Report 1750/69A, 20 pp. ACCEPTED Korneliussen, A., 1995. Rutile associated with eclogites in western Norway and scapolitised gabbros in southern Norway. Norges Geologiske Undersøkelse 427, 112-115. Korneliussen, A., Dormann, P., Erambert, M., Furuhaug, L., Mathiesen, C.O., 1992. Rutilforekomster tilknyttet eklogitt-bergarter på Vestlandet of metasomatiske omvandlede bergarter of metasedimenter i Bamble-Arendal regionen. Norges Geologiske Undersøkelse Report 92-234, 88 pp.

26

Korneliussen, A., Furuhaug, L., 1993. Ødegården rutilforekomst: En rutilførende skapolittomvandlet gabbro ved Ødegårdens AVerk,CCEPTED Bamble. Norges MANUSCRIPT Geologiske Undersøkelse Report 93-078, 46 pp. Korneliussen, A. & Furuhaug, L., 2000. On the rutile deposits Ramsgrønova, Orkheia, Ødegården and Lindvikkollen, S. Norway. Norges Geologiske Undersøkelse report 2000.123, 35 pp.. Kornman, E.J., 1990. Geologie van een gebied (5) ten zuid-westen van Tvedestrand, Bamble sector, Noorwegen. Unpublished MSc thesis, Utrecht University, Utrecht, 73 pp. Kornman, E.J., Moerenhout, A., 1990. Geothermometrie en geobarometrie op het gebied Tvedestrand -Arendal, Bamble, Z-O Noorwegen. Unpublished MSc thesis, Utrecht University, Utrecht, 39 pp. Kraeft, U., Saalfeld, M., 1967. Über die Aventurin-Oligoklase von Tvedestrand und Bjordam (Norwegen). Schweizerische Mineralogische und Petrographische Mitteilungen 47, 247-256. Kraus, M., Lindh, A., 1990. Der südliche Baltische Schild - seine tektogene Krustenentwicklung und Beziehungen zum Mitteleuropaischen Raum. Zeitschrift für geologische Wissenschaften 18, 569-586. Krijgsman, A., 1991. De geologie van het gebied rond het Hauglandsvann, Aust-Agder, zuid-oost Noorwegen. Unpublished MSc thesis, Utrecht University, Utrecht, 131 pp. Krijgsman, A., 1991. (Meta)-ultramafic rocks from Bamble, SE Norway. Unpublished MSc thesis, Utrecht University, Utrecht, 46 pp. Krijgsman, A., 1991. Geology and ore-genesis of the Ettedalgrube, a Proterozoic Pb-Zn-Ag deposit in SE Norway. Unpublished MSc thesis, Utrecht University, Utrecht, 34 pp. Krijgsman, A., 1991. Pb-Zn-Ag mineralization at theMANUSCRIPT Ettedalgrube. Abstract, 2 nd SNF Excursion, Bamble, 2 pp. Krijgsman, A., Maijer, C., Nijland, T.G., Visser, D., 1996. The Solemsvatn lherzolite: An example of ultrabasic rocks occurring in the Bamble Sector. Abstract, 7 th SNF Excursion, Numedal- Telemark-Bamble, 1 p. Kristiansen, R., 1993. Caysichitt-(Y) og chernovitt-(Y) fra Lindvikskollen, Kragerø; to nye mineraler for Norge. Stein 20, 125-128. Kristiansen, R., 1994. To nye mineraler for Norge - manganokolumbt og hingganitt-(Yb). Stein 21, 88-93. Kristoffersen, K., 1939. Kullblende i rombeporfyr. Norsk Geologisk Tidsskrift 18, 375-378. Kuiperus, G.T.J., 1986. Cu-Ni-Fe verertsingen in oost-Bamble, Noorwegen. Unpublished MSc thesis, Utrecht University,ACCEPTED Utrecht, 34 pp. Kullerud, L., 1991. Gjeving charnockite. Abstract, 2 nd SNF Excursion, Bamble, 2 pp. Kullerud, L., 1993. Svekonorvegisk metamorfose i Sørvest-Skandinavia, eller "de gamle geologer ler sist og best". Geonytt 20, 29. Kullerud, L., Dahlgren, S., 1990. Timing of the high grade metamorphism in the Bamble sector, south Norway. Geonytt 17, 68. Kullerud, L., Dahlgren, S., 1991. Hoveodden leucosomes. Abstract, 2 nd SNF Excursion, Bamble, 1 p.

27

Kullerud, L., Dahlgren, S., 1993. Sm-Nd geochronology of Sveconorwegian granulite facies mineral assemblages in the BambleA CCEPTEDshear belt, south MANUSCRIPT Norway. Precambrian Research 64, 347-360. Kullerud, L., Machado, N., 1991. End of a controversy: U-Pb geochronological evidence for significant Grenvillian activity in the Bamble area, Norway. Terra Abstracts 3, 504. Kullerud, L., Machado, N., 1991. Flosta charnockitic gneiss. Abstract, 2 nd SNF Excursion, Bamble, 1 p. Kulp, J.L., Ecklemann, W.R., 1957. Discordant U-Pb ages and mineral type. American Mineralogist 42, 154-164. Kulp, J.L., Neumann, H., 1961. Some potassium-argon ages from the Norwegian basement. Annals of the New York Academy of Science 91, 469-475. Lacroix, A., 1889. Contribution à l'étude des gneiss à pyroxène et des roches à wernérites. Bulletin de la Société Française de Minéralogie 12, 83-350. Lamb, R.C., 1981. Geochemical studies in the Proterozoic high-grade gneiss terrain, Bamble sector, south Norway. Unpublished PhD thesis, University of Nottingham, Nottingham Lamb, R.C., 1981. Arendal 1611 IV berggrunnskart 1:50,000. Preliminary issue. Norges Geologiske Undersøkelse, Trondheim. Lamb, R.C., Smalley, P.C., Field, D., 1986. P-T conditions for the Arendal granulites, southern

Norway: Implications for the roles of P, T and CO 2 in deep crustal LILE depletion. Journal of Metamorphic Geology 4, 143-160. Lang, O., 1879. Ein Beitrag zur Kenntniss norwegischer Gabbros. Zeitschrift der deutsche geologische Gesellschaft 31. Larsen, J.F. , Knittle, E., Williams, Q., 2003. ConstraintsMANUSCRIPT on the speciation of hydrogen in earth's transition zone. Physics of the Earth and Planetary Interiors 136, 93-105. orthopyroxene, Bamble Larsen, K.E., 2008. Lindvikskollen-Kalstadgangen, Kragerø, en klassisk norsk granittpegmatitt. Norsk Bergverksmusem Skrifter 38, 37-44. Larsen, R.B., 2002. The distribution of rare-earth elements in K-feldspar as an indicator of petrogenetic processes in granitic pegmatites: Examples from two pegmatite fields in southern Norway. Canadian Mineralogist 40, 137-151. Larsen, S., Evja, V., 2009. En forekomst av edel diopsid i Kragerø, Telemark. Norsk Bergverksmusem Skrifter 41:48-49. Larsson, F.R., Husebye, E.S., 1991. Crustal reflectivity in the Skagerrak area. Tectonophysics 189, 135-148. ACCEPTED Lauritsen, T., 1992. Magnetiske bakkemålinger ved Ødegården Verk, Bamble, Telemark. Norges Geologiske Undersøkelse report 92.218, 15 pp. Lianxing, G., Vokes, F.M., 1996. Intergrowths of hexagonal and monoclinic pyrrhotites in some sulphide ores from Norway. Mineralogical Magazine 60, 303-316. Liauw, F., 1990. Veldwerkverslag Bamble. Unpublished MSc thesis, Utrecht University, Utrecht, 32 pp.

28

Liauw, F., 1990. The ruby-bearing rock of Froland, south Norway. Its evolution and its implications for the Bamble sector. UnpublishedACCEPTED MSc thesis,MANUSCRIPT Utrecht University, Utrecht, 38 pp. Lidwin, A., 1994. Fluidindusert dehydrering under granulitt facies metamorfose: Et eksempel fra Bamble sektoren, sør-Norge. Unpublished MSc thesis, University of Oslo, Oslo, 105 pp. Lie, J.E., Husebye, E.S., 1991. The structure of the crust below Skagerrak. New results from deep reflection seismic data. Terra Abstracts 3, 121. Lie, J.E., Husebye, E.S., 1993. Seismic imaging of upper crustal basement faults in the Skagerrak sea. Tectonophysics 219, 119-128. Lie, J.E., Husebye, E.S., 1994. Simple-shear deformation of the Skagerrak lithosphere during the formation of the Oslo rift. Tectonophysics 232, 133-141. Lie, J.E., Husebye, E.S., Kinck, J.J., Larsen, F.R., 1993. Geophysical evidence of Cambrian - Silurian sedimentary rocks in the northern Skagerrak. Geologiska Föreningens i Stockholm Förhandlingar 115, 181-188. Lie, J.E., Pedersen, T.,& Husebye, E.S., 1990. Mapping the deep lithosphere by 40 sec. TWT reflection profiling in Skagerrak. Geonytt 17, 72. Lie, J.E., Pedersen, T., Husebye, E.S., 1990. Observations of seismic reflectors in the lower lithosphere beneath the Skagerrak. Nature 346, 165-168. Lieftink, D.J., 1991. The Ubergsmoen gabbro and its contact. Abstract, 2nd SNF Excursion, Bamble, 2 pp. Lieftink, D.J., 1991. Apatiet van Ødegårds Verk, Bamble sector, zuid-Noorwegen: Een natuurlijk laboratorium voor halogenen en zeldzame aarden. Unpublished MSc thesis, Utrecht University, Utrecht, 79 pp. MANUSCRIPT Lieftink, D.J., 1992. Geologie van het gebied rond Ubergsmoen, Bamble sector, zuid-Noorwegen. Unpublished Msc thesis, Utrecht University, Utrecht, 122 pp. Lieftink, D.J., Nijland, T.G., 1992. Behaviour of La, Ce, Nd, Dy and Y during the replacement of Cl by OH in apatites from the ancient Ødegårdens Verk mines (Kragerø, Norway). Volume of Abstracts, 1 st Netherlands Earth Scientific Congress, Veldhoven, 134. Lieftink, D.J., Nijland, T.G., 1993. Behaviour of La, Ce, Nd, Dy and Y during the replacement of Cl by OH in apatites from the ancient Ødegårdens Verk mines, Kragerø, Norway. Abstract, IGCP 304 meeting, Lund, 1 p. Lieftink, D.J., Nijland, T.G., Maijer, C., 1993. Cl-rich scapolite from Ødegårdens Verk, Bamble, Norway. Norsk Geologisk Tidsskrift 73, 55-57. Lieftink, D.J., Nijland,ACCEPTED T.G., Maijer, C., 1994. The behavior of rare-earth elements in high- temperature Cl-bearing aqueous fluids: Results from the Ødegårdens Verk natural laboratory. Canadian Mineralogist 32, 149-158. Lieftink, D.J., Visser, D., 1991. Orthopyroxene in gneisses outside the orthopyroxene isograds. Abstract, 2 nd SNF Excursion, Bamble, 2 pp. Lieftink, G.H., 1990. Geologie van het gebied ten noordoosten van Nelaug, Bamble, zuid-Noorwegen. Unpublished Msc thesis, Utrecht University, Utrecht, 66 pp.

29

Lieftink, G.H. 1990. LILE-depletie in twee coronitische gabbros in Bamble, zuid-Noorwegen. Unpublished MSc thesis,A UtrechtCCEPTED University, MANUSCRIPT Utrecht 47 pp. Lieftink, G.H., 1991. The Tromöy gabbro. Petrology and geochemistry. Abstract, 2 nd SNF Excursion, Bamble, 2 pp. Lindahl, I., 1981. Høgåsen nikkelfelt ved Tvedestrand, Aust-Agder. Norges Geologiske Undersøkelse Report 1650/45A, 11 pp. Lindahl, I., 1983. NGU-contribution to the description of the metallogenic map of Europe. Norges Geologiske Undersøkelse Report 2081, 36 pp. Lindahl, I., 1984. Mineral deposits in the Precambrian rocks of Norway. In: Explanatory memoir of the metallogenic map of Europe and neighbouring countries. UNESCO, Paris, 17-23. Lindahl, I., Gust, J., 1987. Registeringskart for malmforekomster. Arendal 1:250,000. Norges Geologiske Undersøkelse, Trondheim. Lindh, A., 1982. Trends in the Postsvecokarelian development of the Baltic shield. Geologische Rundschau 71, 130-140. Lindh, A., 1987. Westward growth of the Baltic shield. Precambrian Research 35, 53-70. Lindh, A., Persson, P.O., 1990. Proterozoic granitoid rocks of the Baltic shield: Trends of development. In: Gower, C.F., Rivers, T., Ryan, B. (Eds.), Mid-Proterozoic Laurentia-Baltica. Geological Association of Canada Special Publication 38, 23-40. Løchen, R., 2007. Stålproduksjon ved Næs Jernverk. Nes Jernverk, Fortuna 3, 85-101. Lokshtanov, D.E., Ruud, B.O., Husebye, E.S., 1991. The upper crust low velocity layer: A Rayleigh (Rg) phase velocity study from SE Norway. Terra Nova 3, 49-56. Lund, B., 1992. Undersøkelse av naturstein i Risør. NorgesMANUSCRIPT Geologiske Undersøkelse Report 92-243, 16 pp. Lund, B., West, A., 1983. Pegmatittprospektering i deler av Froland og kommuner, Aust Agder. Norges Geologiske Undersøkelse Report 84-012, 20 pp. Macaudière, J. & Touret, J., 1969. La fibrolitisation tectonique: un méchanisme possible de formation des gneisses nodulaires du Bamble. Science de la Terre 14, 199-214. Maijer, C., 1990. Metamorphism in the Froland-Nelaug-Tvedestrand-Arendal-area, Bamble: Revaluation of the Sveconorwegian as a high grade event. Geonytt 17, 75. Maijer, C., Nijland, T.G., 1991. Albite-actinolite-quartz rocks (AAQ): Result of extensive metasomatic alteration along gabbro - country rock contacts. Abstract, 2 nd SNF Excursion, Bamble, 3 pp. Maijer, C., Padget,ACCEPTED P. (Eds.), 1987. The geology of southernmost Norway. Norges Geologiske Undersøkelse Specical Publication 1, 109 pp. Marker, M., 2005. Kartlegging av potensiale for tørrmurstein nær Lønne gård, Kragerø kommune. Norges Geologiske Undersøkelse report 2005.003, 13 pp. Masson, D., Martin, R., Richard, O., Touret, J., 1973. Étude par chromatographie gazeuse des fluides carboniques du faciès granulite. Comptes Rendus de l'Académie des Sciences à Paris 276, 461-464.

30

Mauring, E., 1987. Undersøkelser av kvartsitt i Aust-Agder fylke, 1985. Norges Geologiske Undersøkelse Report 85.203.ACCEPTED MANUSCRIPT Mearns, E.M., Andersen, T., Mork, M.B.E., Morvik, R., 1986. 143 Nd/ 144 Nd Evolution in depleted Baltoscandian mantle. Terra Cognita 6, 247. Michel, M.L., 1893. Sur une nouvelle espèce minérale de Bamle (Norvège). Bulletin de la Société Française de Minéralogie 16, 38-40. Michel-Lévy, M.A., 1878. Sur une roche à sphene, amphibole et wernérite granulitique des mines d'apatite de Bamble près Brevig (Norwège). Bulletin de la Société Française de Minéralogie 1, 43-46. Michel-Lévy, M.A., 1878. Note sur le gisement de l'amphibolite a wernérite granulitique d'Odegaard près Bamble (Norwège). Bulletin de la Société Française de Minéralogie 1, 78-81. Michel-Lévy, M.A., Lacroix, A., 1888. Minéralogie sur nouveau gisement de dumortiérite. Comptes Rendus de l'Académie des Sciences à Paris 106, 1546-1548. Milch, L., 1900. Über Columbit von Sanikedal bei Kragerø. Neues Jahrbuch für Mineralogie, 159. Milne, K.P., 1981. The structure, petrology and geochemistry of rocks around a Proterozoic zone in the Gjerstad region, south Norway. Unpublished PhD thesis, University of Nottingham, Nottingham. Milne, K.P., Starmer, I.C., 1982. Extreme differentiation in the Proterozoic Gjerstad - Morkheia complex of south Norway. Contributions to Mineralogy and Petrology 79, 381-393. Moerenhout, A.J., 1990. De geologie van een gebied bij Tvedestrand. Unpublished MSc thesis, Utrecht University, Utrecht, 47 pp. Moine, B., 1971. Signification des variations de K/MANUSCRIPTRb dans le domaine catazonal du sud de la Norvège (region d'Arendal). Science de la Terre 16, 306. Moine, B., Ploquin, A., 1972. Étude chimique des séries de roches supracrustales du Telemark (Précambrien du sud de Norvège). Science de la Terre 17, 47-81. Moine, B., de la Roche, H., Touret, J., 1972. Structures géochimique et zonéographie métamorphique dans le Précambrien catazonal du sud de la Norvège. Science de la Terre 17, 131-164. Molden, G., 2000. Jerngruvedrift på Sørlandet. In: Carstens, H. (Ed.), Bygger i berge. En beretning om Norsk bergverksdrift. Tapir Akademisk Forlag, 98-100. Molden, G., 2005. Grevenes gruver – Fritzøe jernverk, Larvik grevskap og gruvene ved Arendal. Nes Jernverk, Fortuna 2, 41-63. Molden, G., 2007. Til England med ståljern – I anledning Egelands Verks 300-års-jubileum. Nes Jernverk,ACCEPTED Fortuna 3, 136-141. Molden, G., Simonsen, J.H., 1994. Jerngruvedrift i Arendalsfeltet. Økomuseum Skagerrak, Arendal, 34 pp. Moorbath, S., Vokes, F.M., 1963. Lead isotope abundance studies on galena occurrences in Norway. Norsk Geologisk Tidsskrift 43, 283-343. Moree, M., 1992. Dikes of the Arendal area: A catalogue of the until August 1992 found sites. Unpublished internal report, Utrecht University, Utrecht, 6 pp.

31

Moree, M., 1992. Mafic dikes of the Bamble sector near Arendal. Part 3: Relations between age & structure. Unpublished internalACCEPTED report, Free MANUSCRIPT University Amsterdam, Amsterdam, 13 pp. Moree, M., 1993. The post-orogenic tectonic history of the Bamble sector. Unpublished MSc thesis, Utrecht University, Utrecht, 29 pp. Moree, M., 1994. Relations between structural trends and ages of the mafic dikes in the Bamble sector, southern Norway. Volume of Abstracts, 2 nd Netherlands Earth Scientific Congress, Veldhoven, 91. Moree, M., Maijer, C., Nijland, T.G., 1996. Post-Sveconorwegian basic dikes in the central part of the Bamble sector. Abstract, 7 th SNF Excursion, Numedal-Telemark-Bamble, 1 p. Moree, M., Nijland, T.G., 1996. The Vimme talc deposit: Field occurrence, whole rock chemistry & Pb isotopes. Abstract, 7 th SNF Excursion, Numedal-Telemark-Bamble, 3 pp. Morshuis, J., 1991. Albietpegmatieten in Bamble (zuid-Noorwegen). Unpublished MSc thesis, Utrecht University, Utrecht, 137 pp. Morton, C., 1884. Några goniometriska bestämmingar a kalkspat frän Arendal, Kongsberg, Utø of Bamble. Kungliga Svenske Vetenskaps-Akademien Förhandlingar 8, 65-78. Morton, R.D., 1961. Contributions to the mineralogy of Norway. No. 9. On the occurrence of two rare phosphates in the Ødegården Apatite mines, Bamble, south Norway. Norsk Geologisk Tidsskrift 41, 233-246. Morton, R.D., 1965. Preliminary results of new and detailed survey within the Bamble sector of the Precambian in south-Norway. Norsk Geologisk Tidsskrift 45, 152-153. Morton, R.D., 1971. Geological investigations in the Bamble sector of the Fennoscandian shield, S. Norway. II Metasediments and metapyroclasticsMANUSCRIPT (?) within the Precambrian metamorphic suite of the S. Norwegian skaergaard. Norsk Geologisk Tidsskrift 51, 63-83. Morton, R.D., Batey, R., O'Nions, R.K., 1970. Geological investigations in the Bamble sector of the Fennoscandian shield, S. Norway. I The geology of the eastern Bamble sector. Norges Geologiske Undersøkelse 263, 72 pp. Morton, R.D., Catanzaro, E.J., 1964. Stable chlorine isotope abundances in apatites from Ødegårdens Verk, Norway. Norsk Geologisk Tidsskrift 44, 307-313. Mulch, A., 2003. Integrated high-spatial resolution 40Ar/39Ar geochronology, stable isotope geochemistry, and structural analysis of extensional detachment systems: Case studies from the Porsgrunn-Kristianssand shear zone (S-Norway) and the Shuswap metamorphic core complex (Canada). PhD thesis, University of Lausanne, Lausanne, 334 pp. Mulch, A., Cosca,ACCEPTED M.A., 2004. Recrystallization or cooling ages: In situ UV-laser 40 Ar/ 39 Ar geochronology of muscovite in mylonitic rocks. Journal of the Geological Society, London, 161, 573-582. Mulch, A., Cosca, M.A., Andresen, A., Fiebig, J., 2005. Time scales of deformation and exhumation in extensional detacment systems determined by high-spatial resolution in situ UV-laser 40 Ar/ 39 Ar. Earth and Planetary Science Letters 233, 375-390.

32

Müller, A., Ihlen, P.M., 2012. Trace elements of pegmatitic quartz and their regional distribution in two pegmatiteACCEPTED fields of MANUSCRIPT southern Norway. In: Broekmans, M.A.T.M., ed., Proceedings of the 10 th International Congress for Applied Mineralogy (ICAM), Springer, Berlin, 445-451 Müller, A., Ihlen, P.M., Kronz, A., 2005. Potential resources of quartz and feldspar raw material in Sørland IV: Relationships between quartz, feldspar and mica chemistry and pegmatite type. Norges Geologiske Undersøkelse Report 2005-075, 94 pp. Müller, A., Ihlen, P.M., Kronz, A., 2008. Quartz chemistry in polygeneration Sveconorwegian pegmatites, Froland, Norway. European Journal of Mineralogy 20, 447-463. Müller, A., Kearsley, A., Spratt, J., Seltmann, R., 2012. Petrogenetic implications of magmatic garnet in granitic pegmatites from southern Norway. Canadian Mineralogist 50, 1095-1115. Müller, A., Koch-Müller, M., 2009. Hydrogen speciation and trace element contents of igneous, hydrothermal and metamorphic quartz from Norway. Mineralogical Magazine 73, 569-583. Munz, I.A., 1990. Whiteschists and orthoamphibole-cordierite rocks and the P-T-t path of the Modum complex, south Norway. Lithos 24, 181-200. Munz, I.A., 1992. Fluids in metamorphic and postmetamorphic processes in the Modum complex, south Norway. Unpublished PhD thesis, University of Oslo, Oslo. Munz, I.A., Morvik, R., 1991. Metagabbros in the Modum complex, southern Norway: An important heat source for Sveconorwegian metamorphism. Precambrian Research 52, 97-113. Corrigendum: Precambrian Research 53:305. Murad, E., Cashion, J.D., Noble, C.J., Pilbrow, J.R., 1995. The chemical state of Fe in rutile from an albitite in Norway. Mineralogical Magazine 59,MANUSCRIPT 557-560. rutile (albitite), Kragerø Mykland, K., 1986. Sirkumferensbonden. In: Try, H. (Ed.), 1986. Jernverk på Agder. Agder Distrikshøgskole, Kristiansand, Skrifter 3, 49-74. Nagel, A.H., 1986. Ekspropriasjon og tvangsarbeid et jernverk blir til. In: Try, H. (Ed.), 1986. Jernverk på Agder. Agder Distrikshøgskole, Kristiansand, Skrifter 3, 7-48. Naik, M.S., 1975. Silver sulphosalts in galena from Espeland, Norway. Norsk Geologisk Tidsskrift 55, 185-189. Naik, M.S., Griffin, W.L., Cabri, L.J., 1976. (Co,Ni)SbS phases and argentian boulangerite in galena from Espeland, Norway. Norsk Geologisk Tidsskrift 56, 449-454. Neumann, E.R., 1972. The Precambrian Vallesvær granite, south Norway. Petrography and major element relations. Norsk Geologisk Tidsskrift 52, 103-122. Neumann, H., 1960.ACCEPTED The apparent age of Norwegian minerals and rocks. Norsk Geologisk Tidsskrift 40, 173-189. Neumann, H., 1961. The content of some Norwegian minerals and the formation of thortveitite, a reconnaissance survey. Norsk Geologisk Tidsskrift 61, 197-210. Neumann, H., 1985. Norges mineraler. Norges Geologiske Undersøkelse Skrifter 68, 278 pp. Neumann, H., Christie, O.J.H., 1962. On some aventurine feldspars from southern Norway. Norsk Geologisk Tidsskrift 42, 389-394.

33

Neumann, H., Jøsang, O., Morton, R.D., 1960. Mineral occurrences in southern Norway. Norges Geologiske UndersøkelseA 212o,CCEPTED 18 pp. MANUSCRIPT Newton, R.C., 1990. Fluids and shear zones in the deep crust. Tectonophysics 182, 21-37. Newton, R.C., 1990. The nature of the orthopyroxene isograd in Precambrian high-grade terrains. In: Naqvi, S.M. (Ed.), Precambrian continental crust and its economic resources. Elsevier, Amsterdam, 13-45. Newton, R.C., 1995. Simple-system mineral reactions and high-grade metamorphic fluids. European Journal of Mineralogy 7, 861-881. Nijland, T.G., 1989. De geologie van het Nelaug gebied, Bamble sector, zuid Noorwegen. Unpublished MSc thesis, Utrecht University, Utrecht, 85 pp. Nijland, T.G., 1989. Chloor- en fluorfugaciteiten in de metamorfe fluids van de Bamble sector, zuid Noorwegen. Unpublished MSc thesis, Utrecht University, Utrecht, 60 pp. Nijland, T.G., 1993. The Bamble amphibolite-granulite transition zone, Norway. Geologica Ultraiectina 101, 166 pp. Nijland, T.G., de Haas, G.J.L.M., 1993. Geochemistry of three Pre- to Early Sveconorwegian (?) basic dyke swarms in the Bamble sector, SE Norway. Abstract, IGCP 304 meeting, Lund, 2 pp. Nijland, T.G., de Haas, G.J.L.M., 1994. The Blengsvatn dykes: Evidence for Pre- to Early Sveconorwegian rifting in the Bamble sector, southern Norway ? Volume of Abstracts, 2 nd Netherlands Earth Scientific Congress, Veldhoven, 164. Nijland, T.G., de Haas, G.J.L.M., Andersen, T., 1996. Rifting related alkaline magmatism in the Bamble sector, Norway at 1.47 Ga. Abstract, 7 th SNF Excursion, Numedal-Telemark- Bamble, 1 p. MANUSCRIPT Nijland, T.G., de Haas, G.J.L.M.,e & Andersen, T., 2000. Rifting-related (sub)alkaline magmatism in the Bamble sector (Norway) during the ‘Gothian’ - Sveconorwegian interlude. Geologiska Föreningens i Stockholm Förhandlingar 122, 297-305. Nijland, T.G., Jansen, J.B.H., Maijer, C., 1992. Lower crustal transitions. II. Halogen evolution of apatites and biotites in amphibolite to granulite facies transitional metabasites (Bamble, Norway). Volume of Abstracts, 1 st Netherlands Earth Scientific Congress, Veldhoven, 140. Nijland, T.G., Jansen, J.B.H., Maijer, C., 1993. Halogen geochemistry of fluid during amphibolite- granulite metamorphism as indicated by apatite and hydrous silicates in basic rocks from the Bamble sector, south Norway. Lithos 30, 167-189. Nijland, T.G., Liauw, F., Visser, D., Maijer, C., Senior, A., 1993. Metamorphic petrology of the Froland corundum-bearingACCEPTED rocks: The cooling and uplift history of the Bamble sector, south Norway. Norges Geologiske Undersøkelse 424, 51-63. Nijland, T.G., Maijer, C., 1991. Replacement of quartz by actinolite / clinopyroxene in graphic intergrowths ("runite") from the Mjåvatn pegmatite, Froland. Abstract, 2 nd SNF Excursion, Bamble, 1 p. Nijland, T.G., Maijer, C., 1991. Primary sedimentary structures and infiltration metamorphism in the Håvatn-Bårlindåsen-Tellaugstjern area, Froland. Abstract, 2 nd SNF Excursion, Bamble, 3 pp.

34

Nijland, T.G., Maijer, C., 1992. Lower crustal transitions. I. Changing mineral assemblages and thermobarometric estimatesACCEPTED over a classic MANUSCRIPT amphibolite to granulite facies transition zone, Bamble, Norway. Volume of Abstracts, 1 st Netherlands Earth Scientific Congress, Veldhoven, 139. Nijland, T.G., Maijer, C., 1993. The regional amphibolite to granulite facies transition at Arendal, Norway: Evidence for a thermal dome. Neues Jahrbuch für Mineralogie, Abhandlungen 165, 191-221. Nijland, T.G., Maijer, C., van Haren, J.L.M., 1993. Replacement of quartz by actinolite/clinopyroxene in graphic intergrowths in a deep-seated granite pegmatite (Mjåvatn, Norway). Terra Abstracts 5, 480. Nijland, T.G., Maijer, C., Senior, A., 1990. An aeolian origin for the nodular gneisses of the Bamble sector - An alternative hypothesis. Geonytt 17, 83. Nijland, T.G., Maijer, C., Senior, A., Verschure, R.H., 1993. Primary sedimentary structures and composition of the high-grade metamorphic Nidelva quartzite complex (Bamble, Norway), and the origin of nodular gneisses. Proceedings of the Koninklijke Nederlandse Akademie van Wetenschappen 96, 217-232. Nijland, T.G., Senior, A., 1991. Sveconorwegian granulite facies metamorphism of polyphase migmatites and basic dikes, south Norway. Journal of Geology 99, 515-525. Nijland, T.G., Senior, A., Maijer, C., 1991. High-grade Grenvillian metamorphism in the Bamble sector, Norway: Field and petrographic evidence. Terra Abstracts 3, 444. Nijland, T.G., Touret, J.L.R., 1999. Regional scale irrigation during orogenic collapse: A salient example. Bulletin de liaison de la Société FrançaisMANUSCRIPTe de Minéralogie et Cristallographie 11, 95 96. Nijland, T.G., Touret, J.L.R., 2000. Brine control of ‘apparent’ metamorphic grade: A case from the Ubergsmoen augen gneiss, south Norway. Volume of Abstracts, 24 th Nordic Geological Winter Meeting, 126-127. Nijland, T.G., Touret, J.L.R., 2001. Replacement of graphic pegmatite by graphic albite-actinolite- clinopyroxene intergrowths (Mjåvatn, southern Norway). European Journal of Mineralogy 13, 41-50. Nijland, T.G., Touret, J.L.R., Visser, D., 1998. Anomalously low temperature orthopyroxene, spinel and sapphirine occurrences in metasediments from the Bamble amphibolite to granulite facies transition zone (South Norway): Possible evidence for localized action of saline fluids. Journal ofACCEPTED Geology 106, 575-590. Nijland, T.G., Touret, J.L.R., Visser, D., 2000. Anomalously low temperature orthopyroxene, spinel and sapphirine occurrences in metasediments from the Bamble amphibolite to granulite facies transition zone (South Norway): Possible evidence for localized action of saline fluids: A reply. Journal of Geology 108, 247-249. Nijland, T.G., Verschure, R.H., Maijer, C., 1994. Catalytic effect of biotite: Formation of hydrogarnet lenses. Comptes Rendus de l'Académie des Sciences à Paris, série II, 318, 501-506.

35

Nijland, T.G., Visser, D., 1995. Provenance of the Bamble amphibolites. Proceedings of the Koninklijke NederlandseA AkademieCCEPTED van Wetenschappen MANUSCRIPT 98, 69-88. Nijland, T.G., Visser, D., Touret, J.L.R., 1994. Fluid deficient partial melting of metapelites. Volume of Abstracts, 2 nd Netherlands Earth Scientific Congress, Veldhoven, 165. Nijland, T.G., Visser, D., Touret, J.L.R., 1997. Prograde sapphirine granulite islands in the amphibolite facies part of transition zone: Hauglandsvatn, southern Norway. Volume of Abstracts, 22 nd General Assembly of the European Geophysical Society, Vienna. Nijland, T.G., Zwaan, J.C., Touret, L., 1998. Topographical mineralogy of the Bamble sector, south Norway. Scripta Geologica, 118, 46 pp. Nilssen, B., 1961. Noen geologiske undersökelser av Herefossgraniten. Unpublished MSc thesis, University of Oslo, Oslo. Nilssen, B., Raade, G., 1973. Contribution to the mineralogy of Norway, No. 54. On chromian montmorillonite (Volkonskoite) in Norway. Norsk Geologisk Tidsskrift 53, 329-331. Nilssen, B., Smithson, S.B., 1965. Studies of the Precambrian Herefoss granite. I Kalifeldspar obliquity. Norsk Geologisk Tidsskrift 45, 367-396. Nordenskiöld, A.E., 1875. Om förekomsten af Leucopyrit vid Brevig. Geologiska Föreningens i Stockholm Förhandlingar 2, 241-242. Nordenskiöld, A.E., 1876. Torit fån feltspatbrotten näro Arendal. Geologiska Föreningens i Stockholm Förhandlingar 3. Nordenskiöld, A.E., 1878. Cleveit, ett nytt yttro-uran mineral från Garta felsspatbrott nåra Arendal. Geologiska Föreningens i Stockholm Förhandlingar 3, 226-229. Nordenskiöld, A.E., 1884. Uransilikat från Garta felsspatbrottMANUSCRIPT i granskapet af Arendal. Geologiska Föreningens i Stockholm Förhandlingar 7, 121-123. Nordrum, F.S., Larsen, A.O., Austrheim, H., 2000. Ni, Co-mineralizations in the Valberg quarry, Kragerø, south Norway: A progress report. Norsk Bergverksmuseum Skrifter 17, 64-70. Oberti, R., della Ventura, G., Ottolini, L., Hawthorne, F.C., Bonazzi, P., 2002. Re-definition, nomenclature and crystal-chemistry of the hellandite group. American Mineralogist 87, 745- 752. hellandite, Kragerø Oftedahl, C., 1956. Et funn av uedel rubin i Norge. Meldinger fra Norske Gemmologiske Selskap, Band 1.

Oftedahl, C., 1963. Contributions to the mineralogy of Norway. No. 19. Red corundum of Froland at Arendal. ACCEPTEDNorsk Geologisk Tidsskrift 43, 431-443. Oftedal, I., 1928. Om Fevig granitten (Foreløpig meddelse). Norsk Geologisk Tidsskrift 17, 210-213. Oftedal, I., 1939. On the occurrence of tin in Norwegian minerals. Norsk Geologisk Tidsskrift 19, 315-325. Oftedal, I., 1940. Vanadium in dem Apatitvorkommen von Ødegården in Bamble. Norsk Geologisk Tidsskrift 19, 314-315. Oftedal, I., 1942. Om betingelsene for oktaedrisk spaltbarhet hos vismutrisk blyglans. Norsk Geologisk Tidsskrift 22, 61-68. 36

Oftedal, I., 1945. Fra Fevig-granittens grensesoner. Norsk Geologisk Tidsskrift 25, 205. Oftedal, I., 1947. Krysoberyll fra ALindstølCCEPTED i Sønde MANUSCRIPTled. Norsk Geologisk Tidsskrift 26, 224-225. Oftedal, I., 1958. On the development of granite pegmatite in gneiss area. Norsk Geologisk Tidsskrift 38, 231-244. Oftedal, I., 1959. On the occurrence of tellurium in Norwegian minerals. Norsk Geologisk Tidsskrift 39, 75-79. Oftedal, I., 1963. Contributions to the mineralogy of Norway. No. 16. Danburite from the Kragerö district 43, 73-74. Oftedal, I., 1963. The germanium contents of some Norwegian topaz specimens. Norsk Geologisk Tidsskrift 43, 267-269. Oftedal, I., 1964. Contributions to the mineralogy of Norway. No. 24. On the chemical composition of hellandite. Norsk Geologisk Tidsskrift 44, 35-37. Oftedal, I., 1964. Contributions to the mineralogy of Norway. No. 29. Vesuvianite as a host mineral for boron. Norsk Geologisk Tidsskrift 44, 377-383. Oftedal, I., 1965. Über den Hellandit. Tschermaks Mitteilungen zu Petrographie und Mineralogie 10, 125-129. Oftedal, I., 1972. Contributions to the mineralogy of Norway, No. 48. Calcium-rich gadolinite from Kragerö. Norsk Geologisk Tidsskrift 52, 197-200. Oftedal, I., 1980. Norway. In: Geology of the European countries (Denmark, Finland, Iceland, Norway, Sweden). Graham and Tratnan, 345-456. Olmi, F., Viti, C., Bindi, L., Bonazzi, P., Menchetti, S., 2000. Second occurrence of okayamalite, Ca 2SiB 2O7: Chemical and TEM characterization.MANUSCRIPT American Mineralogist 85, 1508-1511. O'Nions, R.K., 1969. Geochronology of the Bamble sector of the Baltic shield (Precambrian), south Norway. Unpublished PhD thesis, University of Alberta, 172 pp. O'Nions, R.K., Baadsgaard, H., 1971. A radiometric study of the polymetamorphism in the Bamble region, Norway. Contributions to Mineralogy and Petrology 34, 1-21. O'Nions, R.K., Heier, K.S., 1972. A reconnaissance Rb-Sr geochronological study of the Kongsberg area, south Norway. Norsk Geologisk Tidsskrift 52, 143-150. O'Nions, R.K., Morton, R.D., Baadsgaard, H., 1969. Potassium-argon ages from the Bamble sector of the Fennoscandian shield in south Norway. Norsk Geologisk Tidsskrift 49, 171-190. O'Nions, R.K., Smith, D.G.W., Baadsgaard, H., Morton, R.D., 1969. Influence of chemical composition on argon retentivity in metamorphic calcic amphiboles from south Norway. Earth andACCEPTED Planetary Science Letters 5, 339-345. Padget, P., 1986. Arendal berggrunnskart 1:250,000. Preliminary issue. Norges Geologiske Undersøkelse, Trondheim. Padget, P., 1988. Tvedestrand 1612 II berggrunnskart 1:50,000. Preliminary issue. Norges Geologiske Undersøkelse, Trondheim. Padget, P., 1990. Tectonic and lithostratigraphic relationships in the Bamble sector, south Norway: An interpretative view. In: Gower, C.F., Rivers, T., Ryan, B. (Eds.), Mid-Proterozoic Laurentia-Baltica. Geological Association of Canada Special Publication 38, 307-316. 37

Padget, P., 1992. Further light on the intrusive history of the Grimstad and Herefoss granites. Program with Abstracts, SymposiumACCEPTED ‘The geology MANUSCRIPT of the Sveconorwegian (Gothian) provinces of the Baltic Shield’, Utrecht, 15. Padget, P., 1993. Gjerstad berggrunskart 1612 I M 1:50,000. Preliminary issue. Norges Geologiske Undersøkelse, Trondheim. Padget, P., 1993. Risør berggrunskart 1712 III M 1:50,000. Preliminary issue. Norges Geologiske Undersøkelse, Trondheim. Padget, P., 1993. Mykland berggrunskart 1512 II M 1:50,000. Preliminary issue. Norges Geologiske Undersøkelse, Trondheim. Padget, P., 1996. Bedrock geology of the Arendal sheet 1:250,000. Report of investigations 1985- 1993. Norges Geologiske Undersøkelse Report 94-012. Padget, P., 1996. Berggrunnskartlegging langs aktuelle E-18 traseer mellom Nørhol (Aust-Agder) of Dyreparken (Vest-Agder). Norges Geologiske Undersøkelse Report 96-116. Padget, P., 1997. Aspects of the stratigraphy and structure of the Bamble region, S. Norway. Norges Geologiske Undersøkelse Report 97-131 (abstract, 2 pp). Padget, P., 1997. Nelaug berggrunnskart 1612 III M 1:50,000. Preliminary issue. Norges Geologiske Undersøkelse, Trondheim. Padget, P., 1999. Kragerø berggrunnskart 1712 IV M 1:50,000. Preliminary issue. Norges Geologiske Undersøkelse, Trondheim. Padget, P., 2004. Metasedimentary rocks, associated intrusions and tectonic features of the Precambrian in eastern Bamble, south Norway: An interpretative study. Norges Geologiske Undersøkelse 442, 39-51. MANUSCRIPT Padget, P., 2010. Metasedimentary rocks in the Bamb le terrane, Norway: Their lithological expression, possible correlations and depositional scenarios. Norges Geologiske Undersøkelse Report 2010-068, 26 pp. Padget, P., Breivik, H., 1991. The Reddal conglomerate. Abstract, 2 nd SNF Excursion, Bamble, 1 p. Padget, P., Brekke, H., 1996. Geologisk kart over Norge, berggrunnskart Arendal 1:250,000. Norges Geologiske Undersøkelse, Trondheim. Padget, P. & Breivik, H., 1996. Bergrunnskartlegging langs aktuelle E-18 traséer mellom Nørholm (Aust-Agder) og Dyreparken (Vest-Agder). Norges Geologiske Undersøkelse report 96.116, 13 pp. Park, R.G., 1992. Plate kinematic history of Baltica during the Middle to Late Proterozoic: A model. Geology ACCEPTED20, 725-728. Pedersen, S., Berthelsen, A., Falkum, T., Graversen, O., Hageskov, B., Maaloe, S., Petersen, J.S., Skjernaa, L., Wilson, J.R., 1978. Rb/Sr dating of the plutonic and tectonic evolution of the Sveconorwegian province, south Norway. USGS Open-File Report 78, 329-331. Pedersen, T., Larsson, F.R., Lie, J.E., Husebye, E.S., 1990. Deep and ultra-deep seismic studies in the Skagerrak (Scandinavia). In: Piner, B., Bois, C. (Eds.), The potential of deep seismic profiling for hydrocarbon exploration. Technip, Paris, 345-351.

38

Pesonen, L.J., Bylund, G., Torsvik, T.H., Elming, S.Å., Mertonen, S., 1991. Catalogue of paleomagnetic directionsA andCCEPTED poles from FennoscandiMANUSCRIPTa: Archaean to Tertiary. Tectonophysics 195, 151-209. Pesonen, L.J., Torsvik, T.H., 1990. The Fennoscandian palaeomagnetic database: Compilation of palaeomagnetic directions and poles from the northern segment of the EGT. In: Freeman, R., Mueller, S. (Eds.), Proceedings of the sixth workshop of the European Geotraverse (EGT) project: Data compilations and synoptic interpretations, 389-399. Pesonen, L.J., Torsvik, T.H., Elming, S.Å., Bylund, G., 1989. Crustal evolution of Fennoscandia - palaeomagnetic constraints. Tectonophysics 162, 27-49. Petersen, J.E., 1979. En geologisk undersøkelse av området rundt Nystein, Vissestad og Hansås nikkelgruver, Bamble i Telemark. Unpublished MSc thesis, University of Oslo, Oslo, 125 pp. Petersen, J.S., Brekke, B.E., 1996. Skyttemyr-Bøylestad stratiform Cu-Zn deposits in the Bamble region. Abstract, 7 th SNF Excursion, Numedal-Telemark-Bamble, 2 pp. Petersen, J.S., Koed, J.O., Sundblad, K., 1995. Stratiform, sediment-hosted Zn-Pb mineralization at Espeland in the Proterozoic Bamble shear belt, southern Norway. In: Pasava, Kribek, Zak, eds., Mineral deposits: From their origin to their environmental impacts. Balkema, Leiden, 307-311. Peterson, D.E., 1988. Application of geothermometry, geobarometry and oxygen barometry to the LIL/REE depleted granulite facies terrane in the Bamble sector, southeast Norway. Unpublished MSc thesis, University of Wisconsin, Madison. Pettersson, M.J., 1964. The geology of the country around Sannidal, south Norway. Unpublished PhD thesis, University of Nottingham, Nottingham.MANUSCRIPT Pineau, F., 1977. La géochemie isotopique du carbon e profonde. Unpublished PhD thesis, University of Paris, Paris, 300 pp. Pineau, F., Behar, F., Javoy, M., Touret, J., 1979. Les fluides dans les roches catazonales du sud de la Norvège; analyse chromatographique et géochimie isotopique du carbone. Science Géologique, Mémoire 53, 137-142. Pineau, F., Javoy, M., Behar, F., Touret, J., 1981. La géochimie isotopique du faciès granulite du Bamble (Norvège) et l'origine des fluides carbonés dans la croûte provonde. Bulletin de Minéralogie 104, 630-641. Piper, J.D.A., 2009. Uplift and cooling magnetisation record in the Bamble and Telemark terranes, Sveconorwegian orogenic belt, SE Norway, and the Grenville-Sveconorwegian loop. TectonophysicsACCEPTED 463, 185-207. Ploegsma, M., 1990. Fluid inclusions in the Hovdefjell-Vegårshei augengneiss. In: Ploegsma, M., Shear zones in the West Uusimaa area, SW Finland. Unpublished PhD thesis, Free University Amsterdam, Amsterdam, 91-110. Ploquin, A., 1977. Présentation sommaire du socle précambrien de Norvège méridionale et continuités Trans-Atlantique Nord. Revue de Géographie Physique et de Géologie Dynamique 14, 399-404.

39

Ploquin, A., 1980. Etude géochimique du complex de gneiss, migmatites et granites du Telemark - Aust-Agder (PrécambrienA deCCEPTED Norvège du MANUSCRIPTSud). Sa place dans l'ensemble épizonal à catazonal profond du Haut Telemark au Bamble. Science de la Terre Mémoire 38, 389 pp. Polkanov, A.A., Geirling, E.K., 1961. The Precambrian geochronology of the Baltic shield. Annals of the New York Academy of Science 91, 492-499. Poorter, R.P.E., 1975. Palaeomagnetism of Precambrian rocks from southeast Norway and south Sweden. Physics of the Earth and Planetary Interiors 10, 74-87. Poorter, R.P.E., 1981. Precambrian palaeomagnetism of Europe and the position of the Balto-Russian plate relative to Laurentia. In: Kröner, A. (Ed.), Precambrian plate tectonics. Elsevier, Amsterdam, 599-622. Raade, G., Brastad, K., 1993. Kamphaugite-(Y), a new hydrous Ca-(Y,REE)-carbonate mineral. European Journal of Mineralogy 5, 679-683. Ramberg, I., Barth, T.F.W., 1966. Eocambrian volcanism in southern Norway. Norsk Geologisk Tiddskrift 46, 219-237. Ramberg, I., Gabrielsen, R.H., Larsen, B.T., Solli, A., 1977. Analysis of the fracture patterns in southern Norway. Geologie en Mijnbouw 56, 295-310. Ramsay, C.R., Morton, R.D., 1971. Hydrothermal retrogression of cordierite in the Bamble sector, south Norway. Neues Jahrbuch für Mineralogie, Monatshefte, 398-403. Reitan, P.H., 1956. Pegmatite veins and the surrounding rocks. I. Petrography and structure. Norsk Geologisk Tidsskrift 36, 213-239. Reitan, P.H., 1958. Pegmatite veins and the surrounding rocks. II. Changes in the olivine gabbro surrounding the pegmatite veins, Risør, Norway.MANUSCRIPT Norsk Geologisk Tidsskrift 38, 279-311. Reitan, P.H., 1959. Pegmatite veins and the surroun ding rocks. III. Structural control of small pegmatites in amphibolite, Rytterholmen, Kragerøfjord, Norway. Norsk Geologisk Tidsskrift 39, 173-195. Reitan, P.H., 1959. Pegmatite veins and the surrounding rocks. IV. Genesis of a discordant pegmatite vein, St. Hansholmen, Risør, Norway. Norsk Geologisk Tidsskrift 39, 197-229. Reitan, P.H., 1970. Pegmatite veins and the surrounding rocks. V. Reinterpretation of the genesis of a pegmatite in olivine gabbro, Risør, Norway. Norsk Geologisk Tidsskrift 50, 289-300. Revheim, O., 2001. Vesuvian fra Eg, Kristiansand. Stein 28, 6-7. Revheim, O., 2010. The vesuvianites of Kristiansand, southern Norway. NorskBergverksmuseum Skrifter 43, 71-77. Reynolds, R.C., ACCEPTED Frederickson, A.F., 1962. Corona development in Norwegian hyperites and its bearing on the metamorphic facies concept. Geological Society of America Bulletin 73, 59-72. Riecker, R.E., Rooney, T.R., 1966. Shear strength, polymorphism, and mechanical behavior of olivine, enstatite, diopside, labradorite, and pyrope garnet: Test to 902°C and 60 kb. U.S. Air Force Cambridge Research Laboratories, Environmental Research Papers 216, 57 pp. enstatite, Bamble

40

Robyn, T.L., Pedersen, J., Geyti, A., 1985. Reconnaissance study of regional geology and mineralization in the BambleACCEPTED region, southern MANUSCRIPT Norway. Norges Geologiske Undersøkelse Report 88-131, 42 pp. Rodwell, J.R., 1967. The geology of the country around Söndeled, south Norway. Unpublished PhD thesis, University of Nottingham, Nottingham. Rohrman, M., 1989. De geologie in de omgeving van Nesgrenda (gebied 7), Bamble sector, zuid oost Noorwegen. Unpublished MSc thesis, Utrecht University, Utrecht, 48 pp. Rohrman, M., van der Beek, P., Andriessen, P., 1994. Syn-rift thermal structure and post-rift evolution of the Oslo rift (southeast Norway): New constraints from fission track thermochronology. Earth and Planetary Science Letters 127, 39-54. Romer, R.L., 1996. Contiguous Laurentia and Baltica before the Grenvlle - Svecnorwegian orogeny ? Terra Nova 8, 173-181. Roselund, A.L., 1915. Norske apatitforekomster. Tidsskrift for Bergvesen 12, 15-151. Rosholt, B., 1967. The lead and zinc bearing veins at Tråk in southern Norway. Norges Geologiske Undersøkelse 250, 34-64. Rossman, G.R., 1980. Pyroxene spectroscopy. In: Prewitt, C.T. (Ed.), Pyroxenes. Reviews in Mineralogy 7, 93-113. orthopyroxene, Bamble Roux, W., 1798. Analyse du pyroxène d´Arendal en Norvège fait au laboratoire de la maison d´instruction pour ´exploitation des mines. Journal des Mines 9(45), 367-370. Ryan, M.J., 1966. The geology of the area around Ødegårdens Verk, south Norway. Unpublished PhD thesis, University of Nottingham, Nottingham. Saebö, P.C., Reitan, P.H., 1959. An occurrence of MANUSCRIPT zeolites at Kragerö, southern Norway. Norges Geologiske Undersøkelse 205, 174-180. Saether, E., 1949. Rapport over undersøkelse av Høgåsen nikkelfelt, Tvedestrand. Norges Geologiske Undersøkelse, Trondheim unpublished report. Sætra, G., 1986. Kjøpstad mot jernverk. Kamp om Aust-agders markeder og ressurser i foreningstida. In: Try, H. (Ed.), Jernverk på Agder. Agder Distrikshøgskole, Kristiansand, Skrifter 3, 115- 138. Sandstad, J.S., Bjerkgård, T., Boyd, R., Ihlen, P., Korneliussen A., Nilsson, L.P., Often, M., Eilu, P., Hallberg, A. 2012. Metallogenic areas in Norway. In: Eilu, P. (Ed.), Metallogeny of Fennoscania. Geological Survey of Finland, Special Paper 53, 35-138. Scheerer, T., 1843. Geognostische-mineralogische Skizzen, gesammelt auf einer Reise an der Süd- Küste Norwegens.ACCEPTED Neues Jahrbuch für Mineralogie, Geologie, Geognosie und Petrefaktenkunde, 631-670. Scheerer, T., 1845. Geognostisk-mineralogiske skizzer, samelede paa en Reise i Sommeren 1842. Nyt Magazine for Naturvidenskaberne 4, 126-164. Scheerer, T., 1845. Einiges über das Vorkommen und die Benutzung norwegischer Nickelerze. Berg- und Hüttenmännische Zeitschrift 4, 802. Schei, P., 1904. On some new occurrences of titanite from Kragerø. Nyt Magazine for Naturvidenskaberne 42, 35-38. 41

Scherer, E., Mücker, C., Mezger, K., 2001. Calibration of the lutetium-hafnium clock. Science 293, 683-687. ACCEPTED MANUSCRIPT Schetelig, J., 1915. Skapolit fra sudnorske pegmatitganger. Norsk Geologisk Tidsskrift 3, 1-16. Schmidt, A., 1944. Die Titanvorkommen von Kragerø. Neues Jahrbuch für Mineralogie, Monatshefte, A, 104-112. Schneiderhohn, H., 1961. Norwegen. In: Schneiderhohn, H., Die Erzlagerstätten der Erde. Band II. Gustav Fischer Verlag, Stuttgart, 61-84. Schnell, U.A.S., Falkum, T., 1994. Introduction to the geology of the Kristiansand area, south Norway. Abstract, 4 th SNF Excursion, , 7 pp. Schumacher, J.C., Bucher, K., 1997. Reaction sequences and textures in sapphirine-bearing granulites from the Bamble sector, southern Norway. Terra Abstracts 9, 369. Sellevoll, M.A., Warrick, R.E., 1971. Refraction study of the crustal structure in southern Norway. Bulletin of the Seismological Society of America 61, 457-471. Selmer-Olsen, N., 1950. Om forkastningslinjer og oppbrytnongssoner i Bambleformasjonen. Norsk Geologisk Tidsskrift 30, 33-56. Sem, G., 1987. Ødegårdens Verk. Utarbeidet av Bamble historielag. Alf Jacobsens Boktrykkeri, Brevik, 180 pp. Senior, A., de Haas, G.J.L.M., Nijland, T.G., 1991. Igneous structures and multiple injection in the gabbroic Flosta magmachamber. Abstract, 2 nd SNF Excursion, Bamble, 2 pp. Serdyuchenko, D.P., 1968. Metamorphosed weathering crusts of the Precambrian, their metallogenic and petrographic features. Proceedings of the 23 rd International Geological Congress, Prague 4, 37-42. MANUSCRIPT Siebke, H.C., 1942. Brev fra Norsk Apatitt Co. Ltd. , til professor Goldschmidt angående analyse av prøver fra apatittgrube. Norges Geologiske Udersøkelse Fagrapport BA 6053, 9 pp. Sijen, N., 1988. Verslag van het derde jaars veldwerk in Bamble, Noorwegen. Gebied 2. Ablevika. Unpublished Msc thesis, Utrecht University, Utrecht, 48 pp. Sijen, N., Huijsmans, J.P.P., 1987. Geochemistry and petrology of a lamprophyre-diabase association from Arendal and Flosta, Bamble, SE Norway. Unpublished MSc thesis, Utrecht University, Utrecht, 41 pp. Simonsen, S.L., 1997. Mantle-crust mixing modelling in the Gjeving complex, south Norway. Geonytt 24, 82-83. Simonsen, S.L., 1997. Radiogenic isotope systematics of charnockite and retrograded augen gneiss in the GjevingACCEPTED complex, south Norway. Unpublished Cand. Sci. thesis, University of Oslo, Oslo, 60 pp. Sinding-Larsen, R., 1968. En undersøkelse av de magnetiske og geokjemiske anomalimønstre knyttet til Skogen gabbro massivet, Bamble. Unpublished thesis, NTH, Trondheim, 145 pp. Sindre, A., 1992. Regionaltolkning av geofysiske data, kartblad Arendal, M 1:250.000. Norges Geologiske Undersøkelse report 92.213, 30 pp. Sindre, A., 1993. Tolkning av magnetometri i gravimetri i Skagerrak, kartblad Arendal, M 1:250.000. Norges Geologiske Undersøkelse report 93.114, 11 pp. 42

Sjögren, H., 1883. Om de norska apatitförekomsterna och om sannolikheten att anträffa apatit i Sverige. Geologiska FöreningensACCEPTED i Stockholm MANUSCRIPT Förhandlingar 6, 447-498. Skogby, H., Bell, D.R., Rossman, G.R., 1990. Hydroxide in pyroxene: Variations in the natural environment. American Mineralogist 75, 764-774. enstatite, Bamble Smalley, P.C., 1983. Geology, geochemistry and geochronology of Proterozoic plutonic complexes, southern Norway. Unpublished PhD thesis, University of Nottingham, Nottingham. Smalley, P.C., 1990. Rb-Sr systematics of a Gardar-age layered alkaline monzonite suite in southern Norway: A reply. Journal of Geology 98, 123-127. Smalley, P.C., Field, D., 1991. REE, Th, Hf, Ta in Bamble gabbros (southern Norway) and their amphibolitized equivalents. Implications for gabbro tectonic setting. Precambrian Research 53, 233-242. Smalley, P.C., Field, D., Lamb, R.C., Clough, P.W.L., 1983. Rare-earth, Th, Hf, Ta and large-ion lithophile element variations in metabasites from the Proterozoic amphibolite-granulite transition zone at Arendal, south Norway. Earth and Planetary Science Letters 63, 446-458. Smalley, P.C., Field, D., Råheim, A., 1983. Resetting of Rb-Sr whole rock isochrons during Sveconorwegian low-grade events in the Gjerstad augengneiss, Telemark, southern Norway. Isotopic Geoscience 1, 269-282. Smalley, P.C., Field, D., Råheim, A., 1985. Identification and significance of reset Rb-Sr whole-rock systems in southern Norway. Terra Cognita 4, 191. Smalley, P.C., Field, D., Råheim, A., 1988. Rb-Sr systematics of a Gardar-age layered alkaline monzonite suite in southern Norway. Journal of Geology 96, 17-29. Smith, D.G.W., 1969. Contributions to the mineralogMANUSCRIPTy of Norway, No. 42. A reinvestigation of the pseudobrookite from Havredal (Bamble), Norway. Norsk Geologisk Tidsskrift 49, 285-288. Smithson, S.B., 1962. Symmetry relations in alkali feldspars of some amphibolite facies rocks from the southern Norwegian Precambrian. Norsk Geologisk Tidsskrift 42, 586-590. Smithson, S.B., 1963. Granite studies. I A gravity investigation of two Precambrian granites in S. Norway. Norges Geologiske Undersøkelse 214, 53-140. Smithson, S.B., 1965. The nature of the "granitic" layer of the crust in the southern Norwegian Precambrian. Norges Geologiske Undersøkelse 241, 113-133. Solly, R.H., 1892. Minerals from the apatite-bearing veins at Nærestad near Risör on the SE coast of Norway. Mineralogical Magazine 10, 1-7. Sørensen, B.E., 2007. Metamorphic refinement of quartz under influence of fluids during exhumation with referenceACCEPTED to the metamorphic / metasomatic evolution observed in amphibolites. PhD thesis, NTNU, Trondheim, 214 pp. Sørensen, B.E., Austrheim, H., Larsen, R.B., 2005. Fluid-related recovery and deformation textures in quartz in partly retrogressed high-grade quartzites from the Bamble sector. AGU Fall Meeting, abstract MR44A-07. Sørensen, B.E., Larsen, R.B., 2008. Coupled trace element mobilisation and strain softening in quartz during retrograde fluid infiltration in dry granulite protoliths. Contributions to Mineralogy and Petrology 157, 147-161. 43

Sorgatz, T., Bucher, K., 1995. The Proterozoic Bamble shear belt: On the amphibolite to granulite facies transition. Terra AbstractsACCEPTED 7, 316. MANUSCRIPT Starmer, I.C., 1967. The geology of the Risør area, south Norway, Aust-Agder, Norway. Unpublished PhD thesis, University of Nottingham, Nottingham. Starmer, I.C., 1969. The migmatite complex of the Risør area, Aust-Agder, Norway. Norsk Geologisk Tidsskrift 49, 33-56. Starmer, I.C., 1969. Basic plutonic intrusions of the Risør-Söndeled area, south Norway: The original lithologies and their metamorphism. Norsk Geologisk Tidsskrift 49, 403-431. Starmer, I.C., 1972. Polyphase metamorphism in the granulite facies terrain of the Risør area, south Norway. Norsk Geologisk Tidsskrift 52, 43-71. Starmer, I.C., 1972. The Sveconorwegian regeneration and earlier orogenic events in the Bamble series, south Norway. Norges Geologiske Undersøkelse 277, 37-52. Starmer, I.C., 1976. The early major structure and petrology of rocks in the Bamble series, Söndeled - Sandnesfjord, Aust-Agder. Norges Geologiske Undersøkelse 327, 77-97. Starmer, I.C., 1978. The major tectonics of the Bamble series between Söndeledfjord and Kilsfjord (Aust-Agder and Telemark). Norges Geologiske Undersøkelse 338, 37-58. Starmer, I.C., 1985. The evolution of the south Norwegian Proterozoic as revealed by major and mega-tectonics of the Kongsberg and Bamble sectors. In: Tobi, A.C., Touret, J.L.R. (Eds.), The deep Proterozoic crust in the North Atlantic provinces. D. Reidel, Dordrecht, 259-290. Starmer, I.C., 1987. Geological map of the Bamble sector, south Norway (1:100,000). In: Maijer, C., Padget, P. (Eds.), The geology of southernmost Norway. Norges Geologiske Undersøkelse Special Publication 1. MANUSCRIPT Starmer, I.C., 1990. Rb-Sr systematics of a Gardar- age layered alkaline monzonite suite in southern Norway: A discussion. Journal of Geology 98, 119-123. Starmer, I.C., 1990. Mid-Proterozoic evolution of the Kongsberg-Bamble belt and adjacent areas, southern Norway. In: Gower, C.F., Rivers, T. & Ryan, B. (Eds.), Mid-Proterozoic Laurentia - Baltica. Geological Association of Canada Special Paper 38, 279-305. Starmer, I.C., 1991. The Proterozoic evolution of the Bamble sector shear belt, southern Norway: Correlations across southern Scandinavia and the Grenvillian controversy. Precambrian Research 49, 107-139. Starmer, I.C., 1993. The Sveconorwegian orogeny in southern Norway, relative to deep crustal structures and events in the North Atlantic Proterozoic supercontinent. Norsk Geologisk TidsskriftACCEPTED 73, 109-132. Starmer, I.C., 1996. Accretion, rifting, rotation, and collision in the North Atlantic supercontinent, 1700-950 Ma. In: Brewer, T., Atkin, B.P. (Eds.), Precambrian crustal evolution in the North Atlantic region. Geological Society Special Publication 112, 226-252. Starmer, I.C., 1996. Oblique terrane assembly un the Late during the Labradorian - Gothian orogeny in southern Scandinavia. Journal of Geology 104, 341-350. Stearn, J.E.F., Piper, J.D.A., 1984. Paleomagnetism of the Sveconorwegian mobile belt of the Fennoscandian shield. Precambrian Research 23, 201-246. 44

Stern, R.A., Rayner, N., 2003. Ages of several xenotime megacrysts by ID-TIMS: Potential reference materials for ion microprobeACCEPTED U-Pb geochronology. MANUSCRIPT Geological Survey of Canada Current Research 2003-F1, 7 pp. xenotime, Aust Agder Storetvedt, K.M., 1968. The permanent magnetism of some basic intrusions in the Kragerø archipelago, S. Norway, and its geological implications. Norsk Geologisk Tidsskrift 48, 153- 163. Suleng, H., 1919. Spaltedamelser og yngre eruptiver i Arendal-Grimstadtraktene. Naturen 43, 288- 291. Sundvoll, B., Larsen, B.T., 1993. Rb-Sr and Sm-Nd relationships in dyke and sill intrusions in the Oslo rift and related areas. Norges Geologiske Undersøkelse 425, 25-41. Sverdrup, T.L., 1965. Geologisk undersøkelse av Ravneberget hyperittfelt, Søndeled, Aust Agder. Norges Geologiske Undersøkelse Bergarkivet Fagrapport BA 5835, 19 pp. Sverdrup, T.L., 1967. Oversikt over den norske mineral- og stenindustri i perioden 1950-1966. Norges Geologiske Undersøkelse Småskrift 8. Sverdrup, T.L., Thorkildsen, C.D., Bjørlykke, H., 1967. Uran of thorium i Norge. Norges Geologiske Undersøkelse 250A, 1-31. Svinndal, S., 1977. The iron ore deposits of Norway. In: Zitzman, A. (Ed.), The iron ore deposits of Europe and adjacent areas. I. Bundesanstalt für Gewissenschaften und Rohstoffe, Hamburg, 237-244. Swainbank, I., 1965. Zircon geochronology of the Norwegian basement. Annual Progress Report 11, Contract AT30-1-1669, Lamont Geological Observatory, Appendix C, 22 pp. Taborszky, F.K., 1972. Das Problem der Cl-Apatite. LithosMANUSCRIPT 5, 315-324. Cl-apatite, Ødegårdens Verk Taylor, S.R., Heier, K.S., 1958. Alkali elements on potash feldspar from the pre-Cambrian of southern Norway. Geochimica et Cosmochimica Acta 13, 293-302. Taylor, S.R., Heier, K.S., 1959. Distribution of Ca, Sr and Ba in southern Norwegian preCambrian alkali feldspars. Geochimica et Cosmochimica Acta 17, 286. ter Haar, J.H., 1988. De sub-solidus geschiedenis van actinoliet uit een actinoliet-amfibool (Alb.-Act.- Qtz.) gesteente van Bamble, SE-Noorwegen. Unpublished MSc thesis, Utrecht University, Utrecht, 18 pp. Tertsch, H., 1902. Über die Lage der Hämatitschuppen in Oligoklas von Tvedestrand. Tschermaks Mitteilungen zu Petrographie und Mineralogie 21, 248-251. Theulings, W., 1988. Veldwerkverslag Bamble gebied. Unpublished MSc thesis, Utrecht University, Utrecht, 40ACCEPTED pp. Theulings, W., van Ditshuizen, G.P., 1988. De coronitische gabbro van Vestre Dale. Unpublished MSc thesis, Utrecht University, Utrecht, 31 pp. Theulings, W., van Ditshuizen, G.P., Huijsmans, J.P.P., 1986. Petrology, mineralogy and geochemistry of a coronitic gabbro from Vestre Dale, Bamble, south Norway. Eos 67, 1252. Thijssen, P.H.M., 1990. De geologie van het Böylefoss gebied, Bamble, zuid Noorwegen. Unpublished MSc thesis, Utrecht University, Utrecht, 61 pp.

45

Thijssen, P.H.M., 1990. Sapphirine bearing rocks from Snaresund, Bamble, Norway. Unpublished MSc thesis, Utrecht University,ACCEPTED Utrecht, 22MANUSCRIPT pp. Thijssen, P.H.M., Maijer, C., 1990. Sapphirine paragenesis from Snaresund, Bamble, Norway. Geonytt 17, 114. Thijssen, P.H.M., Schumacher, J.C., 1991. Two uplift events at Hasleholmen, Bamble, south Norway, recorded by sapphirine-bearing coronas. In: Tuisku, P., Laajoki, K. (Eds.), Metamorphism, deformation and structure of the crust. Res Terrae (University of Oulu) A5, 82. Thijssen, P.H.M., Visser, D., 1991. Sapphirine-cordierite-bearing metasediments at Gladstad, south of Tvedestrand. Abstract, 2 nd SNF Excursion, Bamble, 3 pp. Thoresen, K., 1966. En geokjemisk undersøkelse av to Prekambriske granitter. Unpublished thesis, University of Oslo, Oslo, 86 pp. Tobi, A.C., Touret, J.L.R. (Eds.), 1985. The deep Proterozoic crust in the North Atlantic provinces. D. Reidel, Dordrecht, 603 pp. Torske, T., 1976. Metal provinces of a cordilleran-type orogen in the Precambrian of south Norway. Geological Association of Canada Special Paper 14, 597-613. Torske, T., 1977. The south Norwegian Precambrian region - A Proterozoic cordilleran type orogenic segment. Norsk Geologisk Tidsskrift 57, 97-120. Torske, T., 1985. Terrane displacement and Sveconorwegian rotation of the Baltic shield: A working hypothesis. In: Tobi, A.C., Touret, J.L.R. (Eds.), The deep Proterozoic crust in the North Atlantic provinces. D. Reidel, Dordrecht, 333-343. Touret, J.L.R., 1962. Geological studies in the region of Vegårshei-Gjerstad. Norges Geologiske Undersøkelse 215, 120-139. MANUSCRIPT Touret, J.L.R., 1963. Note préliminaire sur les gne iss oeillés de le région de Vegårshei-Gjerstad (Norvège méridionale). Comptes Rendus de la Société Française de Géologie 1, 33-35. Touret, J.L.R., 1963. Sur la coexistence de microcline et d'orthose dans certains gneiss oeillés de la région de Vegårshei (Norvège méridionale). Comptes Rendus de l'Académie des Sciences à Paris 256, 2885-2887. Touret, J.L.R., 1965. Sur une coupe synthétique à travers les formations précambriennes de la province de Bamble, entre Tvedestrand et le lac Vegår (Norvège méridionale). Comptes Rendus de l'Académie des Sciences à Paris 260, 6652-6655. Touret, J.L.R., 1965. Structure des gneiss oeillés du Massif de Vegårshei (S. Norvège). Comptes Rendus de la Société Française de Géologie 3, 104-105. Touret, J.L.R., 1966.ACCEPTED Sur l'origine supracrustale des gneiss rubanés de Selås (formation de Bamble, Norvège méridionale). Comptes Rendus de l'Académie des Sciences à Paris 262, 9-12. Touret, J.L.R., 1967. Sur la présence de mangérite à fayalite au NW de Gjerstad. Comptes Rendus de l'Académie des Sciences à Paris 263, 252-253. Touret, J.L.R., 1967. Les gneiss oeillés de la région de Vegårshei - Gjerstad (Norvège méridionale). I Étude pétrographique. Norsk Geologisk Tidsskrift 47, 131-148. Touret, J.L.R., 1967. Les gneiss oeillés de la région de Vegårshei - Gjerstad (Norvège méridionale). II L'indice de triclinisme des feldspaths potassique. Norsk Geologisk Tidsskrift 47, 275-282. 46

Touret, J.L.R., 1968. The Precambrian metamorphic rocks around the Lake Vegår (Aust-Agder, southern Norway). NorgesA GeologiskeCCEPTED Undersøkelse MANUSCRIPT 257, 45 pp. Touret, J., 1968. Petrographical and geochemical studies of the amphibolites in the region of Vegaaarshei-Gjerstad (Aust-Adger, south ). Geologiska Föreningens i Stockholm Förhandlingar 90, 475-476. Touret, J.L.R., 1969. Le socle Précambrien de la Norvège méridionale (Région de Vegårshei- Gjerstad). Unpublished PhD thesis, University of Nancy, CNRS no.AO 2902, 316 pp. Touret, J.L.R., 1969. Zonéographie métamorphique dans le sud de la Norvège. In: Le faciès granulite. Ses caractères et sa signification dans les domaines métamorphiques. Chalet Universitaire de la Schlucht, 1-10. Touret, J.L.R., 1970. Deep-seated volcanism along the major Precambrian breccia in south Norway. I Degernes at Lake Vegår. Norsk Geologisk Tidsskrift 50, 249-252. Touret, J.L.R., 1970. Le faciès granulite, métamorphisme en milieu carbonique. Comptes Rendus de l'Académie des Sciences à Paris 271D, 2228-2231. Touret, J., 1970. Les conditions d'apparition du faciès granulite dans la région d'Arendal (Norvège mèridionale). Fortschritte der Mineralogie 47, 70-71. Touret, J.L.R., 1971. Le faciès granulite en Norvège méridionale. I Les associations minéralogiques. Lithos 4, 239-249. Touret, J.L.R., 1971. Le faciès granulite en Norvège méridionale. II Les inclusions fluides. Lithos 4, 423-436.

Touret, J.L.R., 1971. Controle du faciès granulite dans le Bamble par le CO 2 de la phase fluide. Comptes Rendus Sommaire de la Société FrançaiseMANUSCRIPT de Géologie 3, 143-146. Touret, J.L.R., 1972. Les faciès granulite en Norvège méridionale et les inclusions fluides: Paragneiss et quartzites. Science de la Terre 17, 179-193. Touret, J.L.R., 1972. Un exemple de déformation naturelle de roches en milieu profond: Les gneiss oeillés de Vegårshei-Gjerstad (Norvège méridionale). Science de la Terre 17, 165-178. Touret, J.L.R., 1973. Minerais de fer-titane, roches plutoniques et zonéographie métamorphique dans le sud de la Norvège. In: Les roches plutoniques dans leurs rapports avec les gîtes minéraux. Colloquium E. Raguin, Masson, Paris, 249-260. Touret, J.L.R., 1974. Faciès granulite et fluides carboniques. In: Bellière, J. & Duchesne, J.C. (Eds.), Géologie des domaines cristallins. Société belge de Géologie, Liège, 267-287.

Touret, J.L.R., 1977. Utilisation thermobarométrique du CO 2 et pétrographie (réaction cordiérite- grenat). ComptesACCEPTED Rendus de la Société Française de Géologie 5, 280-283. Touret, J.L.R., 1979. Les roches à tourmaline-cordiérite-disthène de Bjordammen (Norvège méridionale) sont-elles liées a d'anciennes évaporites ? Science de la Terre 23, 95-97. Touret, J.L.R., 1981. Fluid inclusions in high grade metamorphic rocks. In: Hollister, L.S. & Crawford, M.L. (Eds.), Mineralogical Association of Canada Short Course 6, 182-208. Touret, J.L.R., 1985. Fluid regime in southern Norway: the record of fluid inclusions. In: Tobi, A.C., Touret, J.L.R. (Eds.), The deep Proterozoic crust in the North Atlantic provinces. D. Reidel, Dordrecht, 517-549. 47

Touret, J.L.R., 1986. Fluid inclusions in rocks from the lower continental crust. In: Dawson, J.B., Carswell, D.A., Hall, J., AWedepohl,CCEPTED K.H. MANUSCRIPT (Eds.), The nature of the lower continental crust. Geological Society Special Publication 24, 161-172. Touret, J.L.R., 1987. The Telemark supracrustals and the Telemark gneisses. In: Maijer, C., Padget, P. (Eds.), The geology of southernmost Norway. Norges Geologiske Undersøkelse Special Publication 1, 12-22. Touret, J.L.R., 1987. The high-grade metamorphic Bamble sector. In: Maijer, C., Padget, P. (Eds.), The geology of southernmost Norway. Norges Geologiske Undersøkelse Special Publication 1, 25-32. Touret, J.L.R., 1996. LILE-depletion in granulites: Myth or reality ? In: Demaiffe, D. (Ed.), Petrology and geochemistry of magmatic suites of rocks in the continental and oceanic crusts. Université Libre de Bruxelles, Brussels & Royal Museum for Central Africa, Tervuren, 53-72. Touret, J.L.R., de la Roche, H., 1971. Contribution to the mineralogy of Norway, No. 45. Saphirine à Snaresund, près de Tvedestrand (Norvège méridionale). Norsk Geologisk Tidsskrift 51, 169- 175. Touret, J.L.R., Dietvorst, P., 1983. Fluid inclusions in high-grade anatectic metamorphites. Journal of the Geological Society, London, 140, 635-649. Touret, J.L.R., Falkum, T., 1987. The high-grade metamorphic Bamble sector. In: Maijer, C., Padget, P. (Eds.), The geology of southernmost Norway. Norges Geologiske Undersøkelse Special Publication 1, 22-24. Touret, J.L.R., Olsen, S.N., 1985. Fluid inclusions in migmatites. In: Ashworth, J.R. (Ed.), Migmatites, Blackie, Glasgow, 265-288. MANUSCRIPT Try, H. (Ed.), 1986. Jernverk på Agder. Agder Distrikshøgskole, Kristiansand, Skrifter 3, 140 pp. Tveite, S., 1986. Vigeland verk: Pengar ut av vindauga. In: Try, H. (Ed.), 1986. Jernverk på Agder. Agder Distrikshøgskole, Kristiansand, Skrifter 3, 105-144. Tveiten, H., 1965. Da sølvkalken gikk laus. In: Vegårshei i eldre tid. J. Saabyes Forlag, Oslo, 271-281. van den Kerkhof, A.M., 1990. Fluid inclusions from Tromöy in the Bamble sector, SE Norway. Unpublished internal report, Free University Amsterdam, Amsterdam, 12 pp. van den Kerkhof, A.M., 1990. Isotopic composition (δ13C) of fluid inclusions. Unpublished internal report, Free University Amsterdam, Amsterdam, 6 pp. van den Kerkhof, A.M., Kronz, A., Simon, K., Scherer, T., 2004. Fluid-controlled quartz recovery in granulite as revealed by cathodoluminescence and trace element analysis (Bamble sector, Norway).ACCEPTED Contributions to Mineralogy and Petrology 146, 637-652. van den Kerkhof, A.M., Touret, J.L.R., Kreulen, R., 1992. Evidence for juvenile carbon dioxide and nitrogen (?) in enderbites of Tromöy (southern Norway). Program with Abstracts, Symposium ‘The geology of the Sveconorwegian (Gothian) provinces of the Baltic Shield’, Utrecht, 10-11. van den Kerkhof, A.M., Touret, J.L.R., Kreulen, R., 1994. Juvenile CO 2 in enderbites of Tromöy near Arendal, southern Norway - A fluid inclusion and stable isotope study. Journal of Metamorphic Geology 12, 301-310.

48 van der Wal, D., 1988. The optical properties of kornerupine. Unpublished MSc thesis, Utrecht University, Utrecht, 16 pp.A CCEPTED MANUSCRIPT van der Wel, D., 1973. Contribution to the mineralogy of Norway, No. 53. Kornerupine: A new mineral to Norway. Norsk Geologisk Tidsskrift 53, 349-357. van Ditshuizen, G.P., 1988. Van Dale tot Bjellåsen. Unpublished MSc thesis, Utrecht University, Utrecht, 24 pp. Vang, I., 2008. Skarn minerals and geological structures at Kalkheia, Krisitansand, southern Norway. Lund University Lund, Examensarbeten i geologi 232, 16 pp van Haren, J.L.M., 1989. Geologische geschiedenis van gebied 8, het Ubergsvanngebied, Bamble zone, zuid Noorwegen. Unpublished MSc thesis, Utrecht University, Utrecht, 72 pp. van Haren, J.L.M., Röhrman, M., 1988. Fission track ouderdommen van apatiet in het Bamble gebied (ZW Noorwegen). Unpublished MSc thesis, Utrecht University, Utrecht, 34 pp. van Linschoten, P., 1988. Veldwerkverslag Jomasknuten '86 (Bamble). Unpublished MSc thesis, Utrecht University, Utrecht, 72 pp. van Linschoten, P., 1989. Onderzoek naar de genese van twee ertszones in het Oygardsasen gabbrolichaam (noordelijk deel Blengsvatn gabbro), ZO Noorwegen. Unpublished MSc thesis, Utrecht University, Utrecht, 37 pp. Verdonk, E.M., 1986. Bamble '85. Unpublished MSc thesis, Utrecht University, Utrecht, 46 pp. Verdonk, E.M., Dam, B.P., Huijsmans, J.P.P., 1986. Coronitic gabbros ("hyperites") intruding the lower Proterozoic crust of Bamble, south Norway. Eos 67, 1352. Verheul, M.M., 1992. De geologie van het gebied rond Molandsvatn, Bamble Sector, zuidoost Noorwegen. Unpublished MSc thesis, Utrecht MANUSCRIPTUniversity, Utrecht, 107 pp. Verheul, M.M., 1992. On the PTt-evolution of the Ubergsmoen granitic/charnockitic augen gneiss (Bamble sector, S.E. Norway): Geothermobarometry of hornblende-bearing assemblages. Unpublished MSc thesis, Utrecht University, Utrecht, 72 pp. Verschure, R.H., 1985. Geochronological framework for the late-Proterozoic evolution of the Baltic shield in south Scandinavia. In: Tobi, A.C., Touret, J.L.R. (Eds.), The deep Proterozoic crust in the North Atlantic provinces. D. Reidel, Dordrecht, 381-410. Verschure, R.H., Maijer, C., 1993. A Rb-Sr isochron from a single biotite crystal. Mineralogical Magazine 57, 746-749. Verschure, R.H., Maijer, C., Andriessen, P.A.M., 1989. Isotopic age determinations in south Norway. I The Skår volcanic breccia, Greipstad, Vestagder. Geologie en Mijnbouw 68, 253-256. Verschure, R.H., ACCEPTEDMaijer, C., Andriessen, P.A.M., Boelrijk, N.A.I.M., Hebeda, E.H., Priem, H.N.A., Verdurmen, E.A.T., 1983. Dating explosive volcanism perforating the Precambrian basement in southern Norway. Norges Geologiske Undersøkelse 380, 35-49. Vevstad, A., 2008. Egelands jernverk – jernverket i skogbygda. Gjerstad Historielag, Gjerstad, 224 pp. Visser, D., 1987. Veldwerkverslag Jomas '86 (Bamble). Unpublished MSc thesis, Utrecht University, Utrecht. Visser, D., 1987. Orthoamphibole-bearing rocks in the Nidelva area, south Norway. Unpublished MSc thesis, Utrecht University, Utrecht, 45 pp. 49

Visser, D., 1992. Kornerupine breakdown reactions in a biotite-garnet-spinel schist near Böylefossbru, st Bamble sector, south Norway.ACCEPTED Volume of MANUSCRIPT Abstracts, 1 Netherlands Earth Scientific Congress, Veldhoven, 154. Visser, D., 1992. Hydrothermal formation of cordierite in a gedrite-oligoclase rock, Blengsvatn, Bamble sector, south Norway. Volume of Abstracts, 1st Netherlands Earth Scientific Congress, Veldhoven, 155. Visser, D., 1992. Gedrite breakdown in a gedrite-oligoclase rock, Blengsvatn, Bamble sector, south Norway. Neues Jahrbuch für Mineralogie, Monatshefte, 513-527. Visser, D., 1992. On ammonium in upper-amphibolite facies cordierite-orthoamphibole-bearing rocks from Rød, Bamble sector, south Norway. Norsk Geologisk Tidsskrift 72, 385-388. Visser, D., 1993. Fluorine-bearing hydrogarnets from Blengsvatn, Bamble sector, south Norway. Mineralogy and Petrology 47, 209-218. Visser, D., 1993. The metamorphic evolution of the Bamble sector, south Norway: A paragenetic and mineral chemical study of cordierite-orthoamphibole-bearing rocks with special reference to borosilicate-bearing mineral assemblages. Geologica Ultraiectina 103, 159 pp. Visser, D., 1995. Kornerupine in a biotite-spinel-garnet schist near Böylefossbru, Bamble sector, south Norway: Implications for early and late metamorphic fluid activity. Neues Jahrbuch für Mineralogie, Abhandlungen 169, 1-34. Visser, D., Kloprogge, J.T., Maijer, C., 1994. An infrared spectroscopic (IR) and light element (Li, Be, Na) study of cordierites from the Bamble sector, south Norway. Lithos 32, 95-107. Visser, D., Maijer, C., Senior, A., 1990. Retrograde talc-kyanite-quartz assemblage from Bjordammen, Bamble sector, south Norway. Geonytt 17, 119.MANUSCRIPT Visser, D., Nijland, T.G., Lieftink, D.J., Maijer, C., 1998. The occurrence of preiswerkite in a tourmaline-biotite-scapolite rock (Blengsvatn, Bamble, Norway). American Mineralogist 84, 977-982. Visser, D., Nijland, T.G., Maijer, C., 1991. Orthopyroxene-cordierite-garnet-kornerupine-albite- bearing metaevaporites intercalated with enderbitic gneisses at Færvik School, Tromøya. Abstract, 2 nd SNF Excursion, Bamble, 5 pp. Visser, D., Senior, A., 1990. Aluminous reaction textures in orthoamphibole bearing rocks: The P-T path of the high grade Proterozoic of the Bamble sector, south Norway. Journal of Metamorphic Geology 8, 231-246. Visser, D., Senior, A., 1991. Mg-rich dumortierite in cordierite-orthoamphibole-bearing rocks from the high-gradeACCEPTED Bamble sector, south Norway. Mineralogical Magazine 55, 563-577. Visser, D., Thijssen, P.H.M., Schumacher, J.C., 1992. Högbomite in sapphirine-bearing rocks from the Bamble sector, south Norway. Mineralogical Magazine 56, 343-351. Vogels, R.J.M.J., 1991. A detailed structural profile through the charnockitic Ubergsmoen augen gneiss. Abstract, 2 nd SNF Excursion, Bamble, 2 pp. Vogels, R.J.M.J., 1991. Geothermometry on two high-grade mineral assemblages from the charnockitic Ubergsmoen augen gneiss. Unpublished MSc thesis, Utrecht University, Utrecht, 69 pp. 50

Vogels, R.J.M.J., 1991. Geological map of the 1:5,000 map sheet Røyslandsknuten (Økonomisk Kartverk, BS017-5-3). UnpublishedACCEPTED map sheet,MANUSCRIPT Utrecht, University, Utrecht Vogels, R.J.M.J., Nijland, T.G., 1991. Biotite breakdown to orthopyroxene, spinel-albite ± corundum symplectite and sapphirine, Hauglandsvatnet, Norway. Abstract, 2 nd SNF Excursion, Bamble, 3 pp. Vogt, J.H.L., 1884. Sølvforekomsten paa Hisø pr. Arendal. Archiv for Mathematik og Naturvidenskab 9, 289-294. Vogt, J.H.L., 1886. Norske Ertsforekonster III. Om den Thelemark-Sæterdalske ertsformation. Archiv for Mathematik og Naturvidenskab 11, 58-59. Vogt, J.H.L., 1886. Hisø sølvgrube pr. Arendal, Norge. Geologiska Föreningens i Stockholm Förhandlingar 8, 64-70. Vogt, J.H.L., 1893. Ilmenit-Enstatit in Olivinhyperit auf Langö und Gomö bei Kragerö in Norwegen. Zeitschrift für praktische Geologie 1:8. Vogt, J.H.L., 1893. Bildung von Erzlagerstätten durch Differentiations Processen in basischen Eruptivmagmata. II. "Sulphidische" Ausscheidungen von Nickel-Sulphiderzen, namentlich nickelhaltigen Magnetkies, in basischen Eruptivgesteinten, Norit, Labradorfels, Gabbro, Diorit, Diabas, Olivindiabas, u.s.w. Zeitschrift für praktische Geologie 1, 125-143. Vogt, J.H.L., 1906. Udtalelse om Bamble Apatitgruber. Kristiania 1906, 1-7. Vogt, J.H.L., 1907. Über die Erzgänge zu Traag in Bamble, Norwegen. Zeitschrift für praktische Geologie 15, 210-216. Vogt, J.H.L., 1908. De gamle norske jernverk. Norges Geologiske Undersøkelse 46, 83 pp. Vogt, J.H.L., 1910. Norges jernmalmforekomster. NorMANUSCRIPTges Geologiske Undersøkelse 51, 225 pp. Vogt, J.H.L., 1918. Jernmalm og jernverk. Norges Ge ologiske Undersøkelse 85, 181 pp. Vogt, J.H.L., 1921. The physical chemistry of the crystallization and magmatic differentiation of igneous rocks. Journal of Geology 21, 426-443. Vogt, T., 1937. Leptitformasjonens jernforekomster i Norge. Norsk Geologisk Tidsskrift 17, 217-219. Vogt, T., 1937. Svecofennidenes fortsettelse i Norge. Geologiska Föreningens i Stockholm Förhandlingar 59, 371-372. Vokes, F.M., 1960. Mines in south and central Norway. Norges Geologiske Undersøkelse 212m, 73 pp. von Scheibler, W.H.T.M., 1988. Geothermometrie en geobarometrie toegepast op anthophylliet- cordieriet gesteenten uit de Bamble sector, zuid Noorwegen. Unpublished MSc thesis, Utrecht University,ACCEPTED Utrecht, 40 pp. Vons, A., 1986. Verslag Bamble - veldwerk zomer '84 en zomer '85. Unpublished MSc thesis, Utrecht University, Utrecht, 25 pp. Vons, A., 1986. Granaat-biotiet- en titaan-thermometrie in het Bamble gebied. Unpublished MSc thesis, Utrecht University, Utrecht, 26 pp.

Vry, J.K., Brown, P.E., Valley, J.W., 1990. Cordierite volatile content and the role of CO 2 in high- grade metamorphism. American Mineralogist 75, 71-88. cordierite, Arendal, Risør, Bamble

51

Wanvik, J.E., 2005. Kvartsittundersøkelser ved Kilsfjorden, Kragerø. Norges Geologiske Undersøkelse Report 2005-055,ACCEPTED 17 pp. MANUSCRIPT Wanik, J.E., 2006. Kvartsitter ved Kilsfjorden. Supplerende undersøkelser. Norges Geologiske Undersøkelse Report 2006-062, 17 pp. Watson, L.T., 1912. Krageroite, a rutile-bearing rock from Kragerö, Norway. American Journal of Science 24, 509-514. Wegmann, C.E., Schaer, J.P., 1962. Chronologie et déformations des filons basiques dans les formations précambriennes du sud de la Norvège. Norsk Geologisk Tidsskrift 42, 371-386. Weibye, P.C., 1847. Bemerkungen über die geognostischen Verhöltnisse der Küste von Arendal bis Laurvig im südlichen Norwegen. Neues Jahrbuch für Mineralogie, Geologie, Geognosie und Petrefaktenkunde, 697-709. Weibye, P.C., 1848. Oplysninger om de Forhold i Omegnen af Arendal. Forhandlinger Skandinavische Naturførser, may 1847, Copenhagen. Weibye, P.C., 1849. Beiträge zur topographischen Mineralogie des Disrtikts Tvedestrand. Neues Jahrbuch für Mineralogie, Geologie, Geognosie und Petrefaktenkunde, 87-89. Weibye, P.C., 1849. Beiträge zur topographischen Mineralogie des Distrikts Brevig. Neues Jahrbuch für Mineralogie, Geologie, Geognosie und Petrefaktenkunde, 467-470. Weibye, P.C., 1849. Uber die Mineralien-Lagerstätten bei Brevig. Neues Jahrbuch für Mineralogie, Geologie, Geognosie und Petrefaktenkunde, 521-525. Weibye, P.C., 1849. Beiträge zur topographischen Mineralogie des Distriktes Arendal. Neues Jahrbuch für Mineralogie, Geologie, Geognosie und Petrefaktenkunde, 559-563. Weibye, P.C., 1849. Beiträge zur topographischen MineralogieMANUSCRIPT des Distrikts Kragerö. Neues Jahrbuch für Mineralogie, Geologie, Geognosie und Petrefakte nkunde, 702-705. Weibye, P.C., 1849. Zur Kenntniss Norwegischer Mineralien. Neues Jahrbuch für Mineralogie, Geologie, Geognosie und Petrefaktenkunde, 769-783. Weis, D., Demaiffe, D., 1983. Age relationships in the Proterozoic high-grade gneiss regions of southern Norway: Discussion and comment. Precambrian Research 22, 149-155. Werenskiold, W., 1915. Dypirgangen ved Ødegaarden i Bamle. Norsk Geologisk Tidsskrift 3, 5-6. Werenskiold, W., 1916. Fra Bamble. Festskrift til Amund Helland. Wickman, F.E., Lundström, I., 1969. Width of albite twin lamellae. Part I. An oligoclase from a pegmatite, Bamble, Norway. Lithos 2, 197-213. Wiik, V.H., 1962. Geolgogiske undersøkelser på Langøy ved Kragerø. Unpublished MSc thesis, UniversityACCEPTED of Oslo, Oslo 101 pp. Xue, J., Pan, Y., Luo, G., Lu, H., 2003. Chemical components and microtopography of (100) surface for orthopyroxene. Chinese Science Bulletin 48, 931-934. orthopyroxene, Bamble

Yang, H., Zwick, J, Downs, R.T., Costin, G., 2007. Isolite, CaMg(PO 4)F 0.8 (OH) 0.2 , isomorphous with titanite. Acta Crystallographica C63, i89-i90. isokite, Kjorrestad Zimmerman, J.L., 1981. La libération de l'eau, du gaz carbonique et des hydrocarbures des coriérites. Çinétique des méchanismes. Détermination des sites. Intérèt pétrogénétique. Bulletin de Minéralogie 104, 325-338. 52