Diversity and Distribution of Peritrich Ciliates on the Snail Physa Acuta

Total Page:16

File Type:pdf, Size:1020Kb

Diversity and Distribution of Peritrich Ciliates on the Snail Physa Acuta Zoological Studies 57: 42 (2018) doi:10.6620/ZS.2018.57-42 Open Access Diversity and Distribution of Peritrich Ciliates on the Snail Physa acuta Draparnaud, 1805 (Gastropoda: Physidae) in a Eutrophic Lotic System Bianca Sartini1, Roberto Marchesini1, Sthefane D´ávila2, Marta D’Agosto1, and Roberto Júnio Pedroso Dias1,* 1Laboratório de Protozoologia, Programa de Pós-graduação em Ciências Biológicas (Zoologia), ICB, Universidade Federal de Juiz de Fora, Juiz de Fora, Minas Gerais, 36036-900, Brazil 2Museu de Malacologia Prof. Maury Pinto de Oliveira, ICB, Universidade Federal de Juiz de Fora, Minas Gerais, 36036-900, Brazil (Received 9 September 2017; Accepted 26 July 2018; Published 17 October 2018; Communicated by Benny K.K. Chan) Citation: Sartini B, Marchesini R, D´ávila S, D’Agosto M, Dias RJP. 2018. Diversity and distribution of peritrich ciliates on the snail Physa acuta Draparnaud, 1805 (Gastropoda: Physidae) in a eutrophic lotic system. Zool Stud 57:42. doi:10.6620/ZS.2018-57-42. Bianca Sartini, Roberto Marchesini, Sthefane D´ávila, Marta D’Agosto, and Roberto Júnio Pedroso Dias (2018) Freshwater gastropods represent good models for the investigation of epibiotic relationships because their shells act as hard substrates, offering a range of microhabitats that peritrich ciliates can occupy. In the present study we analyzed the community composition and structure of peritrich epibionts on the basibiont freshwater gastropod Physa acuta. We also investigated the spatial distribution of these ciliates on the shells of the basibionts, assuming the premise that the shell is a topologically complex substrate. Among the 140 analyzed snails, 60.7% were colonized by peritrichs. We observed seven peritrich species: Epistylis plicatilis and Epistylis sp. (Epistylididae); Opercularia articulata (Operculariidae); Carchesium polypinum, Vorticella campanula and Vorticella sp. (Vorticellidae) and Thuricola kellicottiana (Vaginicollidae). We observed a high prevalence of epibiosis (> 60%) when all species of ciliates were considered conjunctly. However, the prevalence was low (1-58%) when each species was considered separately, reflecting their aggregate distribution pattern. The most prevalent species were Epistylis sp. (58.60%), Vorticella sp. (14.30%) and O. articulata (13.60%). Although the epibionts were distributed through the shell’s entire extension, we observed greater values of abundance, density, diversity and dominance on the dorsal surface. Only Epistylis sp. was widely distributed on the ventral surface. We also observed that the peritrichs predominantly occupied the areas of the shell delimited by the sutures. We interpreted these distribution patterns considering that the peritrichs select their attachment sites under pressures related to basibiont behavior, physical forces that may dislocate them and protective characteristics of the shell’s areas. Key words: Brazil, Peritrichia, Physa acuta, Protozoan epibionts, Site preference. BACKGROUND at the community and the microenvironment levels (Fernandez-Leborans and Cárdenas Epibiosis is a facultative association, 2009). Epibiosis involving ciliates is relatively well widespread in aquatic environments, which documented in a number of studies addressing the involves the epibionts, organisms that remain composition of epibiotic communities (Fernandez- attached to the surface of living substrates, the Leborans and Tato-Porto 2000; Chatterjee et basibionts, during the sessile phase of their life al. 2013; Bielecka and Boehnke 2014), spatial cycles (Wahl 1989). Epibiosis not only affects the and temporal distribution of epibionts in marine organisms involved, but also promotes changes and limnetic ecosystems (Hanamura 2000; Utz *Correspondence: Tel: +55-32-21023223. E-mail: [email protected] © 2018 Academia Sinica, Taiwan 1 Zoological Studies 57: 42 (2018) page 2 of 12 and Coats 2005; Dias et al. 2008; Cabral et al. in form and ornamentation and therefore offer a 2010 2017), negative impacts on basibionts range of microhabitats that can be occupied by (Visse 2007; Souissi et al. 2013; Burris and Dam peritrich ciliates. The shell is not discarded during 2014), advantages and adaptations of epibionts the development of the snails, like it is with the (Delgery et al. 2006; Fernandez-Leborans and exoskeletons of arthropods (Hanamura 2000; Rintelen 2010), spatial colonization patterns of Delgery et al. 2006; Vicente et al. 2008), allowing epibionts on basibionts (Fernandez-Leborans et the continuous colonization by ciliate species and al. 2006; Marinõ-Perez and Mayén-Estrada 2009; leading to complex interactions between ciliate Fernandez-Leborans et al. 2013) and epibionts species in space and time (Dias et al. 2008). biology (Gilbert and Schröder 2003; Utz 2008; As a result, freshwater snails can be regarded Bickel et al. 2012). as a source of biodiversity in limnic environments Epibiont ciliates are found in several groups: (Voight and Walker 1995; Gutiérrez et al. 2003). apostomatids, chonotrichids, heterotrichs, However, most studies on the matter are restricted peritrichs and suctorians (Corliss 1979; to marine species bearing communities composed Fernandez-Leborans et al. 2006). Among these, of polychaetes and anemones (Wahl and greater diversity of epibiont ciliates are found in Sönnichsen 1992; Warner 1997; Vasconcelos et the subclass Peritrichia, Stein 1859, whose life al. 2007; Mercier et al. 2011). Studies aiming to cycles contain a sessile stage fixed by a stalk to investigate epibiotic interactions between peritrich an inert or living substrate as well as by a dispersal ciliates and freshwater gastropods are scarce, stage represented by free-swimming forms that more particularly in neotropical ecosystems seek new substrates (Gilbert and Schröder 2003). (López-Ochoterena 1964; Dias et al. 2006 2008 They can live as epibionts on several metazoans 2010; Utz 2007). as cnidarians, ctenophorans, rotifers, tardigrades, Physa acuta Draparnaud, 1805 (recent platyhelminthes, crustaceans, annelids, insect synonym Haitia acuta) (Pulmonata, Physidae) is larvae, mollusks, fishes, tadpoles and turtles (Kahl an invasive freshwater snail originating from North 1935; Corliss 1979; Foissner et al. 1992; Moss et America, presently found in all continents (Dillon al. 2001; Mayén-Estrada and Aladro-Lubel 2002; et al. 2002; Van Leeuwen et al. 2012). These Gilbert and Schröder 2003; Dias et al. 2008 2009). snails exploit several dispersal vectors that may Although the majority of peritrich species are able have contributed to its wide geographical range to colonize both inert and living substrates evenly, (Van Leeuwen et al. 2012), and there is genetic the colonization of basibionts is not a random and demographic evidence that these snails phenomenon. There is experimental evidence recurrently recolonize habitats (Bousset et al. that suggests that these ciliates actively select 2004; Chlyeh et al. 2006). They show tolerance the colonized species, as well as the attachment to a wide range of environmental conditions, sites on the basibionts (Cook et al. 1998; Mayén- including organic pollution, and were recently Estrada and Aladro-Lubel 2001; Gilbert and used as biological models to assess toxicological Schröder 2003; Fernandez-Leborans et al. 2006). effects of nanoparticles in freshwater environments The advantages of colonizing a living (Fahmy et al. 2014). They are commonly found in substrate have been mostly associated to nutrient eutrophic lakes and rivers in Europe, Asia, Africa, acquisition through the water currents generated Australia and North and South America (Paraense by the basibionts (Wahl 1989; Threlkeld 1993; and Pontier 2003; Bernot et al. 2005; Albrecht et Fernandez-Leborans et al. 2006), or from the al. 2009; Tietze and De Francesco 2010). bacteria-rich periphyton that accumulate on Herein we analyzed the community their exoskeletons (Bernot et al. 2005). Another composition and structure of peritrich epibionts important aspect is the fact that the basibionts on P. acuta. We also investigated the spatial are mobile, moving away from unfavorable distribution of these ciliates on the shells environments and thus promoting the survival of of basibionts, assuming that the shell is a the epibionts (Dias et al. 2008). Also, the basibiont topologically complex substrate. We considered may potentially promote epibiont dispersal during that the different parts of the shell represent their own migrations, contributing to the gene flow distinct microhabitats and some of its areas between populations (Wahl 1989). may be more favorable for the establishment of Freshwater gastropods are good models for epibionts. We interpreted the observed distribution investigating epibiotic relationships because their patterns, considering that the peritrichs select shells act as hard substrates that are complex their attachment sites under pressures related to © 2018 Academia Sinica, Taiwan Zoological Studies 57: 42 (2018) page 3 of 12 the basibiont behavior, physical forces that may Epibiotic community structure dislocate them and protective characteristics of the shell’s areas. To access epibiotic community structure, we analyzed the data on prevalence, mean intensity, mean abundance and the discrepancy index MATERIALS AND METHODS (Poulin 1993) for each epibiont species with the Quantitative Parasitology 3.0 software (Rosza et Snail sampling al. 2000). In all analyses, colonial peritrichs were quantified considering each zooid as an individual. We collected 140 Physa acuta specimens in
Recommended publications
  • Novel Contributions to the Peritrich Family Vaginicolidae
    applyparastyle “fig//caption/p[1]” parastyle “FigCapt” Zoological Journal of the Linnean Society, 2019, 187, 1–30. With 13 figures. Novel contributions to the peritrich family Vaginicolidae (Protista: Ciliophora), with morphological and Downloaded from https://academic.oup.com/zoolinnean/article-abstract/187/1/1/5434147/ by Ocean University of China user on 08 October 2019 phylogenetic analyses of poorly known species of Pyxicola, Cothurnia and Vaginicola BORONG LU1, LIFANG LI2, XIAOZHONG HU1,5,*, DAODE JI3,*, KHALED A. S. AL-RASHEID4 and WEIBO SONG1,5 1Institute of Evolution and Marine Biodiversity, & Key Laboratory of Mariculture, Ministry of Education, Ocean University of China, Qingdao 266003, China 2Marine College, Shandong University, Weihai 264209, China 3School of Ocean, Yantai University, Yantai 264005, China 4Zoology Department, College of Science, King Saud University, Riyadh 11451, Saudi Arabia 5Laboratory for Marine Biology and Biotechnology, Qingdao National Laboratory for Marine Science and Technology, Qingdao 266237, China Received 29 September 2018; revised 26 December 2018; accepted for publication 13 February 2019 The classification of loricate peritrich ciliates is difficult because of an accumulation of several taxonomic problems. In the present work, three poorly described vaginicolids, Pyxicola pusilla, Cothurnia ceramicola and Vaginicola tincta, were isolated from the surface of two freshwater/marine algae in China. In our study, the ciliature of Pyxicola and Vaginicola is revealed for the first time, demonstrating the taxonomic value of infundibular polykineties. The small subunit rDNA, ITS1-5.8S rDNA-ITS2 region and large subunit rDNA of the above species were sequenced for the first time. Phylogenetic analyses based on these genes indicated that Pyxicola and Cothurnia are closely related.
    [Show full text]
  • Ciliate Diversity, Community Structure, and Novel Taxa in Lakes of the Mcmurdo Dry Valleys, Antarctica
    Reference: Biol. Bull. 227: 175–190. (October 2014) © 2014 Marine Biological Laboratory Ciliate Diversity, Community Structure, and Novel Taxa in Lakes of the McMurdo Dry Valleys, Antarctica YUAN XU1,*†, TRISTA VICK-MAJORS2, RACHAEL MORGAN-KISS3, JOHN C. PRISCU2, AND LINDA AMARAL-ZETTLER4,5,*࿣ 1Laboratory of Protozoology, Institute of Evolution & Marine Biodiversity, Ocean University of China, Qingdao 266003, China; 2Montana State University, Department of Land Resources and Environmental Sciences, 334 Leon Johnson Hall, Bozeman, Montana 59717; 3Department of Microbiology, Miami University, Oxford, Ohio 45056; 4The Josephine Bay Paul Center for Comparative Molecular Biology and Evolution, Marine Biological Laboratory, Woods Hole, Massachusetts 02543; and 5Department of Earth, Environmental and Planetary Sciences, Brown University, Providence, Rhode Island 02912 Abstract. We report an in-depth survey of next-genera- trends in dissolved oxygen concentration and salinity may tion DNA sequencing of ciliate diversity and community play a critical role in structuring ciliate communities. A structure in two permanently ice-covered McMurdo Dry PCR-based strategy capitalizing on divergent eukaryotic V9 Valley lakes during the austral summer and autumn (No- hypervariable region ribosomal RNA gene targets unveiled vember 2007 and March 2008). We tested hypotheses on the two new genera in these lakes. A novel taxon belonging to relationship between species richness and environmental an unknown class most closely related to Cryptocaryon conditions
    [Show full text]
  • Symbionts and Diseases Associated with Invasive Apple Snails
    Symbionts and diseases associated with invasive apple snails Cristina Damborenea, Francisco Brusa and Lisandro Negrete CONICET, División Zoología Invertebrados, Museo de La Plata (FCNyM-UNLP), Paseo del Bosque, 1900 La Plata, Argentina. Email: [email protected], fbrusa@ fcnym.unlp.edu.ar, [email protected] Abstract This contribution summarizes knowledge of organisms associated with apple snails, mainly Pomacea spp., either in a facultative or obligate manner, paying special attention to diseases transmitted via these snails to humans. A wide spectrum of epibionts on the shell and operculum of snails are discussed. Among them algae, ciliates, rotifers, nematodes, flatworms, oligochaetes, dipterans, bryozoans and leeches are facultative, benefitting from the provision of substrate, transport, access to food and protection. Among obligate symbionts, five turbellarian species of the genusTemnocephala are known from the branchial cavity, with T. iheringi the most common and abundant. The leech Helobdella ampullariae also spends its entire life cycle inside the branchial cavity; two copepod species and one mite are found in different sites inside the snails. Details of the nature of the relationships of these specific obligate symbionts are poorly known. Also, extensive studies of an intracellular endosymbiosis are summarized. Apple snails are the first or second hosts of several digenean species, including some bird parasites.A number of human diseases are transmitted by apple snails, angiostrongyliasis being the most important because of the potential seriousness of the disease. Additional keywords: Ampullariidae, Angiostrongylus, commensals, diseases, epibionts, parasites, Pomacea, symbiosis 73 Introduction The term “apple snail” refers to a number of species of freshwater snails belonging to the family Ampullariidae (Caenogastropoda) inhabiting tropical and subtropical regions (Hayes et al., 2015).
    [Show full text]
  • Protistology an International Journal Vol
    Protistology An International Journal Vol. 10, Number 2, 2016 ___________________________________________________________________________________ CONTENTS INTERNATIONAL SCIENTIFIC FORUM «PROTIST–2016» Yuri Mazei (Vice-Chairman) Welcome Address 2 Organizing Committee 3 Organizers and Sponsors 4 Abstracts 5 Author Index 94 Forum “PROTIST-2016” June 6–10, 2016 Moscow, Russia Website: http://onlinereg.ru/protist-2016 WELCOME ADDRESS Dear colleagues! Republic) entitled “Diplonemids – new kids on the block”. The third lecture will be given by Alexey The Forum “PROTIST–2016” aims at gathering Smirnov (Saint Petersburg State University, Russia): the researchers in all protistological fields, from “Phylogeny, diversity, and evolution of Amoebozoa: molecular biology to ecology, to stimulate cross- new findings and new problems”. Then Sandra disciplinary interactions and establish long-term Baldauf (Uppsala University, Sweden) will make a international scientific cooperation. The conference plenary presentation “The search for the eukaryote will cover a wide range of fundamental and applied root, now you see it now you don’t”, and the fifth topics in Protistology, with the major focus on plenary lecture “Protist-based methods for assessing evolution and phylogeny, taxonomy, systematics and marine water quality” will be made by Alan Warren DNA barcoding, genomics and molecular biology, (Natural History Museum, United Kingdom). cell biology, organismal biology, parasitology, diversity and biogeography, ecology of soil and There will be two symposia sponsored by ISoP: aquatic protists, bioindicators and palaeoecology. “Integrative co-evolution between mitochondria and their hosts” organized by Sergio A. Muñoz- The Forum is organized jointly by the International Gómez, Claudio H. Slamovits, and Andrew J. Society of Protistologists (ISoP), International Roger, and “Protists of Marine Sediments” orga- Society for Evolutionary Protistology (ISEP), nized by Jun Gong and Virginia Edgcomb.
    [Show full text]
  • Protozoologica
    Acta Protozool. (2014) 53: 207–213 http://www.eko.uj.edu.pl/ap ACTA doi:10.4467/16890027AP.14.017.1598 PROTOZOOLOGICA Broad Taxon Sampling of Ciliates Using Mitochondrial Small Subunit Ribosomal DNA Micah DUNTHORN1, Meaghan HALL2, Wilhelm FOISSNER3, Thorsten STOECK1 and Laura A. KATZ2,4 1Department of Ecology, University of Kaiserslautern, 67663 Kaiserslautern, Germany; 2Department of Biological Sciences, Smith College, Northampton, MA 01063, USA; 3FB Organismische Biologie, Universität Salzburg, A-5020 Salzburg, Austria; 4Program in Organismic and Evolutionary Biology, University of Massachusetts, Amherst, MA 01003, USA Abstract. Mitochondrial SSU-rDNA has been used recently to infer phylogenetic relationships among a few ciliates. Here, this locus is compared with nuclear SSU-rDNA for uncovering the deepest nodes in the ciliate tree of life using broad taxon sampling. Nuclear and mitochondrial SSU-rDNA reveal the same relationships for nodes well-supported in previously-published nuclear SSU-rDNA studies, al- though support for many nodes in the mitochondrial SSU-rDNA tree are low. Mitochondrial SSU-rDNA infers a monophyletic Colpodea with high node support only from Bayesian inference, and in the concatenated tree (nuclear plus mitochondrial SSU-rDNA) monophyly of the Colpodea is supported with moderate to high node support from maximum likelihood and Bayesian inference. In the monophyletic Phyllopharyngea, the Suctoria is inferred to be sister to the Cyrtophora in the mitochondrial, nuclear, and concatenated SSU-rDNA trees with moderate to high node support from maximum likelihood and Bayesian inference. Together these data point to the power of adding mitochondrial SSU-rDNA as a standard locus for ciliate molecular phylogenetic inferences.
    [Show full text]
  • VII EUROPEAN CONGRESS of PROTISTOLOGY in Partnership with the INTERNATIONAL SOCIETY of PROTISTOLOGISTS (VII ECOP - ISOP Joint Meeting)
    See discussions, stats, and author profiles for this publication at: https://www.researchgate.net/publication/283484592 FINAL PROGRAMME AND ABSTRACTS BOOK - VII EUROPEAN CONGRESS OF PROTISTOLOGY in partnership with THE INTERNATIONAL SOCIETY OF PROTISTOLOGISTS (VII ECOP - ISOP Joint Meeting) Conference Paper · September 2015 CITATIONS READS 0 620 1 author: Aurelio Serrano Institute of Plant Biochemistry and Photosynthesis, Joint Center CSIC-Univ. of Seville, Spain 157 PUBLICATIONS 1,824 CITATIONS SEE PROFILE Some of the authors of this publication are also working on these related projects: Use Tetrahymena as a model stress study View project Characterization of true-branching cyanobacteria from geothermal sites and hot springs of Costa Rica View project All content following this page was uploaded by Aurelio Serrano on 04 November 2015. The user has requested enhancement of the downloaded file. VII ECOP - ISOP Joint Meeting / 1 Content VII ECOP - ISOP Joint Meeting ORGANIZING COMMITTEES / 3 WELCOME ADDRESS / 4 CONGRESS USEFUL / 5 INFORMATION SOCIAL PROGRAMME / 12 CITY OF SEVILLE / 14 PROGRAMME OVERVIEW / 18 CONGRESS PROGRAMME / 19 Opening Ceremony / 19 Plenary Lectures / 19 Symposia and Workshops / 20 Special Sessions - Oral Presentations / 35 by PhD Students and Young Postdocts General Oral Sessions / 37 Poster Sessions / 42 ABSTRACTS / 57 Plenary Lectures / 57 Oral Presentations / 66 Posters / 231 AUTHOR INDEX / 423 ACKNOWLEDGMENTS-CREDITS / 429 President of the Organizing Committee Secretary of the Organizing Committee Dr. Aurelio Serrano
    [Show full text]
  • Pengembangan Buku Ajar Taksonomi Invertebrata Berbasis Riset Pada Perkuliahan Biologi
    LAPORAN PENELITIAN KLUSTER PENELITIAN PEMBINAAN/KAPASITAS NO. REGISTRASI PENDAFTARAN: 191140000017046 PENGEMBANGAN BUKU AJAR TAKSONOMI INVERTEBRATA BERBASIS RISET PADA PERKULIAHAN BIOLOGI PENELITI: RAHMADINA, M.Pd ID. PENELITI: 202305860210000 LEMBAGA PENELITIAN DAN PENGABDIAN KEPADA MASYARAKAT (LP2M) UNIVERSITAS ISLAM NEGERI (UIN) SUMATERA UTARA MEDAN 2019 i IDENTITAS PENELITI Judul Penelitian : Pengembangan Buku Ajar Taksonomi Invertebrata Berbasis Riset Pada Perkuliahan Biologi Kelompok Penelitian : Penelitian Pembinaan/Kapasitas Nama Peneliti : Rahmadina, M.Pd NIDN : 2023058602 NIB : 1100000068 IDI Peneliti : 202305860210000 Pangkat /Gol : Penata Muda Tk. I/ III b Jabatan Fungsional : Asisten Ahli Bidang Keahlian : Biologi Sel Fakultas/Prodi : Sains dan Teknologi /Biologi Alamat Peneliti : Jln. Pukat IV No. 23 A Kec. Medan Tembung Medan Nomor Hp : 081361152362 Email : [email protected] ID Sinta : 6665982 i LEMBAR PENGESAHAN PENELITIAN BOPTN 2019 1. a. Judul Penelitian : Pengembangan Buku Ajar Taksonomi Invertebrata Berbasis Riset Pada Perkuliahan Biologi b. Kluster Penelitian : Penelitian Pembinaan / Kapasitas c. Bidang Keilmuan : Biologi Sel d. Kategori : Individu 2. Peneliti : Rahmadina, M.Pd 3. ID Peneliti : 202305860210000 4. Unit Kerja : Fakultas Sains dan Teknologi UIN SU Medan/Prodi Biologi 5. Waktu Penelitian : Juni s/d November 2019 (5 s/d 6 Bulan ) 6. Lokasi Penelitian : Fakultas Sains dan Teknologi Medan 7. Dana Penelitian : Rp. 15.000.000,- (Lima Belas Juta Rupiah) Disahkan oleh Ketua Medan, 04 November 2019 Lembaga Penelitian dan Pengabdian Peneliti kepada Masyarakat (LP2M)UIN Sumatera Utara Medan Prof. Dr. Pagar, M.Ag Rahmadina, M.Pd NIP. 19581231 199803 1 016 NIDN. 2023058602 ii SURAT PERNYATAAN BEBAS PLAGIAT Yang bertanda tangan di bawah ini: Nama : Rahmadina, M.Pd Jabatan : Peneliti Unit Kerja : Prodi Biologi Fakultas Sains dan Teknologi UIN-SU Medan Alamat : Jln.
    [Show full text]
  • Lust Und Last Des Bezeichnens - • • Über Namen Aus Der Mikroskopischen Welt1
    © Biologiezentrum Linz/Austria; download unter www.biologiezentrum.at Denisia 13 I 17.09.2004 I 383-402 Lust und Last des Bezeichnens - • • Über Namen aus der mikroskopischen Welt1 E. AESCHT Abstract: Delight and burden of naming - About names from the microscopic world. — A short history of desi- gnating mainly genera and species of ciliates (Ciliophora), which are relatively "large" and rich of characters, is gi- ven. True vernacular (genuine) names are understandably absent; German names have been established from 1755 to 1838 and in the last three decades of the 20lh century in scientific and popular literature. A first analysis from a linguistic point of view of about 1400 scientific names of type species shows that frequently metaphoric names have been applied referring to objects of everday use and somatic characters of well known animals including human beings. A nomenclaturally updated list of 271 species including German names is provided, of which numerous syn- onyms and homonyms have to be clarified cooperatively; 160 of these species are of saprobiological relevance and 119 refer to type species of genera. Malpractices of amateurs and scientists have been due to a confusion of nomen- clature, a formalized exact tool of designation, and taxonomy, the theory and practice of classifying organisms. It is argued that names in national languages may help to publicise the diversity and importance of microscopic orga- nisms; their description and labeling are a particular challenge to creative, recently underestimated linguistic com- petence. Key words: history of nomenclature, protozoans, ciliates (Ciliophora), scientific and vernacular names, populariza- tion, taxonomy. „Nur Namen! Aber Namen sind nicht Schall und Rauch.
    [Show full text]
  • Mass Development of Periphyton Ciliates in the Coastal Zone of Southern Baikal in 2019-2020
    Limnology and Freshwater Biology 2020 (3): 433-438 DOI:10.31951/2658-3518-2020-A-3-433 Original Article Mass development of periphyton ciliates in the coastal zone of Southern Baikal in 2019-2020 Khanaev I.V.*, Obolkina L.A., Belykh O.I., Nebesnykh I.A., Sukhanova E.V., Fedotov A.P. Limnological Institute, Siberian Branch of the Russian Academy of Sciences, Ulan-Batorskaya Str., 3, Irkutsk, 664033, Russia ABSTRACT. Changes in biocenoses of the shallow water zone of open Lake Baikal continue. In the autumn of 2019 during scuba dives, we recorded abundant fouling of macrophytes in the littoral zone by ciliates of the subclass Peritrichia, the genus Vorticella, at the Listvyanka settlement – Bolshiye Koty settlement section (west coast of Southern Baikal). Despite the fact the Vorticella are the permanent component of the Bailak periphyton, such mass development of Peritrichia in the littoral zone of open Baikal has not been previously recorded. Increasing anthropogenic pressure in the littoral zone of the lake can be one of the main causes of this outbreak in the abundance of Vorticella cf. campanula, the main species of this fouling. Keywords: ciliate, Vorticella, bacteria, Lake Baikal, abundance 1. Introduction Periphyton serves as one of the important indicators of the ecological state in aquatic ecosystems The open littoral zone (i.e. the littoral zone of (Abakumov et al., 1983). Underwater observations indigenous Lake Baikal except for warm bays) of Lake that were carried out from October to December 2019 Baikal occupies approximately 7% of its area. The indicated the continuing changes in the composition landscape of the underwater slope on the western side and distribution of benthic biocenoses in the open of Southern Baikal composed of crystalline bedrocks of littoral zone of the lake, in particular, the periphyton.
    [Show full text]
  • Lobban & Schefter 2008
    Micronesica 40(1/2): 253–273, 2008 Freshwater biodiversity of Guam. 1. Introduction, with new records of ciliates and a heliozoan CHRISTOPHER S. LOBBAN and MARÍA SCHEFTER Division of Natural Sciences, College of Natural & Applied Sciences, University of Guam, Mangilao, GU 96923 Abstract—Inland waters are the most endangered ecosystems in the world because of complex threats and management problems, yet the freshwater microbial eukaryotes and microinvertebrates are generally not well known and from Guam are virtually unknown. Photo- documentation can provide useful information on such organisms. In this paper we document protists from mostly lentic inland waters of Guam and report twelve freshwater ciliates, especially peritrichs, which are the first records of ciliates from Guam or Micronesia. We also report a species of Raphidiophrys (Heliozoa). Undergraduate students can meaningfully contribute to knowledge of regional biodiversity through individual or class projects using photodocumentation. Introduction Biodiversity has become an important field of study since it was first recognized as a concept some 20 years ago. It includes the totality of heritable variation at all levels, including numbers of species, in an ecosystem or the world (Wilson 1997). Biodiversity encompasses our recognition of the “ecosystem services” provided by organisms, the interconnectedness of species, and the impact of human activities, including global warming, on ecosystems and biodiversity (Reaka-Kudla et al. 1997). Current interest in biodiversity has prompted global bioinformatics efforts to identify species through DNA “barcodes” (Hebert et al. 2002) and to make databases accessible through the Internet (Ratnasingham & Hebert 2007, Encyclopedia of Life 2008). Biodiversity patterns are often contrasted between terrestrial ecosystems, with high endemism, and marine ecosystems, with low endemism except in the most remote archipelagoes (e.g., Hawai‘i), but patterns in Oceania suggest that this contrast may not be so clear as it seemed (Paulay & Meyer 2002).
    [Show full text]
  • 1 Introduction and Background
    Ultrastructure and Adhesive Mechanisms of the Biological Spring, Vorticella Convallaria, Studied Via Atomic Force Microscopy By Rafael E. Bras Submitted to the Department of Materials Science and Engineering in Partial Fulfillment of the Requirements for the Degree of Bachelor of Science at the Massachusetts Institute of Technology June 2002 © 2002 Rafael E. Bras All rights reserved The author hereby grants MIT permission to reproduce and distribute publicly paper and electronic copies of this thesis document in whole or in part. Signature of Author ........................................................................................................................... Department of Materials Science and Engineering May 10, 2002 Certified by ....................................................................................................................................... Christine Ortiz Assistant Professor of Materials Science and Engineering Thesis Supervisor Accepted by ...................................................................................................................................... Ronald M. Latanision Chairman, Undergraduate Thesis Committee 1 Ultrastructure and Adhesive Mechanisms of the Biological Spring, Vorticella Convallaria, Studied Via Atomic Force Microscopy By Rafael E. Bras Submitted to the Department of Materials Science and Engineeringon May 10, 2002 in Partial Fulfillment of the Requirements for the Degree of Bachelor of Science in Materials Science and Engineering ABSTRACT The rod-like, contractile
    [Show full text]
  • Epizoic Protozoa of Planktonic Copepoda and Cladocera from a Small Eutrophic Lake, and Their Possible Use As Indicators of Organ
    Eastern Illinois University The Keep Masters Theses Student Theses & Publications 1978 Epizoic Protozoa of Planktonic Copepoda and Cladocera from a Small Eutrophic Lake, and Their Possible Use as Indicators of Organic Water Pollution Michael Stevens Henebry Eastern Illinois University This research is a product of the graduate program in Zoology at Eastern Illinois University. Find out more about the program. Recommended Citation Henebry, Michael Stevens, "Epizoic Protozoa of Planktonic Copepoda and Cladocera from a Small Eutrophic Lake, and Their osP sible Use as Indicators of Organic Water Pollution" (1978). Masters Theses. 3254. https://thekeep.eiu.edu/theses/3254 This is brought to you for free and open access by the Student Theses & Publications at The Keep. It has been accepted for inclusion in Masters Theses by an authorized administrator of The Keep. For more information, please contact [email protected]. PAPER CERTIFICATE #2 TO: Graduate Degree Candidates who have written formal theses. SUBJECT: Permission to reproduce theses. • The University Library is receiving a number of requests from other institutions asking permission to reproduce dissertations for inclusion in their library holdings. Although no copyright laws are involved, we feel that professional courtesy demands that permission be obtained from the author before we allow theses to be copied. Please sign one of the following statements: Booth Library of Eastern Illinois University has my permission to lend my thesis to a reputable college or university for the purpose
    [Show full text]