Genetic Tool Development in Marine Protists

Total Page:16

File Type:pdf, Size:1020Kb

Genetic Tool Development in Marine Protists bioRxiv preprint doi: https://doi.org/10.1101/718239; this version posted April 8, 2020. The copyright holder for this preprint (which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under aCC-BY-NC 4.0 International license. 1 Genetic tool development in marine protists: 2 Emerging model organisms for experimental cell biology 3 4 Drahomíra Faktorová1,#,*, R. Ellen R. Nisbet2,#, %, José A. Fernández Robledo3,#, Elena 5 Casacuberta4,#, Lisa Sudek5,#, Andrew E. Allen6,7, Manuel Ares Jr.8, Cristina Aresté4, Cecilia 6 Balestreri9, Adrian C. Barbrook2, Patrick Beardslee10, Sara Bender11, David S. Booth12, 7 François-Yves Bouget13, Chris Bowler14, Susana A. Breglia15, Colin Brownlee9, Gertraud 8 Burger16, Heriberto Cerutti10, Rachele Cesaroni17, Miguel A. Chiurillo18, Thomas Clemente10, 9 Duncan B. Coles3, Jackie L. Collier19, Elizabeth C. Cooney20, Kathryn Coyne21, Roberto 10 Docampo18, Christopher L. Dupont7, Virginia Edgcomb22, Elin Einarsson2, Pía A. 11 Elustondo15,$, Fernan Federici23, Veronica Freire-Beneitez24,25, Nastasia J. Freyria3, Kodai 12 Fukuda26, Paulo A. García27, Peter R. Girguis28, Fatma Gomaa28, Sebastian G. Gornik29, Jian 13 Guo5,8, Vladimír Hampl30, Yutaka Hanawa31, Esteban R. Haro-Contreras15, Elisabeth 14 Hehenberger20, Andrea Highfield9, Yoshihisa Hirakawa31, Amanda Hopes32, Christopher J. 15 Howe2, Ian Hu2, Jorge Ibañez23, Nicholas A.T. Irwin20, Yuu Ishii33, Natalia Ewa Janowicz30, 16 Adam C. Jones11, Ambar Kachale1, Konomi Fujimura-Kamada34, Binnypreet Kaur1, Jonathan 17 Z. Kaye11, Eleanna Kazana24,25, Patrick J. Keeling20, Nicole King12, Lawrence A. 18 Klobutcher35, Noelia Lander18, Imen Lassadi2, Zhuhong Li18, Senjie Lin35, Jean-Claude 19 Lozano13, Fulei Luan10, Shinichiro Maruyama33, Tamara Matute23, Cristina Miceli36, Jun 20 Minagawa34,37, Mark Moosburner6,7, Sebastián R. Najle4,38, Deepak Nanjappa21, Isabel C. 21 Nimmo2, Luke Noble39,**, Anna M.G. Novák Vanclová30, Mariusz Nowacki17, Isaac Nuñez23, 22 Arnab Pain40,41, Angela Piersanti36, Sandra Pucciarelli36, Jan Pyrih24,30, Joshua S. Rest42, 23 Mariana Rius19, Deborah Robertson43, Albane Ruaud23,***, Iñaki Ruiz-Trillo4,44,45, Monika A. 24 Sigg12, Pamela A. Silver46,47, Claudio H. Slamovits15, G. Jason Smith48, Brittany N. 25 Sprecher35, Rowena Stern9, Estienne C. Swart17,***, Anastasios D. Tsaousis24,25, Lev 1 bioRxiv preprint doi: https://doi.org/10.1101/718239; this version posted April 8, 2020. The copyright holder for this preprint (which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under aCC-BY-NC 4.0 International license. 26 Tsypin49,50, Aaron Turkewitz49, Jernej Turnšek6,7,46,47, Matus Valach16, Valérie Vergé13, Peter 27 von Dassow23,51, Tobias von der Haar24, Ross F. Waller2, Lu Wang52, Xiaoxue Wen10, Glen 28 Wheeler9, April Woods48, Huan Zhang35, Thomas Mock32,*, Alexandra Z. Worden5,53,* & 29 Julius Lukeš1,* 30 31 1Institute of Parasitology, Biology Centre, Czech Academy of Sciences and Faculty of 32 Sciences, University of South Bohemia, České Budějovice, Czech Republic 33 2Department of Biochemistry, University of Cambridge, Cambridge, UK 34 3Bigelow Laboratory for Ocean Sciences, East Boothbay, USA 35 4Institut de Biologia Evolutiva, CSIC-Universitat Pompeu Fabra, Barcelona, Spain 36 5Monterey Bay Aquarium Research Institute, Moss Landing, USA 37 6Integrative Oceanography Division, Scripps Institution of Oceanography, University of 38 California, San Diego, USA 39 7Microbial and Environmental Genomics, J. Craig Venter Institute, La Jolla, USA 40 8Molecular, Cell and Developmental Biology, University of California, Santa Cruz, USA 41 9The Marine Biological Association, Plymouth and School of Ocean and Earth Sciences, 42 University of Southampton, Southampton, UK 43 10School of Biological Sciences, University of Nebraska, Lincoln, USA 44 11Gordon and Betty Moore Foundation, Palo Alto, USA 45 12Department of Molecular and Cell Biology, University of California, Berkeley, USA 46 13Sorbonne Université, CNRS UMR7621, Observatoire Océanologique, Banyuls sur Mer, 47 France 48 14Institut de Biologie de l'Ecole Normale Supérieure (IBENS), Ecole Normale Supérieure, 49 CNRS, INSERM, Université PSL, Paris, France 2 bioRxiv preprint doi: https://doi.org/10.1101/718239; this version posted April 8, 2020. The copyright holder for this preprint (which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under aCC-BY-NC 4.0 International license. 50 15Centre for Comparative Genomics and Evolutionary Bioinformatics, Dalhousie 51 University, Halifax, Canada 52 16Department of Biochemistry and Robert-Cedergren Centre for Bioinformatics and 53 Genomics, Université de Montréal, Montreal, Canada 54 17Institute of Cell Biology, University of Bern, Bern, Switzerland 55 18Center for Tropical and Emerging Global Diseases, University of Georgia, Athens, USA 56 19School of Marine and Atmospheric Sciences, Stony Brook University, Stony Brook, USA 57 20Department of Botany, University of British Columbia, Vancouver, Canada 58 21University of Delaware College of Earth, Ocean and Environment, Lewes, USA 59 22Woods Hole Oceanographic Institution, Woods Hole, USA 60 23Facultad Ciencias Biológicas, Pontificia Universidad Católica de Chile, Fondo de 61 Desarrollo de Areas Prioritarias, Center for Genome Regulation and Millennium 62 Institute for Integrative Biology (iBio), Santiago de Chile, Chile 63 24School of Biosciences, University of Kent, Canterbury, Kent, UK 64 25Laboratory of Molecular and Evolutionary Parasitology, University of Kent, UK 65 26Graduate School of Life and Environmental Sciences, University of Tsukuba, Ibaraki, 66 Japan 67 27Department of Mechanical Engineering, Massachusetts Institute of Technology, Boston, 68 USA 69 28Department of Organismic and Evolutionary Biology, Harvard University, Cambridge, 70 USA 71 29Centre for Organismal Studies, University of Heidelberg, Heidelberg, Germany 72 30Department of Parasitology, Faculty of Science, Charles University, BIOCEV, Vestec, 73 Czech Republic 31 74 Faculty of Life and Environmental Sciences, University of Tsukuba, Ibaraki, Japan 3 bioRxiv preprint doi: https://doi.org/10.1101/718239; this version posted April 8, 2020. The copyright holder for this preprint (which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under aCC-BY-NC 4.0 International license. 75 32School of Environmental Sciences, University of East Anglia, Norwich, UK 76 33Graduate School of Life Sciences, Tohoku University, Sendai, Miyagi, Japan 77 34Division of Environmental Photobiology, National Institute for Basic Biology, Okazaki, 78 Aichi, Japan 79 35Department of Marine Sciences, University of Connecticut, Groton, USA 80 36School of Biosciences and Veterinary Medicine, University of Camerino, Camerino, Italy 81 37Department of Basic Biology, School of Life Science, Graduate University for Advanced 82 Studies, Okazaki, Aichi, Japan 83 38Instituto de Biología Molecular y Celular, CONICET, and Facultad de Ciencias 84 Bioquímicas y Farmacéuticas, Universidad Nacional de Rosario, Rosario, Argentina 85 39Center for Genomics and Systems Biology, New York University, New York, USA 86 40Biological and Environmental Science and Engineering Division, King Abdullah 87 University of Science and Technology, Thuwal, Saudi Arabia 88 41Center for Zoonosis Control, Global Institution for Collaborative Research and 89 Education, Hokkaido University, Sapporo, Japan 90 42Department of Ecology and Evolution, Stony Brook University, Stony Brook, USA 91 43Lasry Center for Biosciences, Clark University, Worcester, USA 92 44Departament de Genètica Microbiologia i Estadıśtica, Universitat de Barcelona, 93 Barcelona, Spain 94 45Catalan Institution for Research and Advanced Studies, Barcelona, Spain 95 46Department of Systems Biology, Harvard Medical School, Boston, USA 96 47Wyss Institute for Biologically Inspired Engineering, Harvard University, Boston, USA 97 48Department of Environmental Biotechnology, Moss Landing Marine Laboratoriess, Moss 98 Landing, USA 4 bioRxiv preprint doi: https://doi.org/10.1101/718239; this version posted April 8, 2020. The copyright holder for this preprint (which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under aCC-BY-NC 4.0 International license. 99 49Department of Molecular Genetics and Cell Biology, University of Chicago, Chicago, 100 USA 101 50Department of Biology, California Institute of Technology, Pasadena, USA 102 51Instituto Milenio de Oceanografia de Chile, Concepción, Chile 103 52Institute of Oceanography, Minjiang University, Fuzhou, China 104 53Ocean EcoSystems Biology Unit, Marine Ecology Division, Helmholtz Centre for Ocean 105 Research, Kiel, Germany 106 107 % Present address: School of Biosciences, University of Nottingham, Sutton Bonington, UK 108 $Present address: AGADA Biosciences Inc., Halifax, Canada 109 **Present address: Institute de Biologie de l’ENS, Département de biologie, École Normale 110 Supérieure, CNRS, INSERM, Paris, France 111 ***Present address: Max Planck Institute for Developmental Biology, Tübingen, Germany 112 113 #Equal contribution 114 115 *Corresponding authors: [email protected]
Recommended publications
  • Periodic and Coordinated Gene Expression Between a Diazotroph and Its Diatom Host
    The ISME Journal (2019) 13:118–131 https://doi.org/10.1038/s41396-018-0262-2 ARTICLE Periodic and coordinated gene expression between a diazotroph and its diatom host 1 1,2 1 3 4 Matthew J. Harke ● Kyle R. Frischkorn ● Sheean T. Haley ● Frank O. Aylward ● Jonathan P. Zehr ● Sonya T. Dyhrman1,2 Received: 11 April 2018 / Revised: 28 June 2018 / Accepted: 28 July 2018 / Published online: 16 August 2018 © International Society for Microbial Ecology 2018 Abstract In the surface ocean, light fuels photosynthetic carbon fixation of phytoplankton, playing a critical role in ecosystem processes including carbon export to the deep sea. In oligotrophic oceans, diatom–diazotroph associations (DDAs) play a keystone role in ecosystem function because diazotrophs can provide otherwise scarce biologically available nitrogen to the diatom host, fueling growth and subsequent carbon sequestration. Despite their importance, relatively little is known about the nature of these associations in situ. Here we used metatranscriptomic sequencing of surface samples from the North Pacific Subtropical Gyre (NPSG) to reconstruct patterns of gene expression for the diazotrophic symbiont Richelia and we – 1234567890();,: 1234567890();,: examined how these patterns were integrated with those of the diatom host over day night transitions. Richelia exhibited significant diel signals for genes related to photosynthesis, N2 fixation, and resource acquisition, among other processes. N2 fixation genes were significantly co-expressed with host nitrogen uptake and metabolism, as well as potential genes involved in carbon transport, which may underpin the exchange of nitrogen and carbon within this association. Patterns of expression suggested cell division was integrated between the host and symbiont across the diel cycle.
    [Show full text]
  • University of Oklahoma
    UNIVERSITY OF OKLAHOMA GRADUATE COLLEGE MACRONUTRIENTS SHAPE MICROBIAL COMMUNITIES, GENE EXPRESSION AND PROTEIN EVOLUTION A DISSERTATION SUBMITTED TO THE GRADUATE FACULTY in partial fulfillment of the requirements for the Degree of DOCTOR OF PHILOSOPHY By JOSHUA THOMAS COOPER Norman, Oklahoma 2017 MACRONUTRIENTS SHAPE MICROBIAL COMMUNITIES, GENE EXPRESSION AND PROTEIN EVOLUTION A DISSERTATION APPROVED FOR THE DEPARTMENT OF MICROBIOLOGY AND PLANT BIOLOGY BY ______________________________ Dr. Boris Wawrik, Chair ______________________________ Dr. J. Phil Gibson ______________________________ Dr. Anne K. Dunn ______________________________ Dr. John Paul Masly ______________________________ Dr. K. David Hambright ii © Copyright by JOSHUA THOMAS COOPER 2017 All Rights Reserved. iii Acknowledgments I would like to thank my two advisors Dr. Boris Wawrik and Dr. J. Phil Gibson for helping me become a better scientist and better educator. I would also like to thank my committee members Dr. Anne K. Dunn, Dr. K. David Hambright, and Dr. J.P. Masly for providing valuable inputs that lead me to carefully consider my research questions. I would also like to thank Dr. J.P. Masly for the opportunity to coauthor a book chapter on the speciation of diatoms. It is still such a privilege that you believed in me and my crazy diatom ideas to form a concise chapter in addition to learn your style of writing has been a benefit to my professional development. I’m also thankful for my first undergraduate research mentor, Dr. Miriam Steinitz-Kannan, now retired from Northern Kentucky University, who was the first to show the amazing wonders of pond scum. Who knew that studying diatoms and algae as an undergraduate would lead me all the way to a Ph.D.
    [Show full text]
  • Safety Assessment of Red Algae-Derived Ingredients As Used in Cosmetics
    Safety Assessment of Red Algae-Derived Ingredients as Used in Cosmetics Status: Draft Report for Panel Review Release Date: August 21, 2020 Panel Meeting Date: September 14 – 15, 2020 The Expert Panel for Cosmetic Ingredient Safety members are: Chair, Wilma F. Bergfeld, M.D., F.A.C.P.; Donald V. Belsito, M.D.; Curtis D. Klaassen, Ph.D.; Daniel C. Liebler, Ph.D.; James G. Marks, Jr., M.D.; Lisa A. Peterson, Ph.D.; Ronald C. Shank, Ph.D.; Thomas J. Slaga, Ph.D.; and Paul W. Snyder, D.V.M., Ph.D. The Cosmetic Ingredient Review (CIR) Executive Director is Bart Heldreth, Ph.D. This safety assessment was prepared by Priya Cherian, Scientific Analyst/Writer, CIR. © Cosmetic Ingredient Review 1620 L Street, NW, Suite 1200 ♢ Washington, DC 20036-4702 ♢ ph 202.331.0651 ♢ fax 202.331.0088 ♢ [email protected] Algal diversity and application. Rex L. Lowe Bowling Green State University Presentation Roadmap What are these things called algae? Species diversity & properties Ecosystem services, Ecosystem hazards Algal communities might look homogeneous but are very complex A stone this size may contain hundreds of species in a very complex community. A complex community of epilithic algae A complex community of epiphytic algae on Cladophora Ra = Rhoicosphenia abbreviata Esp = Epithemia sp. Es = Epithemia sorex Am = Achnanthidium minutissimum Cp = Cocconeis pediculus Cpl = Cocconeis placentula C = Cladophora What are algae? Algos = Latin seaweed Phycos = Greek seaweed ♦Thalloid organisms bearing chlorophyll a, lacking multicellular gametangia and their colorless relatives. ♦Morphologically diverse: ♦Prokaryotes, mesokaryotes, eukaryotes ♦Largest to smallest phototrophs (0.5µm-220 m) ♦Physiologically diverse: autotrophs, facultative heterotrophs, obligate heterotrophs (molecules or particles), parasites).
    [Show full text]
  • Biology and Systematics of Heterokont and Haptophyte Algae1
    American Journal of Botany 91(10): 1508±1522. 2004. BIOLOGY AND SYSTEMATICS OF HETEROKONT AND HAPTOPHYTE ALGAE1 ROBERT A. ANDERSEN Bigelow Laboratory for Ocean Sciences, P.O. Box 475, West Boothbay Harbor, Maine 04575 USA In this paper, I review what is currently known of phylogenetic relationships of heterokont and haptophyte algae. Heterokont algae are a monophyletic group that is classi®ed into 17 classes and represents a diverse group of marine, freshwater, and terrestrial algae. Classes are distinguished by morphology, chloroplast pigments, ultrastructural features, and gene sequence data. Electron microscopy and molecular biology have contributed signi®cantly to our understanding of their evolutionary relationships, but even today class relationships are poorly understood. Haptophyte algae are a second monophyletic group that consists of two classes of predominately marine phytoplankton. The closest relatives of the haptophytes are currently unknown, but recent evidence indicates they may be part of a large assemblage (chromalveolates) that includes heterokont algae and other stramenopiles, alveolates, and cryptophytes. Heter- okont and haptophyte algae are important primary producers in aquatic habitats, and they are probably the primary carbon source for petroleum products (crude oil, natural gas). Key words: chromalveolate; chromist; chromophyte; ¯agella; phylogeny; stramenopile; tree of life. Heterokont algae are a monophyletic group that includes all (Phaeophyceae) by Linnaeus (1753), and shortly thereafter, photosynthetic organisms with tripartite tubular hairs on the microscopic chrysophytes (currently 5 Oikomonas, Anthophy- mature ¯agellum (discussed later; also see Wetherbee et al., sa) were described by MuÈller (1773, 1786). The history of 1988, for de®nitions of mature and immature ¯agella), as well heterokont algae was recently discussed in detail (Andersen, as some nonphotosynthetic relatives and some that have sec- 2004), and four distinct periods were identi®ed.
    [Show full text]
  • Control of Phytoplankton Growth in Nutrient Recycling Ecosystems
    MARINE ECOLOGY PROGRESS SERIES Published May 29 Mar. Ecol. Prog. Ser. Control of phytoplankton growth in nutrient recycling ecosystems. Theory and terminology T. Frede ~hingstadl,Egil sakshaug2 ' Department of Microbiology and Plant Physiology, University of Bergen, Jahnebk. 5,N-5007 Bergen, Norway Trondhjem Biological Station, The Museum. University of Trondheim, Bynesvn. 46, N-7018 Trondheim, Norway ABSTRACT: Some of the principles governing phytoplankton growth, biomass, and species composi- tion in 2-layered pelagic ecosystems are explored using an idealized, steady-state, mathematical model, based on simple extensions of Lotka-Volterra type equations. In particular, the properties of a food web based on 'small' and 'large' phytoplankton are investigated. Features of the phytoplankton community that may be derived from this conceptually simple model include CO-existenceof more than one species on one limiting nutrient, a rapid growth rate for a large fraction of the phytoplankton community in oligotrophic waters, a long food chain starting from a population of small phytoplankton in waters with moderate mixing over the nutricline, and a transition to dominance of a food chain based on large phytoplankton when mixing is increased. As pointed out by other authors, careless use of the concept of one limiting factor may be potentially confusing in such systems. To avoid this, a distinction in terminology between 'controlling' and 'limiting' factors is suggested. INTRODUCTION dominance of short food chains in upwelling areas (Ryther 1969). Various aspects of nutrient cycling in pelagic ecosys- Many authors have addressed various aspects of the tems are of prime importance to our understanding of planktonic ecosystem using mathematical models how productivity of the oceans is controlled, and to our which are idealized and conceptual.
    [Show full text]
  • New Phylogenomic Analysis of the Enigmatic Phylum Telonemia Further Resolves the Eukaryote Tree of Life
    bioRxiv preprint doi: https://doi.org/10.1101/403329; this version posted August 30, 2018. The copyright holder for this preprint (which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under aCC-BY-NC-ND 4.0 International license. New phylogenomic analysis of the enigmatic phylum Telonemia further resolves the eukaryote tree of life Jürgen F. H. Strassert1, Mahwash Jamy1, Alexander P. Mylnikov2, Denis V. Tikhonenkov2, Fabien Burki1,* 1Department of Organismal Biology, Program in Systematic Biology, Uppsala University, Uppsala, Sweden 2Institute for Biology of Inland Waters, Russian Academy of Sciences, Borok, Yaroslavl Region, Russia *Corresponding author: E-mail: [email protected] Keywords: TSAR, Telonemia, phylogenomics, eukaryotes, tree of life, protists bioRxiv preprint doi: https://doi.org/10.1101/403329; this version posted August 30, 2018. The copyright holder for this preprint (which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under aCC-BY-NC-ND 4.0 International license. Abstract The broad-scale tree of eukaryotes is constantly improving, but the evolutionary origin of several major groups remains unknown. Resolving the phylogenetic position of these ‘orphan’ groups is important, especially those that originated early in evolution, because they represent missing evolutionary links between established groups. Telonemia is one such orphan taxon for which little is known. The group is composed of molecularly diverse biflagellated protists, often prevalent although not abundant in aquatic environments.
    [Show full text]
  • Genetic Tool Development in Marine Protists: Emerging Model Organisms for Experimental Cell Biology
    RESOURCE https://doi.org/10.1038/s41592-020-0796-x Genetic tool development in marine protists: emerging model organisms for experimental cell biology Diverse microbial ecosystems underpin life in the sea. Among these microbes are many unicellular eukaryotes that span the diversity of the eukaryotic tree of life. However, genetic tractability has been limited to a few species, which do not represent eukaryotic diversity or environmentally relevant taxa. Here, we report on the development of genetic tools in a range of pro- tists primarily from marine environments. We present evidence for foreign DNA delivery and expression in 13 species never before transformed and for advancement of tools for eight other species, as well as potential reasons for why transformation of yet another 17 species tested was not achieved. Our resource in genetic manipulation will provide insights into the ancestral eukaryotic lifeforms, general eukaryote cell biology, protein diversification and the evolution of cellular pathways. he ocean represents the largest continuous planetary ecosys- Results tem, hosting an enormous variety of organisms, which include Overview of taxa in the EMS initiative. Taxa were selected from Tmicroscopic biota such as unicellular eukaryotes (protists). multiple eukaryotic supergroups1,7 to maximize the potential of cel- Despite their small size, protists play key roles in marine biogeo- lular biology and to evaluate the numerous unigenes with unknown chemical cycles and harbor tremendous evolutionary diversity1,2. functions found in marine protists (Fig. 1). Before the EMS initia- Notwithstanding their significance for understanding the evolution tive, reproducible transformation of marine protists was limited to of life on Earth and their role in marine food webs, as well as driv- only a few species such as Thalassiosira pseudonana, Phaeodactylum ing biogeochemical cycles to maintain habitability, little is known tricornutum and Ostreococcus tauri (Supplementary Table 1).
    [Show full text]
  • A Genomic Journey Through a Genus of Large DNA Viruses
    University of Nebraska - Lincoln DigitalCommons@University of Nebraska - Lincoln Virology Papers Virology, Nebraska Center for 2013 Towards defining the chloroviruses: a genomic journey through a genus of large DNA viruses Adrien Jeanniard Aix-Marseille Université David D. Dunigan University of Nebraska-Lincoln, [email protected] James Gurnon University of Nebraska-Lincoln, [email protected] Irina V. Agarkova University of Nebraska-Lincoln, [email protected] Ming Kang University of Nebraska-Lincoln, [email protected] See next page for additional authors Follow this and additional works at: https://digitalcommons.unl.edu/virologypub Part of the Biological Phenomena, Cell Phenomena, and Immunity Commons, Cell and Developmental Biology Commons, Genetics and Genomics Commons, Infectious Disease Commons, Medical Immunology Commons, Medical Pathology Commons, and the Virology Commons Jeanniard, Adrien; Dunigan, David D.; Gurnon, James; Agarkova, Irina V.; Kang, Ming; Vitek, Jason; Duncan, Garry; McClung, O William; Larsen, Megan; Claverie, Jean-Michel; Van Etten, James L.; and Blanc, Guillaume, "Towards defining the chloroviruses: a genomic journey through a genus of large DNA viruses" (2013). Virology Papers. 245. https://digitalcommons.unl.edu/virologypub/245 This Article is brought to you for free and open access by the Virology, Nebraska Center for at DigitalCommons@University of Nebraska - Lincoln. It has been accepted for inclusion in Virology Papers by an authorized administrator of DigitalCommons@University of Nebraska - Lincoln. Authors Adrien Jeanniard, David D. Dunigan, James Gurnon, Irina V. Agarkova, Ming Kang, Jason Vitek, Garry Duncan, O William McClung, Megan Larsen, Jean-Michel Claverie, James L. Van Etten, and Guillaume Blanc This article is available at DigitalCommons@University of Nebraska - Lincoln: https://digitalcommons.unl.edu/ virologypub/245 Jeanniard, Dunigan, Gurnon, Agarkova, Kang, Vitek, Duncan, McClung, Larsen, Claverie, Van Etten & Blanc in BMC Genomics (2013) 14.
    [Show full text]
  • Host-Microbe Relations: a Phylogenomics-Driven Bioinformatic Approach to the Characterization of Microbial DNA from Heterogeneous Sequence Data
    Host-Microbe Relations: A Phylogenomics-Driven Bioinformatic Approach to the Characterization of Microbial DNA from Heterogeneous Sequence Data Timothy Patrick Driscoll Dissertation submitted to the faculty of the Virginia Polytechnic Institute and State University in partial fulfillment of the requirements for the degree of Doctor of Philosophy In Genetics, Bioinformatics, and Computational Biology Joseph J Gillespie David R Bevan Madhav V Marathe T M Murali May 1st, 2013 Blacksburg, Virginia Keywords: phylogenomics, genome-mining, host-microbe interactions, genomics, bioinformatics, symbiosis, bacteria, lateral gene transfer Copyright 2013 Host-Microbe Relations: A Phylogenomics-Driven Bioinformatic Approach to the Characterization of Microbial DNA from Heterogeneous Sequence Data Timothy Patrick Driscoll ABSTRACT Plants and animals are characterized by intimate, enduring, often indispensable, and always complex associations with microbes. Therefore, it should come as no surprise that when the genome of a eukaryote is sequenced, a medley of bacterial sequences are produced as well. These sequences can be highly informative about the interactions between the eukaryote and its bacterial cohorts; unfortunately, they often comprise a vanishingly small constituent within a heterogeneous mixture of microbial and host sequences. Genomic analyses typically avoid the bacterial sequences in order to obtain a genome sequence for the host. Metagenomic analysis typically avoid the host sequences in order to analyze community composition and functional diversity of the bacterial component. This dissertation describes the development of a novel approach at the intersection of genomics and metagenomics, aimed at the extraction and characterization of bacterial sequences from heterogeneous sequence data using phylogenomic and bioinformatic tools. To achieve this objective, three interoperable workflows were constructed as modular computational pipelines, with built-in checkpoints for periodic interpretation and refinement.
    [Show full text]
  • Full-Length Transcriptome of Thalassiosira Weissflogii As
    marine drugs Communication Full-Length Transcriptome of Thalassiosira weissflogii as a Reference Resource and Mining of Chitin-Related Genes Haomiao Cheng 1,2,3, Chris Bowler 4, Xiaohui Xing 5,6,7, Vincent Bulone 5,6,7, Zhanru Shao 1,2,* and Delin Duan 1,2,8,* 1 CAS and Shandong Province Key Laboratory of Experimental Marine Biology, Center for Ocean Mega-Science, Institute of Oceanology, Chinese Academy of Sciences, Qingdao 266071, China; [email protected] 2 Laboratory for Marine Biology and Biotechnology, Pilot Qingdao National Laboratory for Marine Science and Technology, Qingdao 266237, China 3 University of Chinese Academy of Sciences, Beijing 100049, China 4 Institut de Biologie de l’ENS (IBENS), Département de Biologie, École Normale Supérieure, CNRS, INSERM, Université PSL, 75005 Paris, France; [email protected] 5 Division of Glycoscience, Department of Chemistry, School of Engineering Sciences in Chemistry, Biotechnology and Health, Royal Institute of Technology (KTH), AlbaNova University Centre, 10691 Stockholm, Sweden; [email protected] (X.X.); [email protected] (V.B.) 6 Australian Research Council Centre of Excellence in Plant Cell Walls, School of Agriculture, Food and Wine, University of Adelaide, Waite Campus, Urrbrae 5064, Australia 7 Adelaide Glycomics, School of Agriculture Food and Wine, University of Adelaide, Waite Campus, Urrbrae 5064, Australia 8 State Key Laboratory of Bioactive Seaweed Substances, Qingdao Bright Moon Seaweed Group Co., Ltd., Qingdao 266400, China * Correspondence: [email protected] (Z.S.); [email protected] (D.D.) Citation: Cheng, H.; Bowler, C.; Xing, X.; Bulone, V.; Shao, Z.; Duan, D. Abstract: β-Chitin produced by diatoms is expected to have significant economic and ecological Full-Length Transcriptome of value due to its structure, which consists of parallel chains of chitin, its properties and the high Thalassiosira weissflogii as a Reference abundance of diatoms.
    [Show full text]
  • Prasinophyceae)1
    J. Phycol. 38, 1132–1142 (2002) DIEL VARIATIONS IN OPTICAL PROPERTIES OF MICROMONAS PUSILLA (PRASINOPHYCEAE)1 Michele D. DuRand,2 Rebecca E. Green, Heidi M. Sosik,3 and Robert J. Olson Woods Hole Oceanographic Institution, Biology Department, MS #32, Woods Hole, Massachusetts 02543, USA Micromonas pusilla (Butcher) Manton et Parke, a nitrogen ratio; Chli, intracellular chlorophyll concen- marine prasinophyte, was used to investigate how tration; CV, coefficient of variation; D, the diameter cell growth and division affect optical properties of of the mean cell; FLS, forward light scattering; G, phytoplankton over the light:dark cycle. Measurements geometric projected area of the mean cell; ␥, spectral were made of cell size and concentration, attenua- slope; ␮, growth rate; n, real refractive index; nЈ, imag- ␴ tion and absorption coefficients, flow cytometric inary refractive index; a, absorption cross-section; ␴ ␴ forward and side light scattering and chl fluores- b, scattering cross-section; c, attenuation cross-sec- cence, and chl and carbon content. The refractive in- tion; Qa, efficiency factor for absorption; Qb, effi- dex was derived from observations and Mie scattering ciency factor for scattering; Qc, efficiency factor for theory. Diel variations occurred, with cells increasing attenuation; V , volume of the mean cell in size, light scattering, and carbon content during daytime photosynthesis and decreasing during night- time division. Cells averaged 1.6 ␮m in diameter and exhibited phased division, with 1.3 divisions per day. Scattering changes resulted primarily from changes introduction in cell size and not refractive index; absorption Diel variations in bulk optical properties such as changes were consistent with a negligible package ef- beam attenuation (Siegel et al.
    [Show full text]
  • And Micro-Algae Using Comparative Metabolomics
    microorganisms Article Exploring the Chemical Space of Macro- and Micro-Algae Using Comparative Metabolomics Alison H. Hughes 1 , Florent Magot 1,†, Ahmed F. Tawfike 1,2,‡ , Cecilia Rad-Menéndez 3,4 , Naomi Thomas 3, Louise C. Young 1, Laura Stucchi 5, Daniele Carettoni 5, Michele S. Stanley 3, RuAngelie Edrada-Ebel 1 and Katherine R. Duncan 1,* 1 Strathclyde Institute of Pharmacy and Biomedical Sciences, University of Strathclyde, Glasgow G4 0RE, UK; [email protected] (A.H.H.); magot.fl[email protected] (F.M.); ahmed.tawfi[email protected] (A.F.T.); [email protected] (L.C.Y.); [email protected] (R.E.-E.) 2 Department of Pharmacognosy, Faculty of Pharmacy, Helwan University, Cairo 11795, Egypt 3 Scottish Association for Marine Science, Scottish Marine Institute, Oban PA37 1QA, UK; [email protected] (C.R.-M.); [email protected] (N.T.); [email protected] (M.S.S.) 4 Culture Collection of Algae and Protozoa (CCAP), Scottish Marine Institute, Oban PA37 1QA, UK 5 Axxam SpA, Openzone, Bresso, 20091 Milan, Italy; [email protected] (L.S.); [email protected] (D.C.) * Correspondence: [email protected] † Current address: GEOMAR Centre for Marine Biotechnology (GEOMAR-Biotech), Research Unit Marine Natural Products Chemistry, GEOMAR Helmholtz Centre for Ocean Research Kiel, Am Kiel-Kanal 44, 24106 Kiel, Germany. ‡ Current address: Molecular Discovery Group, Computational and Analytical Science, Rothamsted Research, Harpenden AL5 2JQ, UK. Citation: Hughes, A.H.; Magot, F.; Tawfike, A.F.; Rad-Menéndez, C.; Abstract: With more than 156,000 described species, eukaryotic algae (both macro- and micro-algae) Thomas, N.; Young, L.C.; Stucchi, L.; are a rich source of biological diversity, however their chemical diversity remains largely unexplored.
    [Show full text]