Prasinophyceae)1

Total Page:16

File Type:pdf, Size:1020Kb

Prasinophyceae)1 J. Phycol. 38, 1132–1142 (2002) DIEL VARIATIONS IN OPTICAL PROPERTIES OF MICROMONAS PUSILLA (PRASINOPHYCEAE)1 Michele D. DuRand,2 Rebecca E. Green, Heidi M. Sosik,3 and Robert J. Olson Woods Hole Oceanographic Institution, Biology Department, MS #32, Woods Hole, Massachusetts 02543, USA Micromonas pusilla (Butcher) Manton et Parke, a nitrogen ratio; Chli, intracellular chlorophyll concen- marine prasinophyte, was used to investigate how tration; CV, coefficient of variation; D, the diameter cell growth and division affect optical properties of of the mean cell; FLS, forward light scattering; G, phytoplankton over the light:dark cycle. Measurements geometric projected area of the mean cell; ␥, spectral were made of cell size and concentration, attenua- slope; ␮, growth rate; n, real refractive index; nЈ, imag- ␴ tion and absorption coefficients, flow cytometric inary refractive index; a, absorption cross-section; ␴ ␴ forward and side light scattering and chl fluores- b, scattering cross-section; c, attenuation cross-sec- cence, and chl and carbon content. The refractive in- tion; Qa, efficiency factor for absorption; Qb, effi- dex was derived from observations and Mie scattering ciency factor for scattering; Qc, efficiency factor for theory. Diel variations occurred, with cells increasing attenuation; V , volume of the mean cell in size, light scattering, and carbon content during daytime photosynthesis and decreasing during night- time division. Cells averaged 1.6 ␮m in diameter and exhibited phased division, with 1.3 divisions per day. Scattering changes resulted primarily from changes introduction in cell size and not refractive index; absorption Diel variations in bulk optical properties such as changes were consistent with a negligible package ef- beam attenuation (Siegel et al. 1989, Hamilton et al. fect. Measurements over the diel cycle suggest that 1990, Cullen et al. 1992, Stramska and Dickey 1992, in M. pusilla carbon-specific attenuation varies with Gardner et al. 1993, 1995) and in single cell optical cell size, and this relationship appears to extend to properties such as phytoplankton forward light scat- other phytoplankton species. Because M. pusilla is tering (FLS) (Olson et al. 1990, DuRand and Olson one of the smallest eukaryotic phytoplankton and be- 1996, Vaulot and Marie 1999) have been observed in longs to a common marine genus, these results will numerous field studies in many of the world’s oceans. be useful for interpreting in situ light scattering vari- A number of researchers have documented diel varia- ation. The relationship between forward light scat- tions in cell light scattering during laboratory studies tering (FLS) and volume over the diel cycle for M. of various phytoplankton cultures (Stramski and Rey- pusilla was similar to that determined for a variety of nolds 1993, Stramski et al. 1995, DuRand and Olson phytoplankton species over a large size range. We 1998). The typical pattern exhibited is scattering min- propose a method to estimate cellular carbon con- ima at dawn and maxima near dusk. Diel variations in tent directly from FLS, which will improve our esti- beam attenuation have been related to primary pro- mates of the contribution of different phytoplank- duction (Siegel et al. 1989, Cullen et al. 1992, Walsh ton groups to productivity and total carbon content et al. 1995) and have been proportioned among in the oceans. groups of organisms in the ocean (DuRand 1995, Du- Key index words: absorption; attenuation; diel varia- Rand and Olson 1996, Chung et al. 1998, Binder and tion; flow cytometry; Micromonas pusilla; optical DuRand 2002). properties; phytoplankton; Prasinophyceae; refractive Light scattering by particles such as phytoplankton index; scattering is determined by their size and refractive index and, to a lesser extent, by their shape and internal struc- Abbreviations: a, absorption coefficient; a*chl, chl- tures ( Jerlov 1976). If diel changes in scattering cross- specific absorption coefficient; ac-9, absorption and sections can be related to changes in cell size and attenuation meter; b, scattering coefficient; b*chl, chl- carbon content, then phytoplankton productivity specific scattering coefficient; c, attenuation coeffi- (Cullen et al. 1992) and growth rates (DuRand 1995, cient; c*c , carbon-specific attenuation coefficient; Ci, Binder et al. 1996) can be estimated from measure- intracellular carbon concentration; C:N, carbon to ments over the diel cycle in the field. In laboratory studies, contrasting data have been obtained on the relative contributions of variations in particle size and in refractive index to diel changes in optical cross- 1Received 24 January 2002. Accepted 22 June 2002. sections. Changes in refractive index have been found 2Present address: Ocean Sciences Centre, Memorial University of Newfoundland, St. John’s, NL A1C 5S7, Canada. E-mail mdurand@ to be equal to or more important than changes in cell mun.ca. size for determining the attenuation cross-section of a 3Author for correspondence: e-mail [email protected]. diatom (Stramski and Reynolds 1993) and a prokary- 1132 M. PUSILLA DIEL OPTICAL PROPERTIES 1133 otic picoplankter (Stramski et al. 1995). In contrast, materials and methods DuRand and Olson (1998) reported that changes in cell size were more important than those in refractive Laboratory measurements. Micromonas pusilla (CCMP 489), a strain isolated from the Sargasso Sea, was grown in f/2 medium index in determining diel variations in beam attenua- without silica (Guillard 1975) in replicate batch cultures at 25Њ C. tion for a small chlorophyte. The filtered (0.22 ␮m) seawater and nutrient solutions were au- Estimates of primary production in the ocean have toclaved separately and then added together after the seawater had cooled. To ensure particle-free medium, the solution was been made from diel variations in beam attenuation by ␮ converting changes in beam attenuation to carbon pro- then sterile filtered through a 0.22- m filter. The cultures were grown in 10-L carboys (containing 2 L of culture at the start of duction using a constant factor (Siegel et al. 1989, sampling) in an incubator on a 12:12-h light:dark cycle at 120 Cullen et al. 1992, Walsh et al. 1995). Ackleson et al. ␮mol photonsؒmϪ2ؒsϪ1 (cool-white fluorescent lights, measured (1993), however, reported carbon-independent changes with a QSL-100 4␲ quantum scalar irradiance sensor, Biospher- in cell scattering. In addition, several other laboratory ical Instruments, San Diego, CA, USA). The carboys were bub- bled with moisturized filtered air. Samples were forced out by studies on cultures have found that the carbon-specific air pressure through a sterile sampling port. The cultures were beam attenuation varies by 25%–30% over the diel cycle acclimated to the growth conditions for 7 days and diluted daily (usually increasing during the day) and mean values for 5 days before the day of sampling (with the last dilution 24 among the species studied vary by Ϯ21% (Stramski and h before the start of the sampling) to maintain the cells in ex- Reynolds 1993, Stramski et al. 1995, DuRand and Olson ponential growth. Samples were withdrawn every 2 h (starting at dawn, until 1998). It may be necessary to know the composition of the following dawn) and measurements made of cellular and the phytoplankton community to best interpret diel bulk properties (individual cell measurements of concentra- variations in beam attenuation as production (DuRand tion, forward and side light scattering, chl fluorescence, and and Olson 1996, Binder and DuRand 2002). cell size, and bulk measurements of absorption, attenuation, extracted chl content, and carbon content). Samples were pro- Stramski (1999) suggested that the strong correla- cessed in dim light during the nighttime sampling points. tion between intracellular carbon concentration and A modified Epics V flow cytometer (Beckman Coulter, Mi- real refractive index and between intracellular chl con- ami, FL, USA) with a Cicero acquisition interface (Cytomation, Fort Collins, CO, USA) was used to measure FLS (3–19Њ at 488 Њ ف -centration and the imaginary refractive index, ob served for phytoplankton cultures, could be used to es- nm), side angle light scattering ( 54–126 at 488 nm), and chl fluorescence (660–700 nm) of the M. pusilla cells in undiluted timate carbon and chl content of individual cells in duplicate samples. Polystyrene microspheres of two sizes (0.66 natural water samples. Despite the fact that the deriva- ␮m and 2.14 ␮m, YG calibration-grade beads from Poly- tion of refractive index from single-particle analysis is sciences, Warrington, PA, USA) were added as internal stan- not currently routine, the results of such an approach dards and differentiated from cells by their orange fluores- cence (555–595 nm). The samples were introduced into the are appealing because knowledge of the carbon-based flow cytometer using a peristaltic pump (Harvard Apparatus, size distribution of the plankton is crucial to an under- Holliston, MA, USA), and cell concentration was determined standing of upper ocean carbon cycling and knowl- from the pump flow rate and sample run time. Mean values of the measured parameters normalized to reference beads (2.14 edge of chl per cell is important for studies of phy- ␮ toplankton productivity and for bio-optical modeling. m) were calculated using “CYTOWIN” software (D. Vaulot, www.sb-roscoff.fr/Phyto/cyto.html). Flow cytometric analyses of natural samples have The size distribution of the M. pusilla cells was determined us- shown that eukaryotic picophytoplankton are ubiqui- ing a Coulter Multisizer (Beckman Coulter, Miami, FL, USA) tous (e.g. DuRand and Olson 1996, Campbell et al. equipped with a 30-␮m aperture. The culture was diluted with fil- 1997, Zubkov et al. 1998, Shalapyonok et al. 2001), tered seawater (9- to 14-fold dilutions) to obtain coincidence rates of 6% or less. The size distributions of replicate samples were av- but detailed laboratory studies of diel variations in phy- eraged and normalized to the cell concentration from flow cyto- toplankton optical properties have focused on smaller metric analysis.
Recommended publications
  • Early Photosynthetic Eukaryotes Inhabited Low-Salinity Habitats
    Early photosynthetic eukaryotes inhabited PNAS PLUS low-salinity habitats Patricia Sánchez-Baracaldoa,1, John A. Ravenb,c, Davide Pisanid,e, and Andrew H. Knollf aSchool of Geographical Sciences, University of Bristol, Bristol BS8 1SS, United Kingdom; bDivision of Plant Science, University of Dundee at the James Hutton Institute, Dundee DD2 5DA, United Kingdom; cPlant Functional Biology and Climate Change Cluster, University of Technology Sydney, Ultimo, NSW 2007, Australia; dSchool of Biological Sciences, University of Bristol, Bristol BS8 1TH, United Kingdom; eSchool of Earth Sciences, University of Bristol, Bristol BS8 1TH, United Kingdom; and fDepartment of Organismic and Evolutionary Biology, Harvard University, Cambridge, MA 02138 Edited by Peter R. Crane, Oak Spring Garden Foundation, Upperville, Virginia, and approved July 7, 2017 (received for review December 7, 2016) The early evolutionary history of the chloroplast lineage remains estimates for the origin of plastids ranging over 800 My (7). At the an open question. It is widely accepted that the endosymbiosis that same time, the ecological setting in which this endosymbiotic event established the chloroplast lineage in eukaryotes can be traced occurred has not been fully explored (8), partly because of phy- back to a single event, in which a cyanobacterium was incorpo- logenetic uncertainties and preservational biases of the fossil re- rated into a protistan host. It is still unclear, however, which cord. Phylogenomics and trait evolution analysis have pointed to a Cyanobacteria are most closely related to the chloroplast, when the freshwater origin for Cyanobacteria (9–11), providing an approach plastid lineage first evolved, and in what habitats this endosym- to address the early diversification of terrestrial biota for which the biotic event occurred.
    [Show full text]
  • Growth and Grazing Rates of the Herbivorous Dinoflagellate Gymnodinium Sp
    MARINE ECOLOGY PROGRESS SERIES Published December 16 Mar. Ecol. Prog. Ser. Growth and grazing rates of the herbivorous dinoflagellate Gymnodinium sp. from the open subarctic Pacific Ocean Suzanne L. Strom' School of Oceanography WB-10, University of Washington. Seattle. Washington 98195, USA ABSTRACT: Growth, grazing and cell volume of the small heterotroph~cdinoflagellate Gyrnnodin~um sp. Isolated from the open subarctic Pacific Ocean were measured as a funct~onof food concentration using 2 phytoplankton food species. Growth and lngestlon rates increased asymptotically with Increas- ing phytoplankon food levels, as did grazer cell volume; rates at representative oceanic food levels were high but below maxima. Clearance rates decreased with lncreaslng food levels when Isochrysis galbana was the food source; they increased ~vithlncreaslng food levels when Synechococcus sp. was the food source. There was apparently a grazlng threshold for Ingestion of Synechococcus: below an initial Synechococcus concentration of 20 pgC 1.' ingestion rates on this alga were very low, while above this initial concentratlon Synechococcus was grazed preferent~ally Gross growth efficiency varied between 0.03 and 0.53 (mean 0.21) and was highest at low food concentrations. Results support the hypothesis that heterotrophic d~noflagellatesmay contribute to controlling population increases of small, rap~dly-grow~ngphytoplankton specles even at low oceanic phytoplankton concentrations. INTRODUCTION as Gymnodinium and Gyrodinium is difficult or impos- sible using older preservation and microscopy tech- Heterotrophic dinoflagellates can be a significant niques; experimental emphasis has been on more component of the microzooplankton in marine waters. easily recognizable and collectable microzooplankton In the oceanic realm, Lessard (1984) and Shapiro et al.
    [Show full text]
  • Periodic and Coordinated Gene Expression Between a Diazotroph and Its Diatom Host
    The ISME Journal (2019) 13:118–131 https://doi.org/10.1038/s41396-018-0262-2 ARTICLE Periodic and coordinated gene expression between a diazotroph and its diatom host 1 1,2 1 3 4 Matthew J. Harke ● Kyle R. Frischkorn ● Sheean T. Haley ● Frank O. Aylward ● Jonathan P. Zehr ● Sonya T. Dyhrman1,2 Received: 11 April 2018 / Revised: 28 June 2018 / Accepted: 28 July 2018 / Published online: 16 August 2018 © International Society for Microbial Ecology 2018 Abstract In the surface ocean, light fuels photosynthetic carbon fixation of phytoplankton, playing a critical role in ecosystem processes including carbon export to the deep sea. In oligotrophic oceans, diatom–diazotroph associations (DDAs) play a keystone role in ecosystem function because diazotrophs can provide otherwise scarce biologically available nitrogen to the diatom host, fueling growth and subsequent carbon sequestration. Despite their importance, relatively little is known about the nature of these associations in situ. Here we used metatranscriptomic sequencing of surface samples from the North Pacific Subtropical Gyre (NPSG) to reconstruct patterns of gene expression for the diazotrophic symbiont Richelia and we – 1234567890();,: 1234567890();,: examined how these patterns were integrated with those of the diatom host over day night transitions. Richelia exhibited significant diel signals for genes related to photosynthesis, N2 fixation, and resource acquisition, among other processes. N2 fixation genes were significantly co-expressed with host nitrogen uptake and metabolism, as well as potential genes involved in carbon transport, which may underpin the exchange of nitrogen and carbon within this association. Patterns of expression suggested cell division was integrated between the host and symbiont across the diel cycle.
    [Show full text]
  • Control of Phytoplankton Growth in Nutrient Recycling Ecosystems
    MARINE ECOLOGY PROGRESS SERIES Published May 29 Mar. Ecol. Prog. Ser. Control of phytoplankton growth in nutrient recycling ecosystems. Theory and terminology T. Frede ~hingstadl,Egil sakshaug2 ' Department of Microbiology and Plant Physiology, University of Bergen, Jahnebk. 5,N-5007 Bergen, Norway Trondhjem Biological Station, The Museum. University of Trondheim, Bynesvn. 46, N-7018 Trondheim, Norway ABSTRACT: Some of the principles governing phytoplankton growth, biomass, and species composi- tion in 2-layered pelagic ecosystems are explored using an idealized, steady-state, mathematical model, based on simple extensions of Lotka-Volterra type equations. In particular, the properties of a food web based on 'small' and 'large' phytoplankton are investigated. Features of the phytoplankton community that may be derived from this conceptually simple model include CO-existenceof more than one species on one limiting nutrient, a rapid growth rate for a large fraction of the phytoplankton community in oligotrophic waters, a long food chain starting from a population of small phytoplankton in waters with moderate mixing over the nutricline, and a transition to dominance of a food chain based on large phytoplankton when mixing is increased. As pointed out by other authors, careless use of the concept of one limiting factor may be potentially confusing in such systems. To avoid this, a distinction in terminology between 'controlling' and 'limiting' factors is suggested. INTRODUCTION dominance of short food chains in upwelling areas (Ryther 1969). Various aspects of nutrient cycling in pelagic ecosys- Many authors have addressed various aspects of the tems are of prime importance to our understanding of planktonic ecosystem using mathematical models how productivity of the oceans is controlled, and to our which are idealized and conceptual.
    [Show full text]
  • Flow Cytometric Investigation of the Size Spectrum of North Sea Phytoplankton Communities
    FLOW CYTOMETRIC INVESTIGATION OF THE SIZE SPECTRUM OF NORTH SEA PHYTOPLANKTON COMMUNITIES Katy R. Owen A thesis submitted to the School of Environmental Sciences, at the University of East Anglia, for the degree of Doctor of Philosophy, May 2014. © This copy of the thesis has been supplied on condition that anyone who consults it is understood to recognise that its copyright rests with the author and that use of any information derived there from must be in accordance with current UK Copyright Law. In addition, any quotation or extract must include full attribution. 2 ABSTRACT Marine biogeochemical processes are closely linked to phytoplankton community assemblages. Cell abundance and biomass are a measure of the successful conversion of inorganic to organic carbon. Carbon estimates are therefore often used to analyse metabolism and energy transfers within marine environments, and carbon is frequently the main parameter used in ecosystem models. Phytoplankton can be divided into functional types based on cell size: microplankton (<200 µm), nanoplankton (2-20 µm) and picoplankton (≤ 3 µm). Differences in cell volume govern variations in carbon content, nutrient uptake and influence cell fate. Reduced diameters equate to lower sedimentation rates and promote participation within the microbial loop and recycling of carbon within surface waters. Larger diameters can increase settling rates, resulting in the loss of carbon from surface waters. Current North Sea monitoring and research programmes typically only consider larger micro- and nanoplankton cells, or the bulk phytoplankton community as a whole: there is little separation by functional type. Inclusion of picoplankton and the delineation of biomass contribution by cell size are required for accurate depictions of phytoplankton productivity within this region, but this is not feasible with current water sampling protocols.
    [Show full text]
  • Is Chloroplastic Class IIA Aldolase a Marine Enzyme&Quest;
    The ISME Journal (2016) 10, 2767–2772 © 2016 International Society for Microbial Ecology All rights reserved 1751-7362/16 www.nature.com/ismej SHORT COMMUNICATION Is chloroplastic class IIA aldolase a marine enzyme? Hitoshi Miyasaka1, Takeru Ogata1, Satoshi Tanaka2, Takeshi Ohama3, Sanae Kano4, Fujiwara Kazuhiro4,7, Shuhei Hayashi1, Shinjiro Yamamoto1, Hiro Takahashi5, Hideyuki Matsuura6 and Kazumasa Hirata6 1Department of Applied Life Science, Sojo University, Kumamoto, Japan; 2The Kansai Electric Power Co., Environmental Research Center, Keihanna-Plaza, Kyoto, Japan; 3School of Environmental Science and Engineering, Kochi University of Technology, Kochi, Japan; 4Chugai Technos Corporation, Hiroshima, Japan; 5Graduate School of Horticulture, Faculty of Horticulture, Chiba University, Chiba, Japan and 6Environmental Biotechnology Laboratory, Graduate School of Pharmaceutical Sciences, Osaka University, Osaka, Japan Expressed sequence tag analyses revealed that two marine Chlorophyceae green algae, Chlamydo- monas sp. W80 and Chlamydomonas sp. HS5, contain genes coding for chloroplastic class IIA aldolase (fructose-1, 6-bisphosphate aldolase: FBA). These genes show robust monophyly with those of the marine Prasinophyceae algae genera Micromonas, Ostreococcus and Bathycoccus, indicating that the acquisition of this gene through horizontal gene transfer by an ancestor of the green algal lineage occurred prior to the divergence of the core chlorophytes (Chlorophyceae and Treboux- iophyceae) and the prasinophytes. The absence of this gene in some freshwater chlorophytes, such as Chlamydomonas reinhardtii, Volvox carteri, Chlorella vulgaris, Chlorella variabilis and Coccomyxa subellipsoidea, can therefore be explained by the loss of this gene somewhere in the evolutionary process. Our survey on the distribution of this gene in genomic and transcriptome databases suggests that this gene occurs almost exclusively in marine algae, with a few exceptions, and as such, we propose that chloroplastic class IIA FBA is a marine environment-adapted enzyme.
    [Show full text]
  • 21 Pathogens of Harmful Microalgae
    21 Pathogens of Harmful Microalgae RS. Salomon and I. Imai 2L1 Introduction Pathogens are any organisms that cause disease to other living organisms. Parasitism is an interspecific interaction where one species (the parasite) spends the whole or part of its life on or inside cells and tissues of another living organism (the host), from where it derives most of its food. Parasites that cause disease to their hosts are, by definition, pathogens. Although infection of metazoans by other metazoans and protists are the more fre quently studied, there are interactions where both host and parasite are sin gle-celled organisms. Here we describe such interactions involving microal gae as hosts. The aim of this chapter is to review the current status of research on pathogens of harmful microalgae and present future perspec tives within the field. Pathogens with the ability to impair and kill micro algae include viruses, bacteria, fungi and a number of protists (see reviews by Elbrachter and Schnepf 1998; Brussaard 2004; Park et al. 2004; Mayali and Azam 2004; Ibelings et al. 2004). Valuable information exists from non-harm ful microalgal hosts, and these studies will be referred to throughout the text. Nevertheless, emphasis is given to cases where hosts are recognizable harmful microalgae. 21.2 Viruses Viruses and virus-like particles (VLPs) have been found in more than 50 species of eukaryotic microalgae, and several of them have been isolated in laboratory cultures (Brussaard 2004; Nagasaki et al. 2005). These viruses are diverse both in size and genome type, and some of them infect harmful algal bloom (HAB)-causing species (Table 21.1).
    [Show full text]
  • Advances in MARINE BIOLOGY
    Advances in MARINE BIOLOGY VOLUME 46 ThisPageIntentionallyLeftBlank Advances in MARINE BIOLOGY Edited by A. J. SOUTHWARD Marine Biological Association, The Laboratory, Citadel Hill, Plymouth, PL1 2PB, UK P. A. TYLER School of Ocean and Earth Science, University of Southampton, Southampton Oceanography Centre, European Way, Southampton, SO14 3ZH, UK C. M. YOUNG Oregon Institute of Marine Biology, University of Oregon P.O. Box 5389, Charleston, Oregon 97420, USA and L. A. FUIMAN Marine Science Institute, University of Texas at Austin, 750 Channel View Drive, Port Aransas, Texas 78373, USA Amsterdam – Boston – Heidelberg – London – New York – Oxford Paris – San Diego – San Francisco – Singapore – Sydney – Tokyo This book is printed on acid-free paper. ß 2003 Elsevier Science Ltd. All rights reserved. No part of this publication may be reproduced or transmitted in any form or by any means, electronic or mechanical, including photocopy, recording, or any information storage and retrieval system, without permission in writing from the Publisher. The appearance of the code at the bottom of the first page of a chapter in this book indicates the Publisher’s consent that copies of the chapter may be made for personal or internal use of specific clients. This consent is given on the condition, however, that the copier pay the stated per copy fee through the Copyright Clearance Center, Inc. (222 Rosewood Drive, Danvers, Massachusetts 01923), for copying beyond that permitted by Sections 107 or 108 of the U.S. Copyright Law. This consent does not extend to other kinds of copying, such as copying for general distribution, for advertising or promotional purposes, for creating new collective works, or for resale.
    [Show full text]
  • Effects of Salinity on Diel Vertical Migration Behavior in Two Red-Tide Algae, Chattonella Antiqua and Karenia Mikimotoi
    Plankton Benthos Res 9(1): 42–50, 2014 Plankton & Benthos Research © The Plankton Society of Japan Effects of salinity on diel vertical migration behavior in two red-tide algae, Chattonella antiqua and Karenia mikimotoi 1, 1 1 2 TOMOYUKI SHIKATA *, SETSUKO SAKAMOTO , GOH ONITSUKA , KAZUHIRO AOKI & 1 MINEO YAMAGUICHI 1 National Research Institute of Fisheries and Environment of Inland Sea, Fisheries Research Agency, Maruishi 2–17–5, Hatsukaichi, Hiroshima 739–0452, Japan. 2 National Research Institute of Fisheries Science, Fisheries Research Agency, 2–12–4 Fukuura, Kanazawa, Yokohama, Kanagawa 236–8648, Japan. Received 17 May 2013; Accepted 4 December 2013 Abstract: We examined the effects of salinity on diel vertical migration (DVM) of two coastal flagellates, Chattonella antiqua and Karenia mikimotoi, in 90-cm-high columnar aquariums. Experiments were performed with surface sa- linities from 5 to 32 and bottom salinity constant at 32. Cells of each flagellate were injected into the bottom of the aquarium at night and the vertical distribution of cells was monitored every 4 h for 36 h in one series of experiments, or twice daily (day and night) for 5 days in another. Ascent and descent started at approximately the same time in all water columns, indicating that difference in surface salinity does not substantially affect DVM rhythm in the two flagellates. During daytime, C. antiqua and K. mikimotoi transited haloclines with surface salinities ≥15 and accumu- lated at the surface, although K. mikimotoi required 2 days to transit the halocline with surface salinity of 20 and 4 days for surface salinity of 15. However, neither flagellate could transit haloclines with surface salinities of 5 or 10; instead they accumulated in the halocline during daytime.
    [Show full text]
  • Responses of the Picoprasinophyte Micromonas Commoda to Light and Ultraviolet Stress
    RESEARCH ARTICLE Responses of the picoprasinophyte Micromonas commoda to light and ultraviolet stress Marie L. Cuvelier1☯¤a³, Jian Guo1☯¤b³, Alejandra C. Ortiz1¤c, Marijke J. van Baren1, Muhammad Akram Tariq2¤d, FreÂdeÂric Partensky3, Alexandra Z. Worden1,4,5* 1 Monterey Bay Aquarium Research Institute (MBARI), Moss Landing, CA, United States of America, 2 Department of Biomolecular Engineering, University of California Santa Cruz, Santa Cruz, CA, United States of America, 3 Sorbonne UniversiteÂsÐUPMC Universite Paris 06, CNRS UMR, Station Biologique, CS, a1111111111 Roscoff, France, 4 Department of Ocean Sciences, University of California Santa Cruz, Santa Cruz, CA, a1111111111 United States of America, 5 Integrated Microbial Biodiversity Program, Canadian Institute for Advanced a1111111111 Research, Toronto, Canada a1111111111 a1111111111 ☯ These authors contributed equally to this work. ¤a Current address: Department of Biological Sciences, Nova Southeastern University, Fort Lauderdale, FL, United States of America ¤b Current address: Department of Molecular, Cell and Developmental Biology, University of California Santa Cruz, Santa Cruz, CA, United States of America ¤c Current address: Department of Geological Sciences, Indiana University Bloomington, Bloomington, IN, OPEN ACCESS United States of America ¤d Current address: School of Health Sciences, University of Management and Technology, Lahore, Citation: Cuvelier ML, Guo J, Ortiz AC, van Baren Pakistan MJ, Tariq MA, Partensky F, et al. (2017) ³ These authors are co-first authors on this work. Responses of the picoprasinophyte Micromonas * [email protected] commoda to light and ultraviolet stress. PLoS ONE 12(3): e0172135. doi:10.1371/journal. pone.0172135 Abstract Editor: Amanda M. Cockshutt, Mount Allison University, CANADA Micromonas is a unicellular marine green alga that thrives from tropical to polar ecosystems.
    [Show full text]
  • Neoproterozoic Origin and Multiple Transitions to Macroscopic Growth in Green Seaweeds
    bioRxiv preprint doi: https://doi.org/10.1101/668475; this version posted June 12, 2019. The copyright holder for this preprint (which was not certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission. Neoproterozoic origin and multiple transitions to macroscopic growth in green seaweeds Andrea Del Cortonaa,b,c,d,1, Christopher J. Jacksone, François Bucchinib,c, Michiel Van Belb,c, Sofie D’hondta, Pavel Škaloudf, Charles F. Delwicheg, Andrew H. Knollh, John A. Raveni,j,k, Heroen Verbruggene, Klaas Vandepoeleb,c,d,1,2, Olivier De Clercka,1,2 Frederik Leliaerta,l,1,2 aDepartment of Biology, Phycology Research Group, Ghent University, Krijgslaan 281, 9000 Ghent, Belgium bDepartment of Plant Biotechnology and Bioinformatics, Ghent University, Technologiepark 71, 9052 Zwijnaarde, Belgium cVIB Center for Plant Systems Biology, Technologiepark 71, 9052 Zwijnaarde, Belgium dBioinformatics Institute Ghent, Ghent University, Technologiepark 71, 9052 Zwijnaarde, Belgium eSchool of Biosciences, University of Melbourne, Melbourne, Victoria, Australia fDepartment of Botany, Faculty of Science, Charles University, Benátská 2, CZ-12800 Prague 2, Czech Republic gDepartment of Cell Biology and Molecular Genetics, University of Maryland, College Park, MD 20742, USA hDepartment of Organismic and Evolutionary Biology, Harvard University, Cambridge, Massachusetts, 02138, USA. iDivision of Plant Sciences, University of Dundee at the James Hutton Institute, Dundee, DD2 5DA, UK jSchool of Biological Sciences, University of Western Australia (M048), 35 Stirling Highway, WA 6009, Australia kClimate Change Cluster, University of Technology, Ultimo, NSW 2006, Australia lMeise Botanic Garden, Nieuwelaan 38, 1860 Meise, Belgium 1To whom correspondence may be addressed. Email [email protected], [email protected], [email protected] or [email protected].
    [Show full text]
  • Assessing the Role of Dust Deposition on Phytoplankton Ecophysiology
    Discussion Paper | Discussion Paper | Discussion Paper | Discussion Paper | Biogeosciences Discuss., 9, 19199–19243, 2012 www.biogeosciences-discuss.net/9/19199/2012/ Biogeosciences doi:10.5194/bgd-9-19199-2012 Discussions BGD © Author(s) 2012. CC Attribution 3.0 License. 9, 19199–19243, 2012 This discussion paper is/has been under review for the journal Biogeosciences (BG). Assessing the role of Please refer to the corresponding final paper in BG if available. dust deposition on phytoplankton Assessing the role of dust deposition on ecophysiology phytoplankton ecophysiology and V. Giovagnetti et al. succession in a low-nutrient Title Page low-chlorophyll ecosystem: a mesocosm Abstract Introduction experiment in the Mediterranean Sea Conclusions References Tables Figures V. Giovagnetti1, C. Brunet1, F. Conversano1, F. Tramontano1, I. Obernosterer2,3, C. Ridame4, and C. Guieu5,6 J I 1Stazione Zoologica Anton Dohrn, Villa Comunale, 80121, Naples, Italy 2Universite´ Pierre et Marie Curie-Paris 6, UMR 7621, LOMIC, Observatoire Oceanologique,´ J I F-66650 Banyuls/Mer, France Back Close 3CNRS, UMR 7621, LOMIC, Observatoire Oceanologique,´ 66650 Banyuls/Mer, France 4Laboratoire d’Oceanographie´ et du Climat: Experimentations´ et Approches Numeriques´ Full Screen / Esc (LOCEAN), CNRS-Universite´ Paris VI, Campus Jussieu, Paris, France 5 Laboratoire d’Oceanographie´ de Villefranche/Mer, CNRS-INSU, UMR7093, Observatoire Printer-friendly Version Oceanologique,´ 06230, Villefranche/Mer, France 6 Universite´ Pierre et Marie Curie-Paris 6, UMR 7093, LOV, Observatoire Oceanologique,´ Interactive Discussion 06230, Villefranche/Mer, France 19199 Discussion Paper | Discussion Paper | Discussion Paper | Discussion Paper | Received: 30 November 2012 – Accepted: 5 December 2012 – Published: 21 December 2012 Correspondence to: C. Brunet ([email protected]) BGD Published by Copernicus Publications on behalf of the European Geosciences Union.
    [Show full text]