William Alfred Fowler (1911-95)
Total Page:16
File Type:pdf, Size:1020Kb
Load more
Recommended publications
-
A Propensity for Genius: That Something Special About Fritz Zwicky (1898 - 1974)
Swiss American Historical Society Review Volume 42 Number 1 Article 2 2-2006 A Propensity for Genius: That Something Special About Fritz Zwicky (1898 - 1974) John Charles Mannone Follow this and additional works at: https://scholarsarchive.byu.edu/sahs_review Part of the European History Commons, and the European Languages and Societies Commons Recommended Citation Mannone, John Charles (2006) "A Propensity for Genius: That Something Special About Fritz Zwicky (1898 - 1974)," Swiss American Historical Society Review: Vol. 42 : No. 1 , Article 2. Available at: https://scholarsarchive.byu.edu/sahs_review/vol42/iss1/2 This Article is brought to you for free and open access by BYU ScholarsArchive. It has been accepted for inclusion in Swiss American Historical Society Review by an authorized editor of BYU ScholarsArchive. For more information, please contact [email protected], [email protected]. Mannone: A Propensity for Genius A Propensity for Genius: That Something Special About Fritz Zwicky (1898 - 1974) by John Charles Mannone Preface It is difficult to write just a few words about a man who was so great. It is even more difficult to try to capture the nuances of his character, including his propensity for genius as well as his eccentric behavior edging the abrasive as much as the funny, the scope of his contributions, the size of his heart, and the impact on society that the distinguished physicist, Fritz Zwicky (1898- 1974), has made. So I am not going to try to serve that injustice, rather I will construct a collage, which are cameos of his life and accomplishments. In this way, you, the reader, will hopefully be left with a sense of his greatness and a desire to learn more about him. -
Ca Alogue 1950-1951 Bulletin of the California Institute of Technology Volume 59 Number 4
CA ALOGUE 1950-1951 BULLETIN OF THE CALIFORNIA INSTITUTE OF TECHNOLOGY VOLUME 59 NUMBER 4 The California Institute of Technology Bulletin is published quarterly Entered as Second Class Matter at the Post Office at Pasadena, California, under the Act of August 24, 1912 CALIFORNIA INSTITUTE OF TECHNOLOGY A College, Graduate School, and Institute of Research in Science Engineering, and the Humanities CATALOGUE 1 950 . 195 1 PUBLISHED BY THE INSTITUTE, OCTOBER, 1950 PASADENA, CALIFORNIA CONTENTS PART ONE. GENERAL INFORMATION. PAGE Academic Calendar 11 Board .of Trustees ........................................... 15 Trustee Committees. 16 Administrative Officers of the Institute . .. 17 Faculty Officers and Committees, 1950-51 ....................... 18 Staff of Instruction and Research-Summary . 20 Staff of Instruction and Research ................... 35 Fellows, Scholars, and Assistants .............................. 65 California Institute Associates .... 76 .Historical Sketch . 80 Educational Policies ......................................... 82 Buildings and Facilities ...................................... 84 Study and Research at the California Institute 1. The Sciences .......................................... 87 Astronomy and Astrophysics ............................. 87 Biological Sciences ..................................... 88 Chemistry and Chemical Engineering . .. 89 Geological Sciences . .. 91 Mathematics ........................................... 92 Physics ........ , ....... '" ...... '" ............... " .. 93 2. Engineering -
Copy of DOC001
BULLETIN OF THE CALIFORNIA INSTITUTE OF TECHNOLOGY VOLUME 48 NUMBER 1 CATALOGUE NUMBER jor 1939 PUB LIS H E D BY 'T H E INS 'T I'T U 'T E, JAN U A R Y, 1939 The California Institute of Technology Bulletin is Published Quarterly Entered as Second-Class Matter at the Post Office ~t Pasadena. California. Under the Act of August 24. 1912 BlJLLETIN OF THE CALIFORNIA INSTITUTE OF TECHNOLOGY VOLUME 48 NUMBER I A COLLEGE, GRADUATE SCHOOL, AND INSTITUTE OF RESEARCH IN SCIENCE, ENGINEERING AND THE HUMANITIES CATALOGUE NUMBER jor 1939 PASADENA· CALIFORNIA· JANUARY, 1939 CONTENTS PAGE ACADEMIC CALENDAR ....•...•..•..••..•.....•••........•..•.....•• BOARD OF TRUSTEES. • . • . • • . 6 OFFICERS: Board of Trustees. 6 Administrative Officers of the Institute. 7 Officers and Committees of the Faculty. 8 STAFF OF INSTRUCTION AND RESEARCH ...•••...... " ••. .. .. .. ....••• •• 9 STAFF OF INSTRUCTION AND RESEARCH SUMMARY. .. ... ......•..•..• .. 47 CALIFORNIA INSTITUTE ASSOCIATES................................... 58 HISTORICAL SKETCH .....•..............•...........•......•....... 60 EDUCATIONAL POLICIES .....................•............••••...•... 62 BUILDINGS AND FACILITIES. • . • . • . • . • . • . 65 ATHENJEUM ..••...•.....•••............•••....•......••.•........ 69 STUDENT HOUSES .•...••..•....................................... 70 EXTRA-CURRICULAR OPPORTUNITIES .................................. 71 STUDENT HEALT:H AND PHYSICAL EDUCATION ..••••••.•...... " • • . • . • 75 REQUIREMENTS FOR ADMISSION TO UNDERGRADUATE STANDING. .. 78 EXPENSES ....••..........................•..•................... -
William A. Fowler Papers
http://oac.cdlib.org/findaid/ark:/13030/kt2d5nb7kj No online items Guide to the Papers of William A. Fowler, 1917-1994 Processed by Nurit Lifshitz, assisted by Charlotte Erwin, Laurence Dupray, Carlo Cossu and Jennifer Stine. Archives California Institute of Technology 1200 East California Blvd. Mail Code 015A-74 Pasadena, CA 91125 Phone: (626) 395-2704 Fax: (626) 793-8756 Email: [email protected] URL: http://archives.caltech.edu © 2003 California Institute of Technology. All rights reserved. Guide to the Papers of William A. Consult repository 1 Fowler, 1917-1994 Guide to the Papers of William A. Fowler, 1917-1994 Collection number: Consult repository Archives California Institute of Technology Pasadena, California Contact Information: Archives California Institute of Technology 1200 East California Blvd. Mail Code 015A-74 Pasadena, CA 91125 Phone: (626) 395-2704 Fax: (626) 793-8756 Email: [email protected] URL: http://archives.caltech.edu Processed by: Nurit Lifshitz, assisted by Charlotte Erwin, Laurence Dupray, Carlo Cossu and Jennifer Stine Date Completed: June 2000 Encoded by: Francisco J. Medina. Derived from XML/EAD encoded file by the Center for History of Physics, American Institute of Physics as part of a collaborative project (1999) supported by a grant from the National Endowment for the Humanities. © 2003 California Institute of Technology. All rights reserved. Descriptive Summary Title: William A. Fowler papers, Date (inclusive): 1917-1994 Collection number: Consult repository Creator: Fowler, William A., 1911-1995 Extent: 94 linear feet Repository: California Institute of Technology. Archives. Pasadena, California 91125 Abstract: These papers document the career of William A. Fowler, who served on the physics faculty at California Institute of Technology from 1939 until 1982. -
JUAN MANUEL 2016 NOBEL PEACE PRIZE RECIPIENT Culture Friendship Justice
Friendship Volume 135, № 1 Character Culture JUAN MANUEL SANTOS 2016 NOBEL PEACE PRIZE RECIPIENT Justice LETTER FROM THE PRESIDENT Dear Brothers, It is an honor and a privilege as your president to have the challenges us and, perhaps, makes us question our own opportunity to share my message with you in each edition strongly held beliefs. But it also serves to open our minds of the Quarterly. I generally try to align my comments and our hearts to our fellow neighbor. It has to start with specific items highlighted in each publication. This with a desire to listen, to understand, and to be tolerant time, however, I want to return to the theme “living our of different points of view and a desire to be reasonable, Principles,” which I touched upon in a previous article. As patient and respectful.” you may recall, I attempted to outline and describe how Kelly concludes that it is the diversity of Southwest’s utilization of the Four Founding Principles could help people and “treating others like you would want to be undergraduates make good decisions and build better treated” that has made the organization successful. In a men. It occurred to me that the application of our values similar way, Stephen Covey’s widely read “Seven Habits of to undergraduates only is too limiting. These Principles are Highly Effective People” takes a “values-based” approach to indeed critical for each of us at this particularly turbulent organizational success. time in our society. For DU to be a successful organization, we too, must As I was flying back recently from the Delta Upsilon be able to work effectively with our varied constituents: International Fraternity Board of Directors meeting in undergraduates, parents, alumni, higher education Arizona, I glanced through the February 2017 edition professionals, etc. -
Report and Opinion 2016;8(6) 1
Report and Opinion 2016;8(6) http://www.sciencepub.net/report Beyond Einstein and Newton: A Scientific Odyssey Through Creation, Higher Dimensions, And The Cosmos Manjunath R Independent Researcher #16/1, 8 Th Main Road, Shivanagar, Rajajinagar, Bangalore: 560010, Karnataka, India [email protected], [email protected] “There is nothing new to be discovered in physics now. All that remains is more and more precise measurement.” : Lord Kelvin Abstract: General public regards science as a beautiful truth. But it is absolutely-absolutely false. Science has fatal limitations. The whole the scientific community is ignorant about it. It is strange that scientists are not raising the issues. Science means truth, and scientists are proponents of the truth. But they are teaching incorrect ideas to children (upcoming scientists) in schools /colleges etc. One who will raise the issue will face unprecedented initial criticism. Anyone can read the book and find out the truth. It is open to everyone. [Manjunath R. Beyond Einstein and Newton: A Scientific Odyssey Through Creation, Higher Dimensions, And The Cosmos. Rep Opinion 2016;8(6):1-81]. ISSN 1553-9873 (print); ISSN 2375-7205 (online). http://www.sciencepub.net/report. 1. doi:10.7537/marsroj08061601. Keywords: Science; Cosmos; Equations; Dimensions; Creation; Big Bang. “But the creative principle resides in Subaltern notable – built on the work of the great mathematics. In a certain sense, therefore, I hold it astronomers Galileo Galilei, Nicolaus Copernicus true that pure thought can -
Legacy of Leadership NOBEL PRIZE WINNERS
Legacy of Leadership NOBEL PRIZE WINNERS 43 Fulbright Alumni Awarded the Nobel Prize The Bureau of Educational and Cultural Affairs of the U.S. Department of State, sponsor of the Fulbright Program, recognizes 43 alumni of the Fulbright Program from 11 countries who have been awarded the Nobel Prize for their contributions to humanity. Nobel Laureates are listed in order of their award’s receipt, with the most recent first. Peter A. Diamond – U.S.A. Roy J. Glauber – U.S.A. Nobel Laureate in Economics 2010 Nobel Laureate in Physics 2005 Fulbright Scholar in Italy, 1999-00 Fulbright Scholar in France, 1954-55 Ei-ichi Negishi – Japan Nobel Laureate in Chemistry 2010 Aaron Ciechanover – Israel Fulbright Student at University of Nobel Laureate in Chemistry 2004 Pennsylvania, 1960-63 Fulbright Scholar at Massachusetts Institute of Technology, 1981-84 Muhammad Yunus Oliver Williamson – U.S.A. Nobel Laureate in Economics 2009 Ei-ichi Negishi Riccardo Giacconi – Italy Nobel Laureate in Physics 2002 Fulbright Scholar in Italy, 1999 Fulbright Student at Indiana University, 1956-58 Jean-Marie Le Clézio – France Nobel Laureate in Literature 2008 Masatoshi Koshiba – Japan Fulbright Scholar at University of Nobel Laureate in Physics 2002 California-Santa Cruz, 1979 Fulbright Student at University of Rochester, 1953-55 Osamu Shimomura – Japan Nobel Laureate in Chemistry 2008 George A. Akerlof – U.S.A. Fulbright Scholar at Princeton Nobel Laureate in Economics University, 1960 2001 Aaron Ciechanover Osamu Shimomura Fulbright Scholar in India, 1967-68 Leonid Hurwicz – U.S.A. Nobel Laureate in Economics 2007 Joseph Stiglitz – U.S.A. Fulbright Scholar in India, 1965-66 Nobel Laureate in Economics 2001 Fulbright Student in the United Muhammad Yunus – Bangladesh Kingdom, 1969-70 Nobel Peace Prize 2006 Fulbright Student at University of Alan G. -
Alfred Fowler, F.R.S
JOURNAL OF THE TRANSACTIONS OF ·@hr t8ittl1ria Jnstitut~, OR, j gilosopbintl ,Sotietu of ®nat ~ritain. SECRI,'TARY: E. WALTER MAUNDER, F.R.A.S. VOL. XLVII. LONDON: (:\8ullliJSl)rlJ ll!) tl)e inJStitutr, 1, <tmtral 3Suill:riugJS, ErJStminJSter, j,,E.) ALL RIGHTS RESBRVER . 1915. 565TH ORDINARY GENERAL MEETING, HELD IN THE CONFERENCE HALL, CENTRAL HALL, WESTMINSTER, ON MONDAY, MARCH lsT, 1915, AT 4.30 P.M. Sm FRANK W. DYSON, F.R.S., ASTRONOMER ROYAL, TOOK THE OHAIR. The Minutes of the preceding Meeting were read and confirmed. The SECRETARY announced the election of the Rev. Martin Anstey and the Rev. G. Campbell Morgan as Members of the Institute. The Rev. Prebendary H. E. Fox, M.A., opened the Meeting and introduced the Lecturer, Professor Alfred Fowler, F.R.S. THE SPECTRA OF STARS AND NEBUL.JE. By Professor A. FOWLER, F.R.S. [ABSTRACT.] HE purpose of this lecture is to give some indication of the T way in which the wonderful power of the spectroscope has been utilised in investigations of the chemistry of stars and nebula\ and of the bearing of such knowledge upon the great question of celestial evolution. The only intelligible message that a star sends to the earth is borne on its rays of light, and it is only by the analysis of such light that we can learn anything at all as to the chemical composition and physical condition of the star. Such an analysis has been rendered possible by the invention of the spectroscope in its various forms. Each element, and some com pounds, has its own distinctive family of spectrum lines or bands, by which it can be identified wherever it occurs in the luminous condition. -
{How Sommerfeld Extended Bohr's Model of the Atom (1913–1916)}
See discussions, stats, and author profiles for this publication at: https://www.researchgate.net/publication/263003051 How Sommerfeld extended Bohr's model of the atom (1913-1916) Article in European Physical Journal H, The · December 2013 DOI: 10.1140/epjh/e2013-40052-4 CITATIONS READS 12 33,525 1 author: Michael Eckert Deutsches Museum 160 PUBLICATIONS 524 CITATIONS SEE PROFILE Some of the authors of this publication are also working on these related projects: Fluid mechanics View project History of Physics View project All content following this page was uploaded by Michael Eckert on 25 November 2014. The user has requested enhancement of the downloaded file. Eur. Phys. J. H 39, 141–156 (2014) THE EUROPEAN DOI: 10.1140/epjh/e2013-40052-4 PHYSICAL JOURNAL H How Sommerfeld extended Bohr’s model of the atom (1913–1916) Michael Eckerta Deutsches Museum, D-80306 Munich, Germany Received 13 December 2013 / Received in final form 17 December 2013 Published online 30 January 2014 c EDP Sciences, Springer-Verlag 2014 Abstract. Sommerfeld’s extension of Bohr’s atomic model was moti- vated by the quest for a theory of the Zeeman and Stark effects. The crucial idea was that a spectral line is made up of coinciding frequencies which are decomposed in an applied field. In October 1914 Johannes Stark had published the results of his experimental investigation on the splitting of spectral lines in hydrogen (Balmer lines) in electric fields, which showed that the frequency of each Balmer line becomes decom- posed into a multiplet of frequencies. The number of lines in such a decomposition grows with the index of the line in the Balmer series. -
Miguel A. Catalán's CXXV Anniversary
Advances in Historical Studies, 2019, 8, 239-251 https://www.scirp.org/journal/ahs ISSN Online: 2327-0446 ISSN Print: 2327-0438 Miguel A. Catalán’s CXXV Anniversary Gabriel Barceló Pedro de Valdivia, Madrid, Spain How to cite this paper: Barceló, G. (2019). Abstract Miguel A. Catalán’s CXXV Anniversary. Advances in Historical Studies, 8, 239-251. We would like to memorialize the CXXV anniversary of the following phy- https://doi.org/10.4236/ahs.2019.85017 sicist: Miguel A. Catalán (1894-1957), who contributed to science advance- ment and to define the atomic model of matter, and quantum theory, hun- Received: November 6, 2019 Accepted: December 7, 2019 dred years ago. The objective of the research was to define the biography of Published: December 10, 2019 Miguel A. Catalán and his contribution to the advancement of science. To this end, this work has been historically documented. Copyright © 2019 by author(s) and Scientific Research Publishing Inc. This work is licensed under the Creative Keywords Commons Attribution International Miguel A. Catalán, Atomic Physics, Atomic Spectroscopy, Spectrum of License (CC BY 4.0). http://creativecommons.org/licenses/by/4.0/ Manganese, Atomic Model Open Access 1. Introduction We would like to remember the 125th birth anniversary of the physicist Miguel A. Catalán (1894-1957), who, one hundred years ago, contributed to the ad- vancement of science and the definition of the atomic model of matter. He was a great teacher and pedagogue as well; he was my professor. Even before becoming a doctor, on February 6 of 1917, he had applied for a fellowship in order to study abroad. -
On the Nobel Prize in Physics, Controversies and Influences by C
Global Journal of Science Frontier Research Physics and Space Science Volume 13 Issue 3 Version 1.0 Year 2013 Type : Double Blind Peer Reviewed International Research Journal Publisher: Global Journals Inc. (USA) Online ISSN: 2249-4626 & Print ISSN: 0975-5896 On the Nobel Prize in Physics, Controversies and Influences By C. Y. Lo Applied and Pure Research Institute Abstract - The Nobel Prizes were established by Alfred Bernhard Nobel for those who confer the "greatest benefit on mankind", and specifically in physics, chemistry, peace, physiology or medicine, and literature. In 1968 the Nobel Memorial Prize in Economic Sciences was established. However, the proceedings, nominations, awards, and exclusions have generated criticism and controversy. The controversies and influences related to the Nobel Physics Prize are discussed. The 1993 Nobel Prize in Physics was awarded to Hulse and Taylor, but the related theory was still incorrect as Gullstrand conjectured. The fact that Christodoulou received honors for related errors testified, “Unthinking respect for authority is the greatest enemy of truth” as Einstein asserted. The strategy based on the recognition time lag failed because of mathematical and logical errors. These errors were also the obstacles for later crucial progress. Also, it may be necessary to do follow up work after the awards years later since an awarded work may still be inadequately understood. Thus, it is suggested: 1) To implement the demands of Nobel’s will, the Nobel Committee should rectify their past errors in sciences. 2) To timely update the status of achievements of awarded Nobel Prizes in Physics, Chemistry, and Physiology or Medicine. 3) To strengthen the implementation of Nobel’s will, a Nobel Prize for Mathematics should be established. -
Physics Celebrity #24 (Neil's Bohr)
Niels Bohr (Danish) 1885 – 1962) made foundational contributions to understanding atomic structure and quantum mechanics, for which he received Neils Bohr (1885 - 1962) the Nobel Prize in Physics in 1922. Bohr was also a philosopher and a promoter of scientific research. He developed the Bohr model of the atom with the atomic nucleus at the centre and electrons in orbit around it, which he compared to the planets orbiting the Sun. He helped develop quantum mechanics, in which electrons move from one energy level to another in discrete steps, instead of continuously. He founded the Institute of Theoretical Physics at the University of Copenhagen, now known as the Niels Bohr Institute, which opened in 1920. Bohr mentored and collaborated with physicists including Hans Kramers, Oskar Klein, George de Hevesy and Werner Heisenberg. He predicted the existence of a new zirconium-like element, which was named hafnium, after Copenhagen, when it was discovered. Later, the element bohrium was named after him. He conceived the principle of complementarity: that items could be separately analysed as having contradictory properties, like behaving as a wave or a stream of particles. The notion of complementarity dominated his thinking on both science and philosophy. During the 1930s, Bohr gave refugees from Nazism temporary jobs at the Institute, provided them with financial support, arranged for them to be awarded fellowships from the Rockefeller Foundation, and ultimately found them places at various institutions around the world. After Denmark was occupied by the Germans, he had a dramatic meeting in Copenhagen with Heisenberg, who had become the head of the German nuclear energy project.