Legacy of Leadership NOBEL PRIZE WINNERS
Total Page:16
File Type:pdf, Size:1020Kb
Load more
Recommended publications
-
Section 2 Contribution of Science and Technology to Global Issues
Chapter 1 Progress in Science and Technology and Socioeconomic Changes Section 2 Contribution of Science and Technology to Global Issues From the end of the 19th century to the 20th century, science and technology has rapidly advanced. Chemical industry, electrical industry and heavy industry and so on emerged and we have advanced forward to ages of mass production and mass consumption, when goods could be transported in bulk to distant locations for a short period, as physical distribution, including railways, cars and airplanes, developed. This accompanied the mass disposal of goods and mass consumption of energy, highlighting the Chapter 1 risk of depletion of limited resources, global warming, the destruction of ecosystems and the crisis in the global environment. Science and technology that changed our lives were explained in Section 1 of this chapter, but as well as changing our lives in terms of key daily lifestyle elements, science and technology are also crucial to solve global issues such as climate change, natural resource depletion and energy. There are significant expectations as to how science and technology can contribute to solve global issues. This section addresses the social contribution of science and technology in Japan domestically and internationally. 1 Contribution to Global Warming Countermeasures ○ Global warming state Climate changes caused by global warming are Average global surface temperature (land + sea) anomaly one of the most urgent problems which the world faces. The Intergovernmental Panel on Climate Change (IPCC)1, awarded the Nobel Peace Prize Year in 2007, published the Synthesis Report of Fifth Changes in average global sea level Assessment Report in 2014. -
書 名 等 発行年 出版社 受賞年 備考 N1 Ueber Das Zustandekommen Der
書 名 等 発行年 出版社 受賞年 備考 Ueber das Zustandekommen der Diphtherie-immunitat und der Tetanus-Immunitat bei thieren / Emil Adolf N1 1890 Georg thieme 1901 von Behring N2 Diphtherie und tetanus immunitaet / Emil Adolf von Behring und Kitasato 19-- [Akitomo Matsuki] 1901 Malarial fever its cause, prevention and treatment containing full details for the use of travellers, University press of N3 1902 1902 sportsmen, soldiers, and residents in malarious places / by Ronald Ross liverpool Ueber die Anwendung von concentrirten chemischen Lichtstrahlen in der Medicin / von Prof. Dr. Niels N4 1899 F.C.W.Vogel 1903 Ryberg Finsen Mit 4 Abbildungen und 2 Tafeln Twenty-five years of objective study of the higher nervous activity (behaviour) of animals / Ivan N5 Petrovitch Pavlov ; translated and edited by W. Horsley Gantt ; with the collaboration of G. Volborth ; and c1928 International Publishing 1904 an introduction by Walter B. Cannon Conditioned reflexes : an investigation of the physiological activity of the cerebral cortex / by Ivan Oxford University N6 1927 1904 Petrovitch Pavlov ; translated and edited by G.V. Anrep Press N7 Die Ätiologie und die Bekämpfung der Tuberkulose / Robert Koch ; eingeleitet von M. Kirchner 1912 J.A.Barth 1905 N8 Neue Darstellung vom histologischen Bau des Centralnervensystems / von Santiago Ramón y Cajal 1893 Veit 1906 Traité des fiévres palustres : avec la description des microbes du paludisme / par Charles Louis Alphonse N9 1884 Octave Doin 1907 Laveran N10 Embryologie des Scorpions / von Ilya Ilyich Mechnikov 1870 Wilhelm Engelmann 1908 Immunität bei Infektionskrankheiten / Ilya Ilyich Mechnikov ; einzig autorisierte übersetzung von Julius N11 1902 Gustav Fischer 1908 Meyer Die experimentelle Chemotherapie der Spirillosen : Syphilis, Rückfallfieber, Hühnerspirillose, Frambösie / N12 1910 J.Springer 1908 von Paul Ehrlich und S. -
Die Woche Spezial
In cooperation with DIE WOCHE SPEZIAL >> Autographs>vs.>#NobelSelfie Special >> Big>Data>–>not>a>big>deal,> Edition just>another>tool >> Why>Don’t>Grasshoppers> Catch>Colds? SCIENCE SUMMIT The>64th>Lindau>Nobel>Laureate>Meeting> devoted>to>Physiology>and>Medicine More than 600 young scientists came to Lindau to meet 37 Nobel laureates CAREER WONGSANIT > Women>to>Women: SUPHAKIT > / > Science>and>Family FOTOLIA INFLAMMATION The>Stress>of>Ageing > FLASHPICS > / > MEETINGS > FOTOLIA LAUREATE > CANCER RESEARCH NOBEL > LINDAU > / > J.>Michael>Bishop>and GÄRTNER > FLEMMING > JUAN > / the>Discovery>of>the>first> > CHRISTIAN FOTOLIA Human>Oncogene EDITORIAL IMPRESSUM Chefredakteur: Prof. Dr. Carsten Könneker (v.i.S.d.P.) Dear readers, Redaktionsleiter: Dr. Daniel Lingenhöhl Redaktion: Antje Findeklee, Jan Dönges, Dr. Jan Osterkamp where>else>can>aspiring>young>scientists> Ständige Mitarbeiter: Lars Fischer Art Director Digital: Marc Grove meet>the>best>researchers>of>the>world> Layout: Oliver Gabriel Schlussredaktion: Christina Meyberg (Ltg.), casually,>and>discuss>their>research,>or>their> Sigrid Spies, Katharina Werle Bildredaktion: Alice Krüßmann (Ltg.), Anke Lingg, Gabriela Rabe work>–>or>pressing>global>problems?>Or> Verlag: Spektrum der Wissenschaft Verlagsgesellschaft mbH, Slevogtstraße 3–5, 69126 Heidelberg, Tel. 06221 9126-600, simply>discuss>soccer?>Probably>the>best> Fax 06221 9126-751; Amtsgericht Mannheim, HRB 338114, UStd-Id-Nr. DE147514638 occasion>is>the>annual>Lindau>Nobel>Laure- Geschäftsleitung: Markus Bossle, Thomas Bleck Marketing und Vertrieb: Annette Baumbusch (Ltg.) Leser- und Bestellservice: Helga Emmerich, Sabine Häusser, ate>Meeting>in>the>lovely>Bavarian>town>of> Ute Park, Tel. 06221 9126-743, E-Mail: [email protected] Lindau>on>Lake>Constance. Die Spektrum der Wissenschaft Verlagsgesellschaft mbH ist Kooperati- onspartner des Nationalen Instituts für Wissenschaftskommunikation Daniel>Lingenhöhl> GmbH (NaWik). -
Passport to an International Career -True Globalism
Passport to an international career̶True globalism ● Maki KAWAI Professor at Graduate School of Frontier Sciences, The University of Tokyo; RIKEN The Nobel Prize in Chemistry 2010 was awarded jointly to United States, it is rare for one to earn one’s Ph.D. in the United Richard F. Heck, Akira Suzuki, and Ei-ichi Negishi for their con- States like Ei-ichi Negishi. Satoru Masamune left Japan to study tributions to the development of organic synthesis that is also at the University of California, Berkley in 1957 as a Fulbright important industrially. Since palladium-catalyzed cross coupling scholar, and later became professor at Massachusetts Institute of is an area in which Japan is strong and for which it had been Technology (MIT) nurturing many organic scientists. Hiroaki widely expected that someday someone would receive the award, Suga of the Department of Chemistry, School of Science, The I honor the three winners and at the same time appreciate having University of Tokyo, and Yukishige Ito of RIKEN, who is pres- the opportunity to learn of the achievements made by many ently working on glycotrilogy at Exploratory Research for researchers engaged in this area of study. It is well known that Advanced Technology (ERATO), have both studied at MIT’s many of the Nobel Prize winners pursue their research work in Masamune Laboratory. Kazuo Nakamoto (Professor Emeritus at the United States, and Japanese winners are no exception. Marquette University in the United States, deceased June 2011) Among the fifteen winners up to 2010, the five winners of Ei-ichi of infrared or Raman spectroscopies left for the United States in Negishi (Nobel Prize in Chemistry 2010), Osamu Shimomura 1958, and is famous for his editions of“ Infrared and Raman Spec- (Nobel Prize in Chemistry 2008), Yoichiro Nambu (Nobel Prize tra of Inorganic and Coordination Compounds,” with which I am in Physics 2008), Susumu Tonegawa (Nobel Prize in Physiology sure many of you are familiar. -
Tomaso A. Poggio
BK-SFN-NEUROSCIENCE-131211-09_Poggio.indd 362 16/04/14 5:25 PM Tomaso A. Poggio BORN: Genova, Italy September 11, 1947 EDUCATION: University of Genoa, PhD in Physics, Summa cum laude (1971) APPOINTMENTS: Wissenschaftlicher Assistant, Max Planck Institut für Biologische Kybernetik, Tubingen, Germany (1978) Associate Professor (with tenure), Department of Psychology and Artificial Intelligence Laboratory, Massachusetts Institute of Technology (1981) Uncas and Helen Whitaker Chair, Department of Brain & Cognitive Sciences, Massachusetts Institute of Technology (1988) Eugene McDermott Professor, Department of Brain and Cognitive Sciences, Computer Science and Artificial Intelligence Laboratory and McGovern Institute for Brain Research, Massachusetts Institute of Technology (2002) HONORS AND AWARDS (SELECTED): Otto-Hahn-Medaille of the Max Planck Society (1979) Member, Neurosciences Research Program (1979) Columbus Prize of the Istituto Internazionale delle Comunicazioni Genoa, Italy (1982) Corporate Fellow, Thinking Machines Corporation (1984) Founding Fellow, American Association of Artificial Intelligence (1990) Fellow, American Academy of Arts and Sciences (1997) Foreign Member, Istituto Lombardo dell’Accademia di Scienze e Lettere (1998) Laurea Honoris Causa in Ingegneria Informatica, Bicentenario dell’Invezione della Pila, Pavia, Italia, March (2000) Gabor Award, International Neural Network Society (2003) Okawa Prize (2009) Fellow, American Association for the Advancement of Science (2009) Tomaso Poggio began his career in collaboration -
Ca Alogue 1950-1951 Bulletin of the California Institute of Technology Volume 59 Number 4
CA ALOGUE 1950-1951 BULLETIN OF THE CALIFORNIA INSTITUTE OF TECHNOLOGY VOLUME 59 NUMBER 4 The California Institute of Technology Bulletin is published quarterly Entered as Second Class Matter at the Post Office at Pasadena, California, under the Act of August 24, 1912 CALIFORNIA INSTITUTE OF TECHNOLOGY A College, Graduate School, and Institute of Research in Science Engineering, and the Humanities CATALOGUE 1 950 . 195 1 PUBLISHED BY THE INSTITUTE, OCTOBER, 1950 PASADENA, CALIFORNIA CONTENTS PART ONE. GENERAL INFORMATION. PAGE Academic Calendar 11 Board .of Trustees ........................................... 15 Trustee Committees. 16 Administrative Officers of the Institute . .. 17 Faculty Officers and Committees, 1950-51 ....................... 18 Staff of Instruction and Research-Summary . 20 Staff of Instruction and Research ................... 35 Fellows, Scholars, and Assistants .............................. 65 California Institute Associates .... 76 .Historical Sketch . 80 Educational Policies ......................................... 82 Buildings and Facilities ...................................... 84 Study and Research at the California Institute 1. The Sciences .......................................... 87 Astronomy and Astrophysics ............................. 87 Biological Sciences ..................................... 88 Chemistry and Chemical Engineering . .. 89 Geological Sciences . .. 91 Mathematics ........................................... 92 Physics ........ , ....... '" ...... '" ............... " .. 93 2. Engineering -
Copy of DOC001
BULLETIN OF THE CALIFORNIA INSTITUTE OF TECHNOLOGY VOLUME 48 NUMBER 1 CATALOGUE NUMBER jor 1939 PUB LIS H E D BY 'T H E INS 'T I'T U 'T E, JAN U A R Y, 1939 The California Institute of Technology Bulletin is Published Quarterly Entered as Second-Class Matter at the Post Office ~t Pasadena. California. Under the Act of August 24. 1912 BlJLLETIN OF THE CALIFORNIA INSTITUTE OF TECHNOLOGY VOLUME 48 NUMBER I A COLLEGE, GRADUATE SCHOOL, AND INSTITUTE OF RESEARCH IN SCIENCE, ENGINEERING AND THE HUMANITIES CATALOGUE NUMBER jor 1939 PASADENA· CALIFORNIA· JANUARY, 1939 CONTENTS PAGE ACADEMIC CALENDAR ....•...•..•..••..•.....•••........•..•.....•• BOARD OF TRUSTEES. • . • . • • . 6 OFFICERS: Board of Trustees. 6 Administrative Officers of the Institute. 7 Officers and Committees of the Faculty. 8 STAFF OF INSTRUCTION AND RESEARCH ...•••...... " ••. .. .. .. ....••• •• 9 STAFF OF INSTRUCTION AND RESEARCH SUMMARY. .. ... ......•..•..• .. 47 CALIFORNIA INSTITUTE ASSOCIATES................................... 58 HISTORICAL SKETCH .....•..............•...........•......•....... 60 EDUCATIONAL POLICIES .....................•............••••...•... 62 BUILDINGS AND FACILITIES. • . • . • . • . • . • . 65 ATHENJEUM ..••...•.....•••............•••....•......••.•........ 69 STUDENT HOUSES .•...••..•....................................... 70 EXTRA-CURRICULAR OPPORTUNITIES .................................. 71 STUDENT HEALT:H AND PHYSICAL EDUCATION ..••••••.•...... " • • . • . • 75 REQUIREMENTS FOR ADMISSION TO UNDERGRADUATE STANDING. .. 78 EXPENSES ....••..........................•..•................... -
The 2009 Lindau Nobel Laureate Meeting: Roger Y. Tsien, Chemistry 2008
Journal of Visualized Experiments www.jove.com Video Article The 2009 Lindau Nobel Laureate Meeting: Roger Y. Tsien, Chemistry 2008 Roger Y. Tsien1 1 URL: https://www.jove.com/video/1575 DOI: doi:10.3791/1575 Keywords: Cellular Biology, Issue 35, GFP, Green Fluorescent Protein, IFPs, jellyfish, PKA, Calmodulin Date Published: 1/13/2010 Citation: Tsien, R.Y. The 2009 Lindau Nobel Laureate Meeting: Roger Y. Tsien, Chemistry 2008. J. Vis. Exp. (35), e1575, doi:10.3791/1575 (2010). Abstract American biochemist Roger Tsien shared the 2008 Nobel Prize in Chemistry with Martin Chalfie and Osamu Shimomura for their discovery and development of the Green Fluorescent Protein (GFP). Tsien, who was born in New York in 1952 and grew up in Livingston New Jersey, began to experiment in the basement of the family home at a young age. From growing silica gardens of colorful crystallized metal salts to attempting to synthesize aspirin, these early experiments fueled what would become Tsien's lifelong interest in chemistry and colors. Tsien's first official laboratory experience was an NSF-supported summer research program in which he used infrared spectroscopy to examine how metals bind to thiocyanate, for which he was awarded a $10,000 scholarship in the Westinghouse Science Talent Search. Following graduation from Harvard in 1972, Tsien attended Cambridge University in England under a Marshall Scholarship. There he learned organic chemistry --a subject he'd hated as an undergraduate-- and looked for a way to synthesize dyes for imaging neuronal activity, generating BAPTA based optical calcium indicator dyes. Following the completion of his postdoctoral training at Cambridge in 1982, Tsien accepted a faculty position at the University of California, Berkeley. -
William A. Fowler Papers
http://oac.cdlib.org/findaid/ark:/13030/kt2d5nb7kj No online items Guide to the Papers of William A. Fowler, 1917-1994 Processed by Nurit Lifshitz, assisted by Charlotte Erwin, Laurence Dupray, Carlo Cossu and Jennifer Stine. Archives California Institute of Technology 1200 East California Blvd. Mail Code 015A-74 Pasadena, CA 91125 Phone: (626) 395-2704 Fax: (626) 793-8756 Email: [email protected] URL: http://archives.caltech.edu © 2003 California Institute of Technology. All rights reserved. Guide to the Papers of William A. Consult repository 1 Fowler, 1917-1994 Guide to the Papers of William A. Fowler, 1917-1994 Collection number: Consult repository Archives California Institute of Technology Pasadena, California Contact Information: Archives California Institute of Technology 1200 East California Blvd. Mail Code 015A-74 Pasadena, CA 91125 Phone: (626) 395-2704 Fax: (626) 793-8756 Email: [email protected] URL: http://archives.caltech.edu Processed by: Nurit Lifshitz, assisted by Charlotte Erwin, Laurence Dupray, Carlo Cossu and Jennifer Stine Date Completed: June 2000 Encoded by: Francisco J. Medina. Derived from XML/EAD encoded file by the Center for History of Physics, American Institute of Physics as part of a collaborative project (1999) supported by a grant from the National Endowment for the Humanities. © 2003 California Institute of Technology. All rights reserved. Descriptive Summary Title: William A. Fowler papers, Date (inclusive): 1917-1994 Collection number: Consult repository Creator: Fowler, William A., 1911-1995 Extent: 94 linear feet Repository: California Institute of Technology. Archives. Pasadena, California 91125 Abstract: These papers document the career of William A. Fowler, who served on the physics faculty at California Institute of Technology from 1939 until 1982. -
LB13 Osamu Shimomura 下村脩
Osamu Shimomura Life Science Building BF LB13 Osamu Shimomura 下村脩 ■Purpose of Exhibition Dr. Osamu Shimomura was awarded the Nobel Prize in Chemistry in 2008 “for the discovery and development of the green fluorescent protein, GFP” in the jellyfish Aequorea victoria. GFP can be incorporated into the genome of any organism as a marker that emits light in the body of the organism. For this reason, it is now possible to observe various phenomena in the bodies of living organisms over time while the cells and organisms remain alive. GFP has become an essential tool in current life science research. ■Additional Knowledge Dr. Shimomura dedicated his life’s work to unraveling the discovered that GFP emits light in living nematodes. chemical mechanism behind luminescent creatures. Moreover, Dr. Roger Y. Tsien mutated the GFP gene to During his time as a researcher at Nagoya University, he create a variety of fluorescent colors besides the succeeded in crystallizing luciferin, a luminous original green. These two doctors were awarded the substance, from the sea firefly, Vargula hilgendorfii. He Nobel Prize together with Dr. Shimomura. then began researching the blue luminous Aequorea Bioimaging is a technique for observing phenomena in the jellyfish at Princeton University in the United States. He bodies of living organisms. The world of bioimaging has eventually discovered the luminous substance Aequorin grown significantly since the discovery of GFP. By in this jellyfish and determined its structure. In the incorporating the GFP found in jellyfish into the genes course of his study of Aequorin, GFP was discovered as a of other organisms, it is possible to visualize the by-product. -
JUAN MANUEL 2016 NOBEL PEACE PRIZE RECIPIENT Culture Friendship Justice
Friendship Volume 135, № 1 Character Culture JUAN MANUEL SANTOS 2016 NOBEL PEACE PRIZE RECIPIENT Justice LETTER FROM THE PRESIDENT Dear Brothers, It is an honor and a privilege as your president to have the challenges us and, perhaps, makes us question our own opportunity to share my message with you in each edition strongly held beliefs. But it also serves to open our minds of the Quarterly. I generally try to align my comments and our hearts to our fellow neighbor. It has to start with specific items highlighted in each publication. This with a desire to listen, to understand, and to be tolerant time, however, I want to return to the theme “living our of different points of view and a desire to be reasonable, Principles,” which I touched upon in a previous article. As patient and respectful.” you may recall, I attempted to outline and describe how Kelly concludes that it is the diversity of Southwest’s utilization of the Four Founding Principles could help people and “treating others like you would want to be undergraduates make good decisions and build better treated” that has made the organization successful. In a men. It occurred to me that the application of our values similar way, Stephen Covey’s widely read “Seven Habits of to undergraduates only is too limiting. These Principles are Highly Effective People” takes a “values-based” approach to indeed critical for each of us at this particularly turbulent organizational success. time in our society. For DU to be a successful organization, we too, must As I was flying back recently from the Delta Upsilon be able to work effectively with our varied constituents: International Fraternity Board of Directors meeting in undergraduates, parents, alumni, higher education Arizona, I glanced through the February 2017 edition professionals, etc. -
365-369 POSTERS Sunda
365-369 POSTERS Sunda as a cold-sensitive allele in vivo. Our earlier analyses have the relaxed fiber at an ionic strength of 30 mM. Despite differences revealed that: (1) G680V exhibits reduced basal and actin-activated in magnitude, in all cases the frequency dependent stiffness ATPase activities; (2) it cannot move actin filaments and inhibits showed similar characteristics. The stiffness of the relaxed fiber at movement by wild type myosin in mixed assays; (3) it cosediments low ionic strength and the rigor stiffness after unloading at 30 mM with actin even in the presence of ATP, but not in the presence of closely coincided. No indication of attachment and/or detachment ATPyS; (4) its defects in vivo are suppressed by combining with a of cross bridges was observed in the spectrum of stiffness of the second mutation that accelerates Pi release. Here we report that relaxed fiber (in agreement with Bagni et al, G680V SI was unable to quench fluorescence of pyrene-actin in J.Electromyogr.Kinesiol.,1999). The present results indicate that the presence of ATP. In contrast, it quenched the pyrene the remainder of stiffness of the unloaded rigor is carried by fluorescence in the presence of ADP, indicating that an extended unloaded cross bridges. ADP-bound state cannot account for its excessive actin binding in the presence of ATP. Taken together, it was suggested that the Muscle Regulatory Proteins ATPase cycle of acto-G680V is blocked in a strongly bound 1 A.S .ADP.Pi state, or the "A state" of the 3G model (Geeves et al., 368-Pos Board # B224 1984).