Physics81-90-1.Pdf

Total Page:16

File Type:pdf, Size:1020Kb

Physics81-90-1.Pdf NOBEL LECTURES IN PHYSICS 1981-1990 NOBEL LECTURES I NCLUDING P RESENTATION S PEECHES AND LAUREATES' BIOGRAPHIES PHYSICS CHEMISTRY PHYSIOLOGY OR MEDICINE LITERATURE PEACE ECONOMIC SCIENCES NOBEL LECTURES I NCLUDING P RESENTATION S PEECHES AND LAUREATES' BIOGRAPHIES PHYSICS 1981-1990 EDITOR-IN-CHARGE T ORE F RÄNGSMYR EDITOR G ÖSTA E KSPONG Published for the Nobel Foundation in 1993 by World Scientific Publishing Co. Pte. Ltd. P O Box 128, Farrer Road, Singapore 9128 USA office: Suite 1B, 1060 Main Street, River Edge, NJ 07661 UK office: 73 Lynton Mead, Totteridge, London N20 8DH NOBEL LECTURES IN PHYSICS (1981-1990) All rights reserved. ISBN 981-02-0728-X ISBN 981-02-0729-E (pbk) Printed in Singapore by Continental Press Pte Ltd Foreword Since 1901 the Nobel Foundation has published annually “Les Prix Nobel” with reports from the Nobel Award Ceremonies in Stockholm and Oslo as well as the biographies and Nobel lectures of the laureates. In order to make the lectures available to people with special interests in the different prize fields the Foundation gave Elsevier Publishing Company the right to publish in English the lectures for 1901-1970, which were published in 1964-1972 through the following volumes: Physics 1901-1970 4 volumes Chemistry 1901-1970 4 volumes Physiology or Medicine 1901-1970 4 volumes Literature 1901-1967 1 volume Peace 1901-1970 3 volumes Elsevier decided later not to continue the Nobel project. It is therefore with great satisfaction that the Nobel Foundation has given World Scientific Publishing Company the right to bring the series up to date. The Nobel Foundation is very pleased that the intellectual and spiritual message to the world laid down in the laureates’ lectures will, thanks to the efforts of World Scientific, reach new readers all over the world. Lars Gyllensten Stig Ramel Chairman of the Board Executive Director Stockholm, June 1991 vii PREFACE The present volume contains the lectures by the Nobel laureates in physics during the years 1981-1990. Included for each year is also a translation of the presentation speech by a member of the Nobel Committee for Physics within the Royal Academy of Sciences delivered during the ceremony on December 10 - the day of Alfred Nobel’s death. The autobiographies of the laureates are reprinted with updated information according to the wishes of the respective author. The number of laureates is 23, since during the decade, three prizewinners were honoured during each of the five years 1981, 1986, 1988, 1989, and 1990, two prizewinners in 1983, 1984, and 1987, whereas a single laureate was awarded the prize in 1981 and again in 1985. Although there is no rule of rotation between the fields of physics, it is interesting in retrospect to note the following. Atomic physics was in focus in 1981 with the prize going to Nicolaas Bloembergen, Arthur Schawlow and Kai Siegbahn and again in 1989 to Norman Ramsey, Hans Dehmelt and Wolfgang Paul. In 1983 the prize to Subrahmanyan Chandrasekhar and William Fowler was awarded for researches in astrophysics, while achievements within the field of elementary particle physics was the motivation on three occasions, in 1984 to Carlo Rubbia and Simon van der Meer, in 1988 to Leon Lederman, Melvin Schwartz and Jack Steinberger, and in 1990 to Jerome Friedman, Henry Kendall and Richard Taylor. Discoveries or inventions within solid state physics appeared four times in the citations, namely in 1982 to Kenneth Wilson, in 1985 to Klaus von Klitzing, in 1986 to Ernst Ruska, Gerd Binnig and Heinrich Rohrer and in 1987 to Georg Bednorz and Alex Müller. The last two mentioned prizes went in consecutive years not only to the same field of physics but also to people working in the same research institute, something unique in the history of the Nobel prizes in physics. The division of physics into subfields as done above is debatable, since the borderlines are not sharp. Take the case of lasers, which have importance and applications within large areas of science and technology, or take that of the electron microscope, which is of similar wide ranging importance. A new, important method or invention may be first used in conjunction with making a new discovery, but it may later turn out that the method or invention has much broader, significant applications within or outside the initial area of research. Gösta Ekspong ix CONTENTS Foreword Preface vii 1981 NICOLAAS BLOEMBERGEN, ARTHUR L SCHAWLOW and KAI M SIEGBAHN Presentation by Ingvar Lindgren 3 Biography of Nicolaas Bloembergen 7 Nonlinear Optics and Spectroscopy 12 Biography of Arthur L Schawlow 33 Spectroscopy in a New Light 36 Biography of Kai M Siegbahn 61 Electron Spectroscopy for Atoms, Molecules and Condensed Matter 63 1982 KENNETH G WILSON Presentation by Stig Lundqvist 95 Biography of Kenneth G Wilson 99 The Renormalization Group and Critical Phenomena 102 1983 SUBRAHMANYAN CHANDRASEKHAR and WILLIAM A FOWLER Presentation by Sven Johansson 135 Biography of Subrahmanyan Chandrasekhar 139 On Stars, their Evolution and their Stability 142 Biography of William A Fowler 167 Experimental and Theoretical Nuclear Astrophysics; The Quest for the Origin of the Elements 172 1984 CARLO RUBBIA and SIMON VAN DER MEER Presentation by Gösta Ekspong 233 x Biography of Carlo Rubbia 237 Experimental Observation of the Intermediate Vector Bosons W +, W- and Z0 240 Biography of Simon van der Meer 289 Stochastic Cooling and the Accumulation of Antiprotons 291 1985 KLAUS VON KLITZING Presentation by Stig Lundqvist 311 Biography of Klaus von Klitzing 315 The Quantized Hall Effect 316 1986 ERNST RUSKA, GERD BINNING and HEINRICH ROHRER Presentation by Sven Johansson 349 Biography of Ernst Ruska 353 The Development of the Electron Microscope and of Electron Microscopy 355 Biography of Gerd Binnig 383 Biography of Heinrich Rohrer 387 Scanning Tunneling Microscopy -From Birth to Adolescence 389 1987 J GEORG BEDNORZ and K ALEX MÜLLER Presentation by Gösta Ekspong 413 Biography of J Georg Bednorz 417 Biography of K Alex Müller 421 Perovskite-type Oxides - The New Approach to High-T, Superconductivity 424 1988 LEON M LEDERMAN, MELVIN SCHWARTZ and JACK STEINBERGER Presentation by Gösta Ekspong 461 Biography of Melvin Schwartz 465 The First High Energy Neutrino Experiment 467 Biography of Jack Steinberger 481 Experiments with High-Energy Neutrino Beams 487 Biography of Leon M Lederman 509 Observations in Particle Physics from Two Neutrinos to the Standard Model 511 xi 1989 NORMAN F RAMSEY, HANS G DEHMELT and WOLFGANG PAUL Presentation by Ingvar Lindgren 543 Biography of Norman F Ramsey 547 Experiments with Separated Oscillatory Fields and Hydrogen Masers 553 Biography of Hans G Dehmelt 575 Experiments with an Isolated Subatomic Particle at Rest 583 Biography of Wolfgang Paul 597 Electromagnetic Traps for Charged and Neutral Particles 601 1990 JEROME I FRIEDMAN, HENRY W KENDALL and RICHARD E TAYLOR Presentation by Cecilia Jarlskog 625 Biography of Richard E Taylor 629 Deep Inelastic Scattering: The Early Years 632 Biography of Henry W Kendall 673 Deep Inelastic Scattering: Experiments on the Proton and the Observation of Scaling 676 Biography of Jerome I Friedman 711 Deep Inelastic Scattering: Comparisons with the Quark Model 715 Physics 1981 NICOLAAS BLOEMBERGEN, ARTHUR L SCHAWLOW for their contribution to the development of laser spectroscopy and KAI M SIEGBAHN for his contribution to the development of high-resolution electron spectroscopy 3 THE NOBEL PRIZE FOR PHYSICS Speech by Professor INGVAR LINDGREN of the Royal Academy of Sciences. Translation from the Swedish text Your Majesties, Your Royal Highnesses, Ladies and Gentlemen, This year’s Nobel prize in physics is shared between three scientists- Nicolaas Bloembergen and Arthur Schawlow, both from the United States, and Kai Siegbahn from Sweden-for their contributions to the development of two important spectroscopic methods-laser spectroscopy and electron spectro- scopy. Both of these methods are based upon early discoveries of Albert Einstein. One of the major problems for physicists of the last century was to explain, with the “classical” concepts, the so-called photoelectric effect, i.e. the emission of electrons from a metal surface irradiated with light of short wavelength. In 1905 Einstein explained this phenomenon in a simple and elegant way, using the quantum hypothesis introduced by Max Planck five years earlier. Accord- ing to this model, light is a wave motion, but it is quantized, i.e. it is emitted in small pieces - light quanta or photons -which in some respects behave like particles. This discovery was the first foundation stone to be laid in the building of the “new” physics - the quantum physics - which was to develop rapidly during the first decades of this century. The photoelectric effect is the basis of the spectroscopy which Kai Siegbahn has developed together with his collaborators in Uppsala. When a photon of high energy-e.g. from an X-ray tube-hits an atom, it can penetrate deeply into the atom and expel an electron. By analyzing the electrons expelled in this way, it is possible to extract valuable information about the interior of the atom. Early experiments of this kind where performed in the second decade of this century, but the method was not sufficiently developed to probe the atomic structure until the 1950's. At that time Kai Siegbahn had for a number of years developed more and more sophisticated instruments for analyzing electrons emitted at the decay of certain radioactive nuclei-so called beta decays. When he and his collaborators applied this technique to analyze the electrons emitted in the photoelectric process, the new era of electron spectroscopy was born. With this spectroscopy it became possible to determine the binding energy of atomic electrons with higher accuracy than was previously possible. This was of great importance for testing new atomic models and computation schemes, which were being developed at the same time, partly due to the simultaneous rapid development of computers.
Recommended publications
  • Fotonica Ed Elettronica Quantistica
    Fotonica ed elettronica quantistica http://www.dsf.unica.it/~fotonica/teaching/fotonica.html Fotonica ed elettronica quantistica Quantum optics - Quantization of electromagnetic field - Statistics of light, photon counting and noise; - HBT and correlation; g1 e g2 coherence; antibunching; single photons - Squeezing - Quantum cryptography - Quantum computer, entanglement and teleportation Light-matter Interaction - Two-level atom - Laser physics - Spectroscopy - Electronics and photonics at the nanometer scale - Cold atoms - Photodetectors - Solar cells http://www.dsf.unica.it/~fotonica/teaching/fotonica.html Energy Temperature LHC at CERN, Higgs, SUSY, ??? TeV 15 q q particle accelerators 10 K q GeV proton rest mass - quarks 1012K MeV electron rest mass / gamma rays 109K keV Nuclear Fusion, x rays, Sun center 106K Atoms ionize - visible light eV Sun surface fundamental components components fundamental room temperature 103K meV Liquid He, superconductors, space 1K dilution refrigerators, quantum Hall µeV laser-cooled atoms 10-3K neV Bose-Einstein condensates 10-6K peV low T record 480 picokelvin 10-9K -12 complexity, organization organization complexity, 10 K Nobel Prizes in Physics 2010 - Andre Geims, Konstantin Novoselov 2009 - Charles K. Kao, Willard S. Boyle, George E. Smith 2007 - Albert Fert, Peter Gruenberg 2005 - Roy J. Glauber, John L. Hall, Theodor W. Hänsch 2001 - Eric A. Cornell, Wolfgang Ketterle, Carl E. Wieman 1997 - Steven Chu, Claude Cohen-Tannoudji, William D. Phillips 1989 - Norman F. Ramsey, Hans G. Dehmelt, Wolfgang Paul 1981 - Nicolaas Bloembergen, Arthur L. Schawlow, Kai M. Siegbahn 1966 - Alfred Kastler 1964 - Charles H. Townes, Nicolay G. Basov, Aleksandr M. Prokhorov 1944 - Isidor Isaac Rabi 1930 - Venkata Raman 1921 - Albert Einstein 1907 - Albert A.
    [Show full text]
  • A Propensity for Genius: That Something Special About Fritz Zwicky (1898 - 1974)
    Swiss American Historical Society Review Volume 42 Number 1 Article 2 2-2006 A Propensity for Genius: That Something Special About Fritz Zwicky (1898 - 1974) John Charles Mannone Follow this and additional works at: https://scholarsarchive.byu.edu/sahs_review Part of the European History Commons, and the European Languages and Societies Commons Recommended Citation Mannone, John Charles (2006) "A Propensity for Genius: That Something Special About Fritz Zwicky (1898 - 1974)," Swiss American Historical Society Review: Vol. 42 : No. 1 , Article 2. Available at: https://scholarsarchive.byu.edu/sahs_review/vol42/iss1/2 This Article is brought to you for free and open access by BYU ScholarsArchive. It has been accepted for inclusion in Swiss American Historical Society Review by an authorized editor of BYU ScholarsArchive. For more information, please contact [email protected], [email protected]. Mannone: A Propensity for Genius A Propensity for Genius: That Something Special About Fritz Zwicky (1898 - 1974) by John Charles Mannone Preface It is difficult to write just a few words about a man who was so great. It is even more difficult to try to capture the nuances of his character, including his propensity for genius as well as his eccentric behavior edging the abrasive as much as the funny, the scope of his contributions, the size of his heart, and the impact on society that the distinguished physicist, Fritz Zwicky (1898- 1974), has made. So I am not going to try to serve that injustice, rather I will construct a collage, which are cameos of his life and accomplishments. In this way, you, the reader, will hopefully be left with a sense of his greatness and a desire to learn more about him.
    [Show full text]
  • 2005 Annual Report American Physical Society
    1 2005 Annual Report American Physical Society APS 20052 APS OFFICERS 2006 APS OFFICERS PRESIDENT: PRESIDENT: Marvin L. Cohen John J. Hopfield University of California, Berkeley Princeton University PRESIDENT ELECT: PRESIDENT ELECT: John N. Bahcall Leo P. Kadanoff Institue for Advanced Study, Princeton University of Chicago VICE PRESIDENT: VICE PRESIDENT: John J. Hopfield Arthur Bienenstock Princeton University Stanford University PAST PRESIDENT: PAST PRESIDENT: Helen R. Quinn Marvin L. Cohen Stanford University, (SLAC) University of California, Berkeley EXECUTIVE OFFICER: EXECUTIVE OFFICER: Judy R. Franz Judy R. Franz University of Alabama, Huntsville University of Alabama, Huntsville TREASURER: TREASURER: Thomas McIlrath Thomas McIlrath University of Maryland (Emeritus) University of Maryland (Emeritus) EDITOR-IN-CHIEF: EDITOR-IN-CHIEF: Martin Blume Martin Blume Brookhaven National Laboratory (Emeritus) Brookhaven National Laboratory (Emeritus) PHOTO CREDITS: Cover (l-r): 1Diffraction patterns of a GaN quantum dot particle—UCLA; Spring-8/Riken, Japan; Stanford Synchrotron Radiation Lab, SLAC & UC Davis, Phys. Rev. Lett. 95 085503 (2005) 2TESLA 9-cell 1.3 GHz SRF cavities from ACCEL Corp. in Germany for ILC. (Courtesy Fermilab Visual Media Service 3G0 detector studying strange quarks in the proton—Jefferson Lab 4Sections of a resistive magnet (Florida-Bitter magnet) from NHMFL at Talahassee LETTER FROM THE PRESIDENT APS IN 2005 3 2005 was a very special year for the physics community and the American Physical Society. Declared the World Year of Physics by the United Nations, the year provided a unique opportunity for the international physics community to reach out to the general public while celebrating the centennial of Einstein’s “miraculous year.” The year started with an international Launching Conference in Paris, France that brought together more than 500 students from around the world to interact with leading physicists.
    [Show full text]
  • Ca Alogue 1950-1951 Bulletin of the California Institute of Technology Volume 59 Number 4
    CA ALOGUE 1950-1951 BULLETIN OF THE CALIFORNIA INSTITUTE OF TECHNOLOGY VOLUME 59 NUMBER 4 The California Institute of Technology Bulletin is published quarterly Entered as Second Class Matter at the Post Office at Pasadena, California, under the Act of August 24, 1912 CALIFORNIA INSTITUTE OF TECHNOLOGY A College, Graduate School, and Institute of Research in Science Engineering, and the Humanities CATALOGUE 1 950 . 195 1 PUBLISHED BY THE INSTITUTE, OCTOBER, 1950 PASADENA, CALIFORNIA CONTENTS PART ONE. GENERAL INFORMATION. PAGE Academic Calendar 11 Board .of Trustees ........................................... 15 Trustee Committees. 16 Administrative Officers of the Institute . .. 17 Faculty Officers and Committees, 1950-51 ....................... 18 Staff of Instruction and Research-Summary . 20 Staff of Instruction and Research ................... 35 Fellows, Scholars, and Assistants .............................. 65 California Institute Associates .... 76 .Historical Sketch . 80 Educational Policies ......................................... 82 Buildings and Facilities ...................................... 84 Study and Research at the California Institute 1. The Sciences .......................................... 87 Astronomy and Astrophysics ............................. 87 Biological Sciences ..................................... 88 Chemistry and Chemical Engineering . .. 89 Geological Sciences . .. 91 Mathematics ........................................... 92 Physics ........ , ....... '" ...... '" ............... " .. 93 2. Engineering
    [Show full text]
  • Carl Wieman Cheriton Family Professor and Professor of Physics and of Education Curriculum Vitae Available Online
    Carl Wieman Cheriton Family Professor and Professor of Physics and of Education Curriculum Vitae available Online CONTACT INFORMATION • Administrative Contact Linda J Kim Email [email protected] Bio BIO Carl Wieman holds a joint appointment as Professor of Physics and of the Graduate School of Education. He has done extensive experimental research in atomic and optical physics. His current intellectual focus is now on undergraduate physics and science education. He has pioneered the use of experimental techniques to evaluate the effectiveness of various teaching strategies for physics and other sciences, and served as Associate Director for Science in the White House Office of Science and Technology Policy. ACADEMIC APPOINTMENTS • Professor, Physics • Professor, Graduate School of Education HONORS AND AWARDS • Carnegie US University Professor of the Year, Carnegie Foundation for the Advancement of Teaching (2003) • Nobel Prize in Physics 2001, Nobel Foundation (2001) PROFESSIONAL EDUCATION • Ph.D., Stanford University , Physics (1977) • B.S., MIT , Physics (1973) Research & Scholarship RESEARCH INTERESTS • Brain and Learning Sciences • Higher Education • Science Education • Teachers and Teaching Page 1 of 3 Carl Wieman http://cap.stanford.edu/profiles/Carl_Wieman/ CURRENT RESEARCH AND SCHOLARLY INTERESTS The Wieman group’s research generally focuses on the nature of expertise in science and engineering, particularly physics, and how that expertise is best learned, measured, and taught. This involves a range of approaches, including individual cognitive interviews, laboratory experiments, and classroom interventions with controls for comparisons. We are also looking at how different classroom practices impact the attitudes and learning of different demographic groups. Some current projects include: 1. Investigating problem solving strategies.
    [Show full text]
  • Copy of DOC001
    BULLETIN OF THE CALIFORNIA INSTITUTE OF TECHNOLOGY VOLUME 48 NUMBER 1 CATALOGUE NUMBER jor 1939 PUB LIS H E D BY 'T H E INS 'T I'T U 'T E, JAN U A R Y, 1939 The California Institute of Technology Bulletin is Published Quarterly Entered as Second-Class Matter at the Post Office ~t Pasadena. California. Under the Act of August 24. 1912 BlJLLETIN OF THE CALIFORNIA INSTITUTE OF TECHNOLOGY VOLUME 48 NUMBER I A COLLEGE, GRADUATE SCHOOL, AND INSTITUTE OF RESEARCH IN SCIENCE, ENGINEERING AND THE HUMANITIES CATALOGUE NUMBER jor 1939 PASADENA· CALIFORNIA· JANUARY, 1939 CONTENTS PAGE ACADEMIC CALENDAR ....•...•..•..••..•.....•••........•..•.....•• BOARD OF TRUSTEES. • . • . • • . 6 OFFICERS: Board of Trustees. 6 Administrative Officers of the Institute. 7 Officers and Committees of the Faculty. 8 STAFF OF INSTRUCTION AND RESEARCH ...•••...... " ••. .. .. .. ....••• •• 9 STAFF OF INSTRUCTION AND RESEARCH SUMMARY. .. ... ......•..•..• .. 47 CALIFORNIA INSTITUTE ASSOCIATES................................... 58 HISTORICAL SKETCH .....•..............•...........•......•....... 60 EDUCATIONAL POLICIES .....................•............••••...•... 62 BUILDINGS AND FACILITIES. • . • . • . • . • . • . 65 ATHENJEUM ..••...•.....•••............•••....•......••.•........ 69 STUDENT HOUSES .•...••..•....................................... 70 EXTRA-CURRICULAR OPPORTUNITIES .................................. 71 STUDENT HEALT:H AND PHYSICAL EDUCATION ..••••••.•...... " • • . • . • 75 REQUIREMENTS FOR ADMISSION TO UNDERGRADUATE STANDING. .. 78 EXPENSES ....••..........................•..•...................
    [Show full text]
  • Institute of Physics
    Slectron Spectroscopy for Atoms, Molecules and Condensed Matter Nobel Lecture, December 8, 1981 by Kai Siegbahn nstitute of Physics, University of Uppsala, Box 530, S-751 21 Uppsala, Sweden UUIP-1052 December 1981 UPPSALA UNIVERSITY INSTITUTE OF PHYSICS Electron Spectroscopy for Atoms, Molecules and Condensed Matter Nobel Lecture, December 8, 1981 by Kai Siegbahn Institute of Physics, University of Uppsala, Box 530, S-751 21 Uppsala, Sweden UUIP-1052 December 1981 Electron Spectroscopy for Atoms, Molecules and Condensed Matter Nobel Lecture, December 8, 1981 by Kai Siegbahn Institute of Physics University of Uppsala, Sweden In my thesis /I/, which was presented in 1944, I described some work which I had done to study 3 decay and internal conversion in radioactive decay by means of two different principles. One of these was based on the semi-circular focusing of electrons in a homogeneous magnetic field, while the other used a big magnetic lens. The first principle could give good resolution but low intensity, and the other just the reverse. I was then looking for a possibility of combining the two good properties into one instrument. The idea was to shape the previously homogeneous magnetic field in such a way that focusir: should occur in two directions, instead of only one as in + ,• jemi-circular case. It was known that in beta- trons the ,-.•• trons performed oscillatory motions both in the radial anc j the axial directions. By putting the angles of period eq;. ;.. for the two oscillations Nils Svartholm and I /2,3/ four) a simple condition for the magnetic field form required ^ give a real electron optical image i.e.
    [Show full text]
  • Kritikens Ordning Svenska Bokrecensioner 1906, 1956, 2006
    Kritikens ordning Svenska bokrecensioner 1906, 1956, 2006 © lina samuelsson Grafisk form anita stjernlöf-lund Typografi AGaramond Papper Munken Pure Omslagets bild gertrud samén Tryck trt boktryckeri, Tallinn 2013 Förlag bild,text&form www.bildtextform.com isbn 978-91-980447-1-3 Lina Samuelsson Kritikens ordning Svenska bokrecensioner 1906, 1956, 2006 bild,text&form 7 tack 8 förkortningar 8 pseudonym- och signaturnyckel 9 inledning 10 Vad är litteraturkritik? 11 Institution – diskurs – normer 14 Tidigare forskning 1906 17 Det litterära året 18 Urval och undersökt material 21 kritikerna 1906 21 Litteraturbevakningen före kultursidan 23 Kritikerkåren 26 Litteraturen 28 Kritiken av kritiken 33 recensionerna 1906 33 Utveckling, mognad och manlighet. Författaren och verket 35 ”En verklig människa, som lefver och röres inför våra ögon”. Kritikens värderingskriterier I 38 ”Det själfupplefvdas egendomlighet och autopsi”. Kritikens värderingskriterier II 41 Vem är författare? Konstnärlighet, genus och rätten till ordet 46 För fosterlandet. Föreställningar om nationalism 50 exempelrecension 1956 56 Det litterära året 58 Urval och undersökt material 62 kritikerna 1956 62 Kultursidor och litteraturtidskrifter 66 Kritikerkåren 72 Litteraturen 75 Kampen om kritiken 79 recensionerna 1956 79 En ny och modern kritik. Verket och kritikern 82 Enkelt och äkta. Kritikens värderingskriterier I 84 Om att vara människa. Kritikens värderingskriterier II 88 ”Fem hekto nougat i lyxförpackning”. Populärlitteratur och genus 94 exempelrecension 2006 99 Det litterära året riginal 101 Urval och undersökt material 105 kritikerna 2006 105 Drakar, bloggar och tabloider 110 Kritikerkåren 116 Litteraturen 121 Kritik i kris? 125 recensionerna 2006 125 Subjektiv och auktoritär – kritikern i centrum 129 Personligt, biografiskt (och dessutom sant). Författaren och verket 134 Drabbande pageturner som man minns länge.
    [Show full text]
  • Carl Wieman Stanford University Department of Physics and Grad School of Education
    Carl Wieman Stanford University Department of Physics and Grad School of Education *based on the research of many people, some from my science ed research group I. Introduction– Educational goals & research-based principles of learning II. Applying learning principles in university courses and measuring results III. Teaching expertise (for university science/physics) My background in education Students:17 yrs of success in classes. Come into my lab clueless about physics? 2-4 years later expert physicists! ?????? ~ 30 years ago Research on how people learn, particularly physics • explained puzzle • I realized were more effective ways to teach • got me started doing science ed research-- experiments & data, basic principles! (~ 100 papers) “Expertise”– solving problems like a good physicist Major advances past 1-2 decades New insights on how to learn & teach complex thinking physicists, bio, University chemists science & eng. brain classroom research studies today cognitive psychology Strong arguments for why apply to most fields Basic result– rethink how learning happens old/current model new research-based view brain changeable ~ same knowledge transformation soaks in, varies with brain Primary educational focus of Change neurons by intense thinking. universities: Improved capabilities. • contents of knowledge “soup” • admitting best brains I. Introduction– Educational goal (better decisions) & research-based principles of learning II. Applying learning principles in university courses and measuring results Basics of most university science classroom research: 1. Test how well students learn to make decisions like expert (physicist, biologist, …). 2. Compare results for different teaching methods: a. Students told what to do in various situations (“lecture”) b. Practice making decisions in selected scenarios, with feedback.
    [Show full text]
  • Laser Spectroscopy Experiments
    Hyperfine Spectrum of Rubidium: laser spectroscopy experiments Physics 480W (Dated: Sp19 Paper #4) I. OBJECTIVES FOR THESE EXPERIMENTS We wish to use the technique of absorption spec- troscopy to probe and detect the energy level structure of atomic Rubidium, Rb I, whose ground state is split by a tiny amount on account of nuclear magnetism. In effect, the spectroscopy we do today tells us about nuclear prop- erties and so combines atomic and nuclear physics. The main result of this experiment, the 4th of the semester, is to 1. measure the hyperfine splitting for each isotope, and compare with accepted values, with the fol- lowing details in mind: (a) what is the hyperfine splitting of the ground 2 state, S1=2 term? Do we need saturation- absorption techniques for this? (b) what are the hyperfine splittings of the ex- 2 cited state, P3=2 term, that can be reached with a nominal wavelength of 780nm from the ground state? Here we need saturation- absorption techniques to perform sub-Doppler FIG. 1. Note the four 'blobs'. Why are there four? Which spectroscopy, certainly. Help the reader un- 85 are associated with Rb37, and so on. If all goes swimm- derstand what is entailed in the technique, ingly, we'll get an absorption spectrum that looks much line both experimentally and theoretically. You the figure below the setup. The etalon data will be needed to will need to explain what `saturation' means. make the abscissa something proportional to frequency. The The saturation intensity is an important fig- accepted value of the gap between the 2 outermost dips is ure of merit.
    [Show full text]
  • William A. Fowler Papers
    http://oac.cdlib.org/findaid/ark:/13030/kt2d5nb7kj No online items Guide to the Papers of William A. Fowler, 1917-1994 Processed by Nurit Lifshitz, assisted by Charlotte Erwin, Laurence Dupray, Carlo Cossu and Jennifer Stine. Archives California Institute of Technology 1200 East California Blvd. Mail Code 015A-74 Pasadena, CA 91125 Phone: (626) 395-2704 Fax: (626) 793-8756 Email: [email protected] URL: http://archives.caltech.edu © 2003 California Institute of Technology. All rights reserved. Guide to the Papers of William A. Consult repository 1 Fowler, 1917-1994 Guide to the Papers of William A. Fowler, 1917-1994 Collection number: Consult repository Archives California Institute of Technology Pasadena, California Contact Information: Archives California Institute of Technology 1200 East California Blvd. Mail Code 015A-74 Pasadena, CA 91125 Phone: (626) 395-2704 Fax: (626) 793-8756 Email: [email protected] URL: http://archives.caltech.edu Processed by: Nurit Lifshitz, assisted by Charlotte Erwin, Laurence Dupray, Carlo Cossu and Jennifer Stine Date Completed: June 2000 Encoded by: Francisco J. Medina. Derived from XML/EAD encoded file by the Center for History of Physics, American Institute of Physics as part of a collaborative project (1999) supported by a grant from the National Endowment for the Humanities. © 2003 California Institute of Technology. All rights reserved. Descriptive Summary Title: William A. Fowler papers, Date (inclusive): 1917-1994 Collection number: Consult repository Creator: Fowler, William A., 1911-1995 Extent: 94 linear feet Repository: California Institute of Technology. Archives. Pasadena, California 91125 Abstract: These papers document the career of William A. Fowler, who served on the physics faculty at California Institute of Technology from 1939 until 1982.
    [Show full text]
  • Pressmeddelanden 2002-2006
    December 2006 Pressmeddelanden 2002-2006 I detta dokument finns pressmeddelanden från Leif Pagrotsky från peri- oden december 2002-september 2006 samlade. Pressmeddelandena har varit publicerade på www.regeringen.se och togs bort den 6 oktober 2006 då en ny regering tillträdde. Kontaktinformationen i pressmeddelandena är till stor del borttagen eftersom pressekreterare och andra medarbetare har bytts ut. Länkar som fanns i pressmeddelandena är borttagna. Pressmeddelandena är sorterade i datumordning med den senaste först i dokumentet. Det finns 636 pressmeddelanden från perioden. Att söka i dokumentet Du kan söka pressmeddelanden i dokumentet genom att använda den sökfunktion som finns i Adobe Reader. Sökfunktionen brukar vara mar- kerad som en kikare i verktygsfältet. Du kan söka på valfria ord men för att förenkla din sökning finns följande nyckelord i pressmeddelandena: • Statsråd • Departement • Ämne 2 Under 2002-2006 fanns följande statsråd, departement och ämnen på www.regeringen.se: Statsråd Göran Persson, Ann-Christin Nykvist, Barbro Holmberg, Berit Andnor, Bosse Ringholm, Carin Jämtin, Hans Karlsson, Ibrahim Baylan, Jan Eliasson, Jens Orback, Leif Pagrotsky, Lena Hallengren, Lena Sommestad, Leni Björklund, Mona Sahlin, Morgan Johansson, Pär Nuder, Sven-Erik Österberg, Thomas Bodström, Thomas Östros, Ulrica Messing, Ylva Johansson, Laila Freivalds, Gunnar Lund, Lars-Erik Lövdén, Lars Engqvist, Marita Ulvskog, Anna Lindh, Margareta Winberg och Jan O Karlsson. Department Statsrådsberedningen, Justitiedepartementet, Utrikesdepartementet,
    [Show full text]