Arboricultural Assessment and Report 2 Osborne Street, Flora Hill

Total Page:16

File Type:pdf, Size:1020Kb

Arboricultural Assessment and Report 2 Osborne Street, Flora Hill Arboricultural Assessment and Report 2 Osborne Street, Flora Hill 26 February 2019 Tree Logic Ref. 009789 Prepared for La Trobe University Pre pared by Timothy Burgess – Tree Logic Pty. Ltd. Contents 1 Objectives ................................................................................................................................................. 3 2 Method ...................................................................................................................................................... 3 3 Observations ............................................................................................................................................. 4 4 Photographs .............................................................................................................................................. 7 5 Tree Permit Requirements ........................................................................................................................ 8 6 Tree Protection Zones .............................................................................................................................. 9 7 Discussion ............................................................................................................................................... 10 8 Conclusion .............................................................................................................................................. 11 Appendix 1: Tree Assessment Data: 2 Osborne Street, Flora Hill .................................................................. 13 Appendix 2: Tree Location Plan: 2 Osborne Street, Flora Hill......................................................................... 14 Appendix 3: Arboricultural Descriptors (December 2017) ................................................................................ 15 Appendix 4: Tree Protection Zones ................................................................................................................. 22 Construction Guidelines................................................................................................................................... 26 Disclaimer ........................................................................................................................................................ 28 File No. Version Author Issue date Edits Issued by. 009789 1 Timothy Burgess 26/02/2019 Draft TB Treelogic Pty Ltd Unit 4, 21 Eugene Terrace Ringwood VIC 3134 Tree Report │ 2 Osborne Street, Flora Hill 1 Objectives 1.1 Tree Logic was engaged to undertake an arboricultural assessment and prepare a report to ascertain the current status, condition and arboricultural value of the trees located within the nominated study area at 2 Osborne Street, Flora Hill. The requirements of the arboricultural report include; • To provide information on the species, origin, dimensions, health and structure of the trees and their appropriateness for retention; • Determine the Tree Protection Zones (TPZ) for trees compliant with AS4970 ‘Protection of trees on development sites’; • Provide appropriate tree management recommendations with regard to potential development at the site. 2 Method 2.1 A site inspection was carried out on Thursday 21 February 2019. 2.2 The trees were inspected from the ground and observations were made of the growing environment and surrounding area. The trees were not climbed, and no samples of the tree or soil were taken. 2.3 Observations were made of the assessed trees to determine the species, age category, and condition with measurements taken to establish tree crown height (measured with a height meter) and crown width (paced) and trunk dimensions. Descriptors used in the assessment can be seen in Appendix 3. Where trees were on neighbouring properties, estimations were made on some measurements. 2.4 Assessment details of individual trees are listed in Appendix 1 and a copy of the tree location plan can be seen in Appendix 2. 2.5 Each of the assessed trees was attributed an ‘Arboricultural Rating’. The arboricultural rating correlates the combination of tree condition factors (health and structure) with tree amenity value. Definitions of arboricultural ratings can be seen in Appendix 3. 2.6 The assessed trees have been allocated tree protection zones (TPZ). The Australian Standard, AS 4970-2009, has been used as a guide in the allocation of TPZs for the assessed trees. This method provides a TPZ that addresses both the stability and growing requirements of a tree. TPZ distances are measured as a radius, from the centre of the trunk at (or near) ground level. All TPZ measurements for are provided in Appendix 1. Documents viewed; • Planning Property Report, 2 Osborne Street, Flora Hill – Department of Environment, Land, Water and Planning, dated 13/02/19 Treelogic Pty Ltd Unit 4, 21 Eugene Terrace Ringwood VIC 3134 Tree Report │ 2 Osborne Street, Flora Hill 3 3 Observations 3.1 The nominated tree study area was a large parcel of land covering approximately 7.2 hectares located on the western side of Osborne Street in Flora Hill. The site contained wide open spaces, an existing single storey brick building and the remnants of previous campus buildings which had since been demolished. Most trees were evenly spaced and scattered throughout the entire site. Refer to Figure 1 below for an indication of the study area. Figure 1: Aerial view showing the extents of the study area. Tree population 3.2 One hundred and seventy-one (171) individual trees were formally assessed within the nominated study area. This included forty-five (45) council managed street trees on the periphery of the site. • Individual tree details are provided in Appendix 1; • Refer to Appendix 2 for tree numbers and locations. 3.3 Tree group features were recorded where trees were found to be closely grown, of the same species, a similar size and condition which did not warrant detailed individual assessment. 3.4 Approximately sixty-six (66) trees were inspected and collected as four (4) tree group features with data including primary species, number of trees within the group, and average records of trunk and tree dimensions, health and structural condition and arboricultural value. Treelogic Pty Ltd Unit 4, 21 Eugene Terrace Ringwood VIC 3134 Tree Report │ 2 Osborne Street, Flora Hill 4 3.5 The tree population comprised a palette of forty-four (44) different species, including a wide variety of exotic species planted for garden and amenity purposes, introduced Australian and Victorian native specimens, and large naturally occurring trees which were indigenous to the local area. 3.6 The most prevalent species on site were River Red Gum (Eucalyptus camaldulensis) and Grey Box (Eucalyptus microcarpa), making up 29% of the population. See Table 1 below for a breakdown of the six (6) most commonly occurring species. Table 1: Breakdown of the most commonly occurring species. Species Origin Count Eucalyptus camaldulensis Victorian 26 (River Red Gum) native/indigenous Eucalyptus microcarpa Indigenous 24 (Grey Box) Cotoneaster sp. Exotic evergreen 8 (Cotoneaster) Fraxinus ‘Raywood’ Exotic deciduous 8 (Claret Ash) Eucalyptus melliodora Victorian native 7 (Yellow Box) Eucalyptus nicholii Australian native 7 (Narrow-leaved Peppermint) 3.7 Tree health was assessed based on foliage colour, size and density as well as shoot initiation and elongation. • The majority of assessed trees (125 trees) were displaying characteristics considered to be typical or better of the species growing in this environment under current conditions; • Twenty-one (21) trees were in Fair to poor health with symptoms including reduced foliage density and suppressed growing environment; • Twenty-five (25) trees were in a state of decline, with deficiencies including extensive crown dieback. 3.8 Tree structure was assessed for structural defects and deficiencies, likelihood of failures and risk to potential targets. • The majority of the assessed trees (93 trees) displayed Fair structure in terms of primary branching arrangement and architecture; • Sixty-four (64) trees displayed Fair to poor structure with defects such as previous failures and acute forks; • Twelve (12) trees displayed Poor structure; • Two (2) trees had Very Poor structure. Treelogic Pty Ltd Unit 4, 21 Eugene Terrace Ringwood VIC 3134 Tree Report │ 2 Osborne Street, Flora Hill 5 3.9 Arboricultural Rating The assessed trees were attributed with an arboricultural rating. This rating relates to the combination of tree condition factors, including health and structure (arboricultural merit), and also conveys an amenity value. Amenity relates to the trees biological, functional and aesthetic characteristics within an urban landscape context. It should be noted that the arboricultural rating is different to the conservation, ecological or heritage values placed on trees by other professions. Definitions of arboricultural ratings can be seen in Appendix 3. Arb. Rating 3% 4% High 9% Mod. A Mod. B 37% Mod. C 38% Low None 9% Figure 2: Breakdown of arboricultural ratings. Trees with a High rating were in excellent to good condition, were a prominent arboricultural/landscape feature and may have significant conservation or other cultural value. Retention of these trees is highly desirable. • Five (5) trees were attributed an arboricultural rating of High. Trees with a Moderate A rating were in good to fair condition and were a prominent arboricultural/landscape feature. Retention of these trees is highly desirable. • Fifteen
Recommended publications
  • NZDFI Wood Quality Research Plan
    Section 2: NZDFI Wood Quality Research Plan 1 Background NZDFI aims to establish a new hardwood forest industry based on naturally durable eucalypts. NZDFI has identified sustainably-grown naturally durable posts and poles for the agricultural industry as key products as an alternative to CCA treated pine (Millen, 2009). For these products natural durability is essential. The timber of these eucalypt species also has a high Modulus of Elasticity (MoE). A second targeted product is high stiffness LVL. These products can be produced from short- rotation smaller diameter trees. As these timbers also have attractively coloured heartwood, high quality appearance grade solid timber products are also a possibility if trees are grown on a longer rotation to a larger size. To ensure a quality product the variability in these properties can be reduced by genetic selection. Furthermore the trees must be easy to process, which requires trees with low growth-stresses and a low level of drying defects. NZDFI’s wood quality research programme addresses these problems to facilitate a viable hardwood forest industry based on naturally durable eucalypts. Some research work is financed through SWP (MBIE) while other work is funded through SFF (MPI) and other sources. Wood quality is a key research theme alongside other essential areas such as tree health, tree growth, propagation and forest management. 2 Natural durability Wood is a bio-material and biodegradable. Biodegradability is a positive attribute when considering the disposal at the end of a product’s life. However, susceptibility of wood to decay by organisms can result in premature product failure.
    [Show full text]
  • Heartwood Formation and the Chemical Basis of Natural Durability
    Heartwood formation and the chemical basis of natural durability in Eucalyptus bosistoana A thesis submitted in partial fulfilment of the requirements for the degree of Doctor of Philosophy in Forestry By Gayatri Mishra School of Forestry University of Canterbury Senior supervisor: Dr. Clemens Altaner School of Forestry, University of Canterbury Co-Supervisor: Dr. Ashley Garrill Biological Sciences, University of Canterbury Associate Supervisor: Dr. David Collings School of Environmental & Life Sciences University of Newcastle Acknowledgements At the outset, I express my deep sense of gratitude and appreciation to my principal supervisor, Dr. Clemens M. Altaner, School of Forestry, University of Canterbury for providing me an opportunity to work in this project. Without his ceaseless supervision, support, motivation and robust knowledge base this task would not have been completed. His guidance has helped me immensely in my research and writing the thesis till its logical end. Besides, I feel extremely fortunate to work with my associate supervisor, Dr. David Collings and Co- supervisor, Dr. Ashley Garrill too. Microscopy being a major part of my research, I feel deeply indebted to Dr. David Collings for introducing me into the realms of advanced microscopic skills coupled with his constant guidance. Even after his leaving the University in the meanwhile, he was considerate enough to bridge the gap through his timely communications via emails or video conversations. His unique concepts and expertise generated my strong interest in microscopy. I also thank Dr. Ashley Garrill for providing me with necessary lab facilities to perform bioactivity tests with fungi. His expertise has been a great source of support to my bioactivity experiments.
    [Show full text]
  • TREE ASSESSMENT REPORT Block 25 Section 31 O'malley
    TREE ASSESSMENT REPORT Block 25 Section 31 O’Malley Prepared by REDBOX DESIGN GROUP Landscape Architects September 2017 Revision B For redboxdesigngroup Revision B 11.09.2017 1.0 INTRODUCTION This tree assessment evaluates individual Regulated trees located within 25 Section 31 O’Malley (leased land), and adjacent verges. Refer Tree Assessment Plans for summary 2.0 SITE DESCRIPTION The site is on Block 25 Section 31, O’Malley and is bounded by: - Numeralla Street to the North - A off street carpark and Pindari Street to the West - Kareelah Vista to the East - Suburban Blocks 3 and 4 Section 31 to the South. Extract from ACTmapi 2 | Page redboxdesigngroup Revision B 11.09.2017 3.0 TREE ASSESSMENT INVENTORY The following is a description of the criteria used to assess individual trees within the block and directly adjacent to the site. TREE No: Individual trees are given a unique number shown on attached Tree Assessment Plans. SPECIES CODE AND BOTANICAL NAME: Identification of trees on site by Species. Code is used to summarise the species name on the assessment plan TREE HEIGHT: The estimated height of the tree (in metres) as estimated on site by Landscape architect. TRUNK CIRCUMFERENCE The circumference (in metres) of the tree is measured on site at approximately 1 metre above ground level. CANOPY DIAMETER: The estimated canopy diameter (in metres) as measured on site by Landscape architect. GENERAL HEALTH: Condition is based on the present health of the tree as indicated by particular visible characteristics including: leaf health and leafiness, dieback, structural health of trunk and major branches, presence of pests and diseases.
    [Show full text]
  • Plant Exudates and Amber: Their Origin and Uses
    Plant Exudates and Amber: Their Origin and Uses Jorge A. Santiago-Blay and Joseph B. Lambert lants produce and export many different some other plant pathology. In other instances, molecules out of their cellular and organ- such as in typical underground roots, exudate Pismal confines. Some of those chemicals production appears to be part of the typical become so abundant that we can see or smell metabolism of healthy plants that helps stabi- them. The most visible materials oozed by lize the soil and foster interactions with other many plants are called “exudates.” organisms around the roots. What are plant exudates? Generally, exudates Different plant tissue types and organs can are carbon-rich materials that many plants pro- produce exudates. We have collected resins and duce and release externally. When exudates are gums from the above ground portions of plants, produced, they are often sticky to human touch. or shoots, as well as from the generally below Such plant chemicals can be the visible expres- ground portion of plants, or roots. Root exuda- sion of attack by bacteria, fungi, herbivores, or tion has been known for decades and is respon- REPRODUCED WITH PERMISSION OF AMERICAN SCIENTIST Resinous exudates on a conifer. ALL PHOTOGRAPHS BY JORGE A. SANTIAGO-BLAY UNLESS OTHERWISE NOTED UNLESS OTHERWISE ALL PHOTOGRAPHS BY JORGE A. SANTIAGO-BLAY Prolific white, resinous exudation is seen on a tumor- Blobs of white resin on a relatively young shoot of a like growth on the trunk of a white pine (Pinus strobus) Japanese black pine (Pinus thunbergii, AA accession at the Arnold Arboretum.
    [Show full text]
  • The New Genus Auritella from Africa and Australia (Inocybaceae, Agaricales): Molecular Systematics, Taxonomy and Historical Biogeography
    Mycol Progress (2006) 5: 2–17 DOI 10.1007/s11557-005-0001-8 ORIGINAL ARTICLE P. Brandon Matheny . Neale L. Bougher The new genus Auritella from Africa and Australia (Inocybaceae, Agaricales): molecular systematics, taxonomy and historical biogeography Received: 10 January 2005 / Revised: 21 September 2005 / Accepted: 11 October 2005 / Published online: 14 February 2006 # German Mycological Society and Springer-Verlag 2006 Abstract Recent phylogenetic evidence strongly supports a Introduction monophyletic group of Afro-Australian mushroom species with phenotypic affinities to the genus Inocybe (Agaricales, Progress towards generating a phylogenetic-based classi- Basidiomycota). In this study, this clade is proposed as the fication of Inocybe and allies in the Agaricales or euagarics new genus Auritella. Seven species are fully documented clade has been accelerated recently by several molecular with taxonomic descriptions and illustrations, four of which systematic studies of the group (Kropp and Matheny 2004; are described as new, including one sequestrate or truffle-like Matheny et al. 2002; Matheny 2005; Matheny and species. A key to genera and major clades of the Inocybaceae Ammirati 2003; Matheny and Watling 2004). In particular, and a key to species of Auritella are provided. A maximum Matheny (2005) demonstrated the monophyly of five likelihood tree using rpb2 and nLSU-rDNA nucleotide major lineages within Inocybe and provided strong sequences depicts the phylogenetic relationships of five of evidence for a sister relationship between the Inocybaceae, the seven species of the genus, of which the Australian taxa a monophyletic family of ectomycorrhizal species, and the form a monophyletic group. An ancient split between Crepidotaceae, a family of saprophytic species.
    [Show full text]
  • Whitehorse Urban Biodiversity Strategy
    WHITEHORSE URBAN BIODIVERSITY STRATEGY For Council managed open space, streetscapes and community facilities Whitehorse Urban Biodiversity Strategy for Council Managed Open Space, Streetscapes and Community Facilities Contents Acknowledgements 4 9.1.11 Ground Level Habitat/Coarse Woody 24 Executive Summary 5 Material Fuel Reduction Guidelines Glossary Of Terms 6 9.1.12 Expand the Existing Infill Tree Planting 24 Program to Improve Canopy Cover 1 Introduction 6 9.1.13 Biodiversity Research Liaison 24 Committee 2 What Is Biodiversity 8 2.1 Defining “Whitehorse Biodiversity” 8 9.2 New Biodiversity Actions: One-Off 25 2.2 What are Public Whitehorse 8 Commitments Biodiversity Assets? 9.2.1 Development of An Inventory of 25 2.3 Water and Biodiversity 8 Whitehorse Biodiversity Assets 3 Statutory Context 13 10 9.2.2 List of “Biodiversity Hotspots” 25 3.1 Whitehorse City Council Policies 10 9.2.3 Development of A Biodiversity 26 and Strategies Corridors Plan 9.2.4 Identify Potential “No Mow” Areas 26 4 The Whitehorse Landscape and Biodiversity 10 9.2.5 Vegetation Management Plans For 26 4.1 Aboriginal History of Whitehorse 10 Large Tracts Of Land With 4.2 Natural Landscape of Whitehorse 10 Alternative Uses 4.3 The Remaining Natural Landscape 12 9.2.6 Biodiversity Engagement – Logos 26 of Whitehorse and Signage 4.4 The Suburban Whitehorse 14 9.2.7 Development Of Monitoring 27 Landscape Program 4.5 What Biodiversity is Missing 14 9.2.8 Community Reporting and Data 27 From Whitehorse Gathering 4.6 What Whitehorse Biodiversity Remains 15 9.2.9 Environmental
    [Show full text]
  • ABSTRACT the First Through Fifth Instars of the Gypsy Moth Were Tested for Development to Adults on 326 Species of Dicotyledonous Plants in Laboratory Feeding Trials
    LABORATORY FEEDING TESTS ON THE DEVELOPMENT OF GYPSY MOTH LARVAE WITH REFERENCE TO PLANT TAXA AND ALLELOCHEMICALS JEFFREY C. MILLER and PAUL E. HANSON DEPARTMENT OF ENTOMOLOGY, OREGON STATE UNIVERSITY, CORVALLIS, OREGON 97331 ABSTRACT The first through fifth instars of the gypsy moth were tested for development to adults on 326 species of dicotyledonous plants in laboratory feeding trials. Among accepted plants, differences in suitability were documented by measuring female pupal weights. The majority of accepted plants belong to the subclasses Dilleniidae, Hamamelidae, and Rosidae. Species of oak, maple, alder, madrone, eucalyptus, poplar, and sumac were highly suitable. Plants belonging to the Asteridae, Caryophyllidae, and Magnoliidae were mostly rejected. Foliage type, new or old, and instar influenced host plant suitability. Larvae of various instars were able to pupate after feeding on foliage of 147 plant species. Of these, 1.01 were accepted by first instars. Larvae from the first through fifth instar failed to molt on foliage of 151 species. Minor feeding occurred on 67 of these species. In general, larvae accepted new foliage on evergreen species more readily than old foliage. The results of these trials were combined with results from three previous studies to provide data on feeding responses of gypsy moth larvae on a total of 658 species, 286 genera, and 106 families of dicots. Allelochemic compositions of these plants were tabulated from available literature and compared with acceptance or rejection by gypsy moth. Plants accepted by gypsy moth generally contain tannins, but lack alkaloids, iridoid monoterpenes, sesquiterpenoids, diterpenoids, and glucosinolates. 2 PREFACE This research was funded through grants from USDA Forest Service cooperative agreement no.
    [Show full text]
  • Checklist of the Vascular Plants of San Diego County 5Th Edition
    cHeckliSt of tHe vaScUlaR PlaNtS of SaN DieGo coUNty 5th edition Pinus torreyana subsp. torreyana Downingia concolor var. brevior Thermopsis californica var. semota Pogogyne abramsii Hulsea californica Cylindropuntia fosbergii Dudleya brevifolia Chorizanthe orcuttiana Astragalus deanei by Jon P. Rebman and Michael G. Simpson San Diego Natural History Museum and San Diego State University examples of checklist taxa: SPecieS SPecieS iNfRaSPecieS iNfRaSPecieS NaMe aUtHoR RaNk & NaMe aUtHoR Eriodictyon trichocalyx A. Heller var. lanatum (Brand) Jepson {SD 135251} [E. t. subsp. l. (Brand) Munz] Hairy yerba Santa SyNoNyM SyMBol foR NoN-NATIVE, NATURaliZeD PlaNt *Erodium cicutarium (L.) Aiton {SD 122398} red-Stem Filaree/StorkSbill HeRBaRiUM SPeciMeN coMMoN DocUMeNTATION NaMe SyMBol foR PlaNt Not liSteD iN THE JEPSON MANUAL †Rhus aromatica Aiton var. simplicifolia (Greene) Conquist {SD 118139} Single-leaF SkunkbruSH SyMBol foR StRict eNDeMic TO SaN DieGo coUNty §§Dudleya brevifolia (Moran) Moran {SD 130030} SHort-leaF dudleya [D. blochmaniae (Eastw.) Moran subsp. brevifolia Moran] 1B.1 S1.1 G2t1 ce SyMBol foR NeaR eNDeMic TO SaN DieGo coUNty §Nolina interrata Gentry {SD 79876} deHeSa nolina 1B.1 S2 G2 ce eNviRoNMeNTAL liStiNG SyMBol foR MiSiDeNtifieD PlaNt, Not occURRiNG iN coUNty (Note: this symbol used in appendix 1 only.) ?Cirsium brevistylum Cronq. indian tHiStle i checklist of the vascular plants of san Diego county 5th edition by Jon p. rebman and Michael g. simpson san Diego natural history Museum and san Diego state university publication of: san Diego natural history Museum san Diego, california ii Copyright © 2014 by Jon P. Rebman and Michael G. Simpson Fifth edition 2014. isBn 0-918969-08-5 Copyright © 2006 by Jon P.
    [Show full text]
  • Max Watson's Vasona Eucalyptus Grove - Legend
    Max Wat~on's Vasona Eucalyptus Grove- Legend Vasona Lake Park, 298 Garden Hill Drive, Los Gatos CA 95030 (408) 358-3741 Original plantings by Max Watson: Nov. 1964, Jan. 1967 & Oct. 1970 Map Revisions by Grace Heintz:June 1983 & Sept. 1986 I Dave Dockter: Feb 1995\ Dockter-Coate: 2005 16 44\\ 44 34 \ . ' 44· ·39 39 39 33 - 13 \ 27 '· .,, , " " , \., "asona Lak·e . o%" / ~,,·,27~ ' u u --· , , "" ",t, . " . / ' · 4,. ""' «.~ ,., ' ' ' - ,,fY' "·"' " ' '· //..i ~ce., ' ·. "• '' .,. '. ' J '/ "· (~ ~ c-43- ~ I 1 28 ~o~ ~ r I /111 '-.' 1 1 " ' ·:--."-• -. - / / I " ''"'"> < I y ~ ..] . ·~ ./~ ..,...-c~1-~\... 9 ~< ' '"' ~ ~ -. - - ~ '• ·' .s:-c/{Le I"·JO' / ; ..... 14 1 I ~>:1.-..' ~-=-·· _../,- :.,---- --_ -;;~Vfo>) t. 7 " ~·/· ~ ..,__ ~( I ' 2 '- '-. " ,. "" ., " u _,.. ~.._ _____...- / ;,P';""""!' -<./ ,;• "' . - •'' I ' . ' ' " AC- " ;;, ;.:r, :::;:.-- -9 39\2~ -..... _;..:::\ ·1 6_:...--- ,..- 6· 3f· ~ -;;... .,,_t' 5~" s~ ----.. ' " .._~ / // ~ ?-. \ " -. ' .. ,,,, ./ 7 1 37 '40 32 ...... __-r~ :;:-24 . 37 .· . ~l l'> ... -:::_,.. -.---.:_32 ___.. 1 1 ~ ~ 31 ~ . 31- ~~~ -0 " V asona Lake County Park, Los Gatos, CA. One of the best public collections of ornamental eucalyptus species in the Bay Area is located at V asona Lake County Park in Los Gatos. Originally planted by local eucalyptus · enthusiast Max Watson in 1964, most of the trees have been identified and labeled Directions and map to the Vasona Lake County Park, Los Gatos. CA as to species. The 40+-year-old trees provide valuable examples of more than 40 different can be accessed online at www.oark.here.org. The entrance to Vasona Lake Park is located at 333 Blossom Hill Road in Los Gatos. Frein southbound eucalyptus species appropriate for both landscape evaluation and botanical study.
    [Show full text]
  • A Workshop on Eucalyptus in California
    United States Department of Proceedings of a Workshop on Agriculture Forest Service Eucalyptus in California Pacific Southwest Forest and Range Experiment Station June 14-16,1983, Sacramento, California General Technical Report PSW-69 Cover: A stand of 50-month-old Eucalyptus camaldulensis growing in Calistoga, California. Average height of the trees is 6.7 m and average diameter-at-breast-height (d.b.h.) is 7.9 cm. Publisher Pacific Southwest Forest and Range Experiment Station P.O. Box 245, Berkeley, California 94701 October 1983 Proceedings of a Workshop on Eucalyptus in California June 14-16, 1983, Sacramento, California Technical Coordinators: Richard B. Standiford F. Thomas Ledig Cooperative Extension Pacific Southwest Forest and University of California Range Experiment Station CONTENTS PART 1. HISTORY OF EUCALYPTS IN PART 4. GROWTH AND YIELD CALIFORNIA Growth and Yield of Some Eucalypts of Interest to Eucalyptus Helped Solve a Timber Problem: 1853-1880 California Gayle M. Groenendaal.............................................................1 Roger G. Skolmen ............................................................. 49 Evaluating Trees as Energy Crops in Napa County PART 2. SPECIES SELECTION Dean R. Donaldson and Richard B. Standiford ................ 58 Adaptability of Some Eucalyptus Species in Southwest Growth and Yield in Eucalyptus globulus Oregon James A. Rinehart and Richard B. Standiford .................. 61 Lee O. Hunt .........................................................................9 Industrial Planting of E. viminalis in Mendocino County Southern California Trial Plantings of Eucalyptus Peter C. Passof and John W. Sweeley ............................... 69 Paul W. Moore ..................................................................14 Yields in High Density, Short Rotation Intensive Soil Conservation Service Tests of Eucalyptus Species Culture (SRIC) —Plantations of Eucalyptus and for Windbreaks Other Hardwood Species Gary L. Young ...................................................................18 R.M.
    [Show full text]
  • SWIFT PARROT SEARCH Introductory Support Guide to Identification of Eucalypts and Mistletoes
    SWIFT PARROT SEARCH Introductory Support Guide to Identification of Eucalypts and Mistletoes Version 1.01. April 2021 Contents 1. Introduction ......................................................................................................... 1 2. Detailed Descriptions of selected feed trees for Swift Parrots ...................................... 2 3. Tree and Mistletoe Species Summary ...................................................................... 8 3.1. Box Trees ................................................................................................................... 8 3.2. Gum Trees .................................................................................................................. 9 3.3. Ironbarks ................................................................................................................... 12 3.4. Peppermint, Stringybark, Mahogany, Bloodwood, Apple and other „eucalypts‟ ....................... 13 3.5. Other relevant non-eucalypt trees and tall shrubs ............................................................. 16 3.6. Mistletoes (for Regent Honeyeaters, Painted Honeyeaters, etc.).......................................... 18 4. Additional information to assist with plant identification ............................................. 19 5. Acknowledgements ............................................................................................... 20 Swift Parrot Search – Tree and Mistletoe Identification guide V.01. April 2021 1. Introduction This document is a guide to
    [Show full text]
  • Eucalyptus Genus: a Review
    Gagan Shahet al. / Journal of Pharmacy Research 2016,10(10),609-617 Review Article Available online through ISSN: 0974-6943 http://jprsolutions.info Eucalyptus Genus: A Review Gagan Shah*1, Jaideep Bajaj2, Varinder Soni3, R.K Dhawan2 *Deparment of Pharmacognosy, Khalsa College of Pharmacy, Amritsar, Punjab, India 2Department of Pharmacology, Khalsa College of Pharmacy, Amritsar Punjab, India 3Department of Pharmaceutical Analysis, Khalsa College of Pharmacy, Amritsar Punjab, India Received on:25-07-2016; Revised on: 11-08-2016; Accepted on: 04-09-2016 ABSTRACT Eucalyptus is a diverse genus of flowering trees (and a few shrubs) in the myrtle family, Myrtaceae. This review article is presented to compile all the updated information on its phytochemical and pharmacological Activities of Eucalyptus species which were performed by widely different methods. Literature indicates various Eucalyptus Species possesses analgesic, antifungal, antiinflamatory, antibacterial, antidiabetic, antioxidative properties. Literature also indicates various other effect of Eucalyptus species such as Antiviral, Antitumour, antihistaminic, anticancer cytochrome p450 inhibitor and hepatoprotective effect have also been reported by many Researcher. The present review articles critically discusses some Eucalyptus Species and about their Chemical constituents and Biological activities. This review indicate that Eucalyptus species have potential therapeutic effects. KEY WORDS: Eucalyptus, Phytochemical, Pharmacological activities. INTRODUCTION MAJOR SPECIES A large genus of evergreen aromatic tress, rarely shrubs (mallees), There are over 500 species of Eucalyptus. The major ones are enlisted indeginous to Australia, Tasmania, New Guinea and the neighbouring below. Major Species of Eucalyptus. Major Species of Eucalyptus. islands, where they constitute a large portion of the forest vegetation, Eucalyptus amygdalina Eucalyptus microthecaamygdalina giving it a characteristic appearance.
    [Show full text]