Offshore Fish Identification Cards for Small-Scale Fishermen

Total Page:16

File Type:pdf, Size:1020Kb

Offshore Fish Identification Cards for Small-Scale Fishermen Offshore fish identification cards for small-scale fishermen © Secretariat of the Pacific Community, 2013 These identification cards are produced by the Secretariat of the Pacific Community (SPC) to help improve catch data and statistics from small-scale vessels that regularly target pelagic species. With a better understanding of small-scale vessel catches, regional fisheries managers can ensure that migratory stocks are better managed throughout the range of the stocks and that small-scale fishers get more recognition and support for their contribution to food security and employment at the local community level. The most likely users of these cards are small-scale fishers who actively target pelagic stocks, along with fishery officers who are tasked with monitoring these fisheries. Fisheries training institutions and fishing communities are other potential users. Printing of these cards was made possible through financial assistance provided by AusAID. Project co-ordination done by the Oceanic Fisheries Programme Fisheries Monitoring Section and the Fisheries Information Section, SPC. Colour illustrations by Jipé Le-Bars (juvenile tunas), Hazel Adams (bullet tuna, frigate tuna and rough triggerfish), Rachel O’Shea (yellowtail amberjack) and Les Hata (all others); black and white illustrations courtesy of the Food and Agriculture Organization of the United Nations (FAO). This publication is based on the Marine species identification manual for horizontal longline fishermen by Chapman et al. (2006). Secretariat of the Pacific Community Cataloguing-in-publication data Offshore fish identification cards for small-scale fishermen / produced by the Secretariat of the Pacific Community 1. Marine fishes – Classification – Oceania 2. Fishery management – Oceania I. Title II. Secretariat of the Pacific Community 338.3720995 AACR2 ISBN: 978-982-00-0595-2 Tunas Second dorsal fin Base of second First dorsal fin dorsal fin Finlets Caudal fin Caudal keel Pectoral fin Base of anal fin Pelvic fin Anal fin Tunas Tunas Yellowfin tuna Thunnus albacares Narrow body, Adults especially (>70 cm) near caudal fin Notch in caudal fin Finlets yellow with no black edge Second dorsal and anal fi ns very long YFT and yellow Bigeye tuna Thunnus obesus Adults Stout body (>70 cm) No notch in caudal fin Finlets bright yellow with black edge BET Tunas Tunas Yellowfin tuna Thunnus albacares Narrow body, Juveniles especially (40–70 cm) near caudal fin Small notch in caudal fin Pectoral fin tip Lines slightly curved, rounded Pectoral fi n evenly spaced, reaches base of separated by lines YFT second dorsal fi n of spots over most of body Bigeye tuna Thunnus obesus Stout body Juveniles (40–70 cm) No notch in caudal fin Pectoral fin tip Lines almost straight, pointed Pectoral fin often unevenly spaced with extends beyond base a few erratic spots mostly BET of second dorsal fin over lower body Tunas Tunas Albacore tuna Thunnus alalunga Back edge of caudal fin white or colourless Pectoral fin reaches way past base of second dorsal and anal fins ALB Longtail tuna Thunnus tonggol Second dorsal fin taller than first dorsal fin Body slender, especially towards caudal fin Faint rows of colourless Pectoral fin rarely reaches spots along belly LOT space between dorsal fins Tunas Tunas Bullet tuna Auxis rochei rochei Wide space between first and second dorsal fins Pectoral fin tip does not reach front edge of patterned area BLT Frigate tuna Auxis thazard thazard Wide space between first and second dorsal fins Pectoral fin tip reaches beyond front edge of patterned area FRI Tunas Tunas Skipjack tuna Katsuwonus pelamis Three to five stripes along belly SKJ Kawakawa Euthynnus affinis Narrow space between first and second dorsal fins Black spots, sometimes faded KAW Tunas Tunas Dogtooth tuna Gymnosarda unicolor Obvious wavy lateral line Cone-shaped (dog-like) teeth in a large mouth DOT Butterfly kingfish Gasterochisma melampus Body covered in large shiny scales BUK Tunas Billfish First dorsal fi n Second dorsal fi n Upper jaw prolonged (bill) Caudal fi n Caudal Pectoral fi n keels First anal fi n Pelvic fi n Second anal fi n Billfish Billfish Blue marlin Makaira nigricans Dorsal fin height (a) half to three-quarters of (a) greatest body depth (b) (b) Pectoral fin not rigid – can flatten against body BUM Striped marlin Tetrapturus audax Dorsal fin height (a) higher than or sometimes equal to (a) greatest body depth (b) (b) MLS Pectoral fin not rigid – can flatten against body Billfish Billfish Swordfish Xiphias gladius First and second dorsal fins widely separated (except if <100 cm) Sword-like bill with smooth surface No pelvic fins Only one caudal keel SWO Black marlin Makaira indica Dorsal fin height (a) about half of (a) greatest body depth (b) (b) Pectoral fin rigid – cannot flatten against body BLM on fish over 40 kg Billfish Billfish Shortbill spearfish Tetrapturus angustirostris Dorsal fin about same height as body depth (a) (b) Bill length (a) very short, equal to or shorter than head length (b) SSP Sailfish Istiophorus platypterus Dorsal fin very tall (more than two times body depth) SFA Billfish Jacks Jacks First dorsal fin Second dorsal fin Lateral line Scutes Caudal fin Operculum Anal fin Pectoral fin Pelvic fin Giant trevally Caranx ignobilis Head profile steep and Body covered with straight at eye level numerous very small black dots NXI Jacks Jacks Rainbow runner Elagatis bipinnulata Blue and yellow stripes on side Caudal fin dark in colour and deeply forked Two-rayed finlet behind second dorsal and anal fins RRU Yellowtail amberjack Seriola lalandi Single yellow stripe on side No finlet Pectoral fin shorter than pelvic fin Second dorsal, anal and caudal fins yellow YTC Jacks Jacks Bigeye scad Selar crumenophthalmus Dorsal fins close together Very large eye Black spot on operculum Maximum length: 50 cm BIS Mackerel scad Decapterus macarellus Dorsal fins widely separated Black blotch on operculum Maximum length: 40 cm MSD Jacks Jacks Jacks (other) Carangidae Uraspis spp. Carangoides spp. Caranx spp. Trachinotus spp. Selar spp. Decapterus spp. Scomberoides spp. Seriola spp. TRE Note: The Carangidae family (jacks) includes 32 genera and about 140 species of highly varied shapes. Jacks are open-water carnivorous fish, usually silvery in colour. Other important species First dorsal fin Second dorsal fin Finlets Head Snout Caudal fin Caudal Operculum keel (gill cover) Lateral line Pectoral fin Anal fin Pelvic fin Other important species Other important species Wahoo Acanthocybium solandri Snout as long as rest of head Snout Rest of head Lateral line dips under first dorsal fin WAH Spanish mackerel Scomberomorus commerson Snout shorter than rest of head Snout Rest of head Lateral line dips after first dorsal fin COM Other important species Other important species Pickhandle barracuda Sphyraena jello Second dorsal and caudal fins yellowish Bars are faint, unevenly spaced and go to just below lateral line BAC Blackfin barracuda Sphyraena qenie Second dorsal, anal and caudal fins black Two small knobs at centre Bars go well below lateral line of caudal fin BAB Other important species Other important species Great barracuda Sphyraena barracuda Second dorsal, anal and caudal fins dark with white tips Distinctive shaped Black spots (normally) caudal fin GBA Mahi mahi Coryphaena hippurus Distinct body shape and colour Male head shape Female DOL head shape Other important species Other important species Sickle pomfret Taractichthys steindachneri Obviously long first dorsal and anal fins White margin on caudal fin Large scales TST Pomfrets (other) Bramidae Species in this family have: • Angle of jaw very slanted • Single dorsal fin • Caudal fin of adults strongly forked Pterycombus spp. Pteraclis spp. BRZ Taractes spp. Brama spp. Other important species Other important species Slender sunfish Ranzania laevis Slender body shape No protruding “tail” Distinct markings RZV Maximum length: 80 cm Rough triggerfish Canthidermis maculatus Dark body and fins covered with numerous whitish blotches CNT Other important species Other important species Flyingfish Exocoetidae Species in this family have: • Long wing-like pectoral Cheilopogon spp. fins, high on side, always extending beyond origin ofo dorsal fin Cypselurus spp. • NoN spines in fins Hirundichthys spp. Exocoetus sp. Prognichthys spp. FLY Parexocoetus spp. Gemfish & snake mackerels Gempylidae Species in this family have: • Large mouth with strong teeth • Two dorsal fins, second shorter than first Rexea spp. • Pelvic fin very small, often just a single spine with a few or no soft rays Rexichthys spp. GEP Other important species SECRETARIAT OF THE PACIFIC COMMUNITY BP D5 • 98848 NOUMEA CEDEX • NEW CALEDONIA Telephone: +687 26 20 00 Facsimile: +687 26 38 18 Email: [email protected] http://www.spc.int/fame Prepared for publication at: Secretariat of the Pacific Community headquarters, Noumea, New Caledonia, 2013 Printed by: Stredder Print Ltd., New Zealand .
Recommended publications
  • Skeletal Development and Mineralization Pattern of The
    e Rese tur arc ul h c & a u D q e A v e f l o o Mesa-Rodríguez et al., J Aquac Res Development 2014, 5:6 l p a m n Journal of Aquaculture r e u n o t DOI: 10.4172/2155-9546.1000266 J ISSN: 2155-9546 Research & Development Research Article OpenOpen Access Access Skeletal Development and Mineralization Pattern of the Vertebral Column, Dorsal, Anal and Caudal Fin Complex in Seriola Rivoliana (Valenciennes, 1833) Larvae Mesa-Rodríguez A*, Hernández-Cruz CM, Socorro JA, Fernández-Palacios H, Izquierdo MS and Roo J Aquaculture Research Group, Science and Technology Park, University of Las Palmas de Gran Canaria, P. O. Box 56, 35200 Telde, Canary Islands, Spain Abstract Bone and fins development in Seriola rivoliana were studied from cleared and stained specimens from 3 to 33 days after hatching. The vertebral column began to mineralize in the neural arches at 4.40 ± 0.14 mm Standard Length (SL), continued with the haemal arches and centrums following a cranial-caudal direction. Mineralization of the caudal fin structures started with the caudal rays by 5.12 ± 0.11 mm SL, at the same time that the notochord flexion occurs. The first dorsal and anal fin structures were the hard spines (S), and lepidotrichium (R) by 8.01 ± 0.26 mm SL. The metamorphosis was completed by 11.82 ± 0.4 mm SL. Finally, the fin supports (pterygiophores) and the caudal fins were completely mineralized by 16.1 ± 0.89 mm SL. In addition, the meristic data of 23 structures were provided.
    [Show full text]
  • Among the World's Most Popular Game Fishes, Tunas Are Also
    ÜBER-FISH Among the World’s Most Popular Game Fishes, Tunas Are Also Some of the Most Highly Evolved and Sophisticated of All the Ocean’s Predators BY DOUG OLANDER DANIEL GOEZ DANIEL 74 DECEMBER 2017 SPORTFISHINGMAG.COM 75 The Family Tree minimizes drag with a very low reduce the turbulence in the Tunas are part of the family drag coefficient,” optimizing effi- water ahead of the tail. Scombridae, which also includes cient swimming both at cruise Unlike most fishes with broad, mackerels, large and small. But and burst. While most fishes bend flexible tails that bend to scoop there are tunas, and then there their bodies side to side when water to move a fish forward, are, well, “true tunas.” moving forward, tunas’ bodies tunas derive tremendous That is, two groups don’t bend. They’re essentially thrust with thin, hard, lunate WHILE MOST FISHES BEND ( sometimes known as “tribes”) rigid, solid torpedoes. ( crescent-moon-shaped) tails dominate the tuna clan. One is And these torpedoes are that beat constantly, capable of THEIR BODIES SIDE TO SIDE Thunnini, which is the group perfectly streamlined, their 10 to 12 or more beats per second. considered true tunas, charac- larger fins fitting perfectly into That relentless thrust accounts WHEN MOVING FORWARD, terized by two separate dorsal grooves so no part of these fins for the unstoppable runs that fins and a relatively thick body. a number of highly specialized protrudes above the body surface. tuna make repeatedly when TUNAS’ BODIES DON’T BEND. The 15 species of Thunnini are features facilitate these They lack the convex eyes of hooked.
    [Show full text]
  • Notice Calling for Suggestions, Views, Comments Etc from WTO- SPS Committee Members Within a Period of 60 Days on the Draft Noti
    Notice Calling for suggestions, views, comments etc from WTO- SPS Committee members within a period of 60 days on the draft notification related to Standards for list of Histamine Forming Fish Species and limits of Histamine level for Fish and Fishery Products. 1. In the Food Safety and Standards (Contaminants, toxins and Residues) Regulations, 2011, in regulation 2.5, relating to “Other Contaminants”, after sub-regulation 2.5.1 the following sub-regulation shall be inserted, namely:- “2.5.2 Histamine in Fish and Fishery Products contaminants, Toxins and Residues 1. Fish species having potential to cause histamine poisoning Sl.No. Family Scientific Name Common Name 1. Carangidae Alectis indica Indian Threadfish Alepes spp. Scad Atropus atropos Cleftbelly trevally Carangoides Yellow Jack bartholomaei Carangoides spp. Trevally Caranx crysos Blue runner Caranx spp. Jack/Trevally Decapterus koheru Koheru Decapterus russelli Indian scad Decapterus spp. Scad Elagatis bipinnulata Rainbow Runner Megalaspis cordyla Horse Mackerel/Torpedo Scad Nematistius pectoralis Roosterfish Oligoplites saurus Leather Jacket Pseudocaranx dentex White trevally Sl.No. Family Scientific Name Common Name Scomberoides Talang queenfish commersonnianus Scomberoides spp. Leather Jacket/Queen Fish Selene spp. Moonfish Seriola dumerili Greater/Japanese Amberjack or Rudder Fish Seriola lalandi Yellowtail Amberjack Seriola quinqueradiata Japanese Amberjack Seriola rivoliana Longfin Yellowtail Seriola spp. Amberjack or Yellowtail Trachurus capensis Cape Horse Mackerel Trachurus japonicas Japanese Jack Mackerel Trachurus murphyi Chilean Jack Mackerel Trachurus Yellowtail Horse Mackerel novaezelandiae Trachurus spp. Jack Mackerel/Horse Mackerel Trachurus trachurus Atlantic Horse Mackerel Uraspis secunda Cottonmouth jack 2. Chanidae Chanos chanos Milkfish 3. Clupeidae Alosa pseudoharengus Alewife Alosa spp. Herring Amblygaster sirm Spotted Sardinella Anodontostoma chacunda Chacunda gizzard shad Brevoortia patronus Gulf Menhaden Brevoortia spp.
    [Show full text]
  • Bibliography Review on Reproduction of the Most Important Fish Species of the Genus Seriola
    BIBLIOGRAPHY REVIEW ON REPRODUCTION OF THE MOST IMPORTANT FISH SPECIES OF THE GENUS SERIOLA Final Degree Work of Degree in Marine Sciences Author: Nuria Esther Marrero Sánchez Academic Tutor: José Manuel Vergara Martin Cotutor: Hipólito Fernández-Palacios Barber Course 2016/2017 BIBLIOGRAPHY REVIEW ON REPRODUCTION OF THE MOST IMPORTANT FISH SPECIES OF THE GENUS SERIOLA. Nuria Esther Marrero Sánchez The title of the work is: BIBLIOGRAPHY REVIEW ON REPRODUCTION OF THE MOST IMPORTANT FISH SPECIES OF THE GENUS SERIOLA The student author of the work is Nuria Esther Marrero Sánchez, student of Degree in Marine Sciences at the University of Las Palmas de Gran Canaria. The academic tutor is José Manuel Vergara Martín, teacher at the University of Las Palmas de Gran Canaria. The cotutor is Hipólito Fernández-Palacios Barber, researcher at ECOAQUA -ULPGC institution. ~ 2 ~ BIBLIOGRAPHY REVIEW ON REPRODUCTION OF THE MOST IMPORTANT FISH SPECIES OF THE GENUS SERIOLA. Nuria Esther Marrero Sánchez Index Pages 1. Introduction ........................................................................................................ 4 2. Characteristics of the Genus Seriola................................................................... 5 2.1. Description of Seriola dumerili.................................................................... 6 2.2. Description of Seriola lalandi...................................................................... 7 2.3. Description of Seriola quinqueradiata......................................................... 8 2.4.
    [Show full text]
  • A Global Valuation of Tuna an Update February 2020 (Final)
    Netting Billions: a global valuation of tuna an update February 2020 (Final) ii Report Information This report has been prepared with the financial support of The Pew Charitable Trusts. The views expressed in this study are purely those of the authors. The content of this report may not be reproduced, or even part thereof, without explicit reference to the source. Citation: Macfadyen, G., Huntington, T., Defaux, V., Llewellin, P., and James, P., 2019. Netting Billions: a global valuation of tuna (an update). Report produced by Poseidon Aquatic Resources Management Ltd. Client: The Pew Charitable Trusts Version: Final Report ref: 1456-REG/R/02/A Date issued: 7 February 2020 Acknowledgements: Our thanks to the following consultants who assisted with data collection for this study: Richard Banks, Sachiko Tsuji, Charles Greenwald, Heiko Seilert, Gilles Hosch, Alicia Sanmamed, Anna Madriles, Gwendal le Fol, Tomasz Kulikowski, and Benoit Caillart. 7 February 2020 iii CONTENTS 1. BACKGROUND AND INTRODUCTION ................................................................... 1 2. STUDY METHODOLOGY ......................................................................................... 3 3. TUNA LANDINGS ..................................................................................................... 5 3.1 METHODOLOGICAL ISSUES ....................................................................................... 5 3.2 RESULTS ...............................................................................................................
    [Show full text]
  • Introduction Tunas and Other Large Highly-Migratory Species
    CHAPTER 1: AUTHOR: LAST UPDATE: OVERVIEW SECRETARIAT Jan. 25, 2006 1. Overview 1.1 What is ICCAT? Introduction Tunas and other large highly-migratory species are typically assessed and managed through international arrangements. Since the distribution of such stocks is not limited to the waters of any single sovereign nation, such arrangements are necessary in order to share the available research and fishery information. The International Commission for the Conservation of Atlantic Tunas is responsible for the conservation of tunas and tuna-like species in the Atlantic Ocean and adjacent seas. The organization was established at a Conference of Plenipotentiaries, which prepared and adopted the International Convention for the Conservation of Atlantic Tunas signed in Rio de Janeiro, Brazil, in 1966. After a ratification process, the Convention entered formally into force in 1969. The official languages of ICCAT are English, French and Spanish. The Commission's work requires the collection and analysis of statistical information relative to current conditions and trends of the fishery resources in the Convention. About 30 species are covered by the Convention: Atlantic bluefin (Thunnus thynnus thynnus), yellowfin (Thunnus albacares), albacore (Thunnus alalunga), bigeye tuna (Thunnus obesus) and skipjack (Katsuwonus pelamis); swordfish (Xiphias gladius); billfishes such as white marlin (Tetrapturus albidus), blue marlin (Makaira nigricans), sailfish (Istiophorus albicans) and spearfish (Tetrapturus pfluegeri & T. belone); mackerels such as spotted Spanish mackerel (Scomberomorus maculatese) and king mackerel (Scomberomorus cavalla); and, small tunas like black skipjack (Euthynnus alletteratus), frigate tuna (Auxis thazard), and Atlantic bonito (Sarda sarda). Southern bluefin tuna (Thunnus maccoyii) is also part of the Convention, although currently the primary responsibility for assessing and managing this species rests with the Commission for the Conservation of Southern Bluefin Tuna (CCSBT).
    [Show full text]
  • Training Manual Series No.15/2018
    View metadata, citation and similar papers at core.ac.uk brought to you by CORE provided by CMFRI Digital Repository DBTR-H D Indian Council of Agricultural Research Ministry of Science and Technology Central Marine Fisheries Research Institute Department of Biotechnology CMFRI Training Manual Series No.15/2018 Training Manual In the frame work of the project: DBT sponsored Three Months National Training in Molecular Biology and Biotechnology for Fisheries Professionals 2015-18 Training Manual In the frame work of the project: DBT sponsored Three Months National Training in Molecular Biology and Biotechnology for Fisheries Professionals 2015-18 Training Manual This is a limited edition of the CMFRI Training Manual provided to participants of the “DBT sponsored Three Months National Training in Molecular Biology and Biotechnology for Fisheries Professionals” organized by the Marine Biotechnology Division of Central Marine Fisheries Research Institute (CMFRI), from 2nd February 2015 - 31st March 2018. Principal Investigator Dr. P. Vijayagopal Compiled & Edited by Dr. P. Vijayagopal Dr. Reynold Peter Assisted by Aditya Prabhakar Swetha Dhamodharan P V ISBN 978-93-82263-24-1 CMFRI Training Manual Series No.15/2018 Published by Dr A Gopalakrishnan Director, Central Marine Fisheries Research Institute (ICAR-CMFRI) Central Marine Fisheries Research Institute PB.No:1603, Ernakulam North P.O, Kochi-682018, India. 2 Foreword Central Marine Fisheries Research Institute (CMFRI), Kochi along with CIFE, Mumbai and CIFA, Bhubaneswar within the Indian Council of Agricultural Research (ICAR) and Department of Biotechnology of Government of India organized a series of training programs entitled “DBT sponsored Three Months National Training in Molecular Biology and Biotechnology for Fisheries Professionals”.
    [Show full text]
  • Skipjack Tuna (Katsuwonus Pelamis) Yellowfin Tuna (Thunnus Albacares)
    Skipjack tuna (Katsuwonus pelamis) Yellowfin tuna (Thunnus albacares) © Monterey Bay Aquarium Indian Ocean Troll/Pole October 3, 2016 Alexia Morgan, Consulng Researcher Disclaimer Seafood Watch® strives to have all Seafood Reports reviewed for accuracy and completeness by external sciensts with experse in ecology, fisheries science and aquaculture. Scienfic review, however, does not constute an endorsement of the Seafood Watch® program or its recommendaons on the part of the reviewing sciensts. Seafood Watch® is solely responsible for the conclusions reached in this report. Table of Contents Table of Contents 2 About Seafood Watch 3 Guiding Principles 4 Summary 5 Final Seafood Recommendations 5 Introduction 7 Assessment 10 Criterion 1: Impacts on the species under assessment 10 Criterion 2: Impacts on other species 14 Criterion 3: Management Effectiveness 18 Criterion 4: Impacts on the habitat and ecosystem 25 Acknowledgements 28 References 29 Appendix A: Extra By Catch Species 31 Appendix B: Update Summary 32 2 About Seafood Watch Monterey Bay Aquarium’s Seafood Watch® program evaluates the ecological sustainability of wild-caught and farmed seafood commonly found in the United States marketplace. Seafood Watch® defines sustainable seafood as originang from sources, whether wild-caught or farmed, which can maintain or increase producon in the long-term without jeopardizing the structure or funcon of affected ecosystems. Seafood Watch® makes its science-based recommendaons available to the public in the form of regional pocket guides that can be downloaded from www.seafoodwatch.org. The program’s goals are to raise awareness of important ocean conservaon issues and empower seafood consumers and businesses to make choices for healthy oceans.
    [Show full text]
  • C1. Tuna and Tuna-Like Species
    163 C1. TUNA AND TUNA-LIKE SPECIES exceptional quality reached US$500 per kg and by Jacek Majkowski * more recently even more, but such prices referring to very few single fish do not reflect the INTRODUCTION situation with the market. Bigeye are also well priced on the sashimi markets. Although The sub-order Scombroidei is usually referred to yellowfin are also very popular on these markets, as tuna and tuna-like species (Klawe, 1977; the prices they bring are much lower. For Collette and Nauen, 1983; Nakamura, 1985). It is canning, albacore fetch the best prices due to composed of tunas (sometimes referred to as true their white meat, followed by yellowfin and tunas), billfishes and other tuna-like species. skipjack for which fishermen are paid much less They include some of the largest and fastest than US$1 per kg. The relatively low prices of fishes in the sea. canning-quality fish are compensated by their The tunas (Thunnini) include the most very large catches, especially in the case of economically important species referred to as skipjack and yellowfin. Longtail tuna principal market tunas because of their global (T. tonggol) is becoming increasingly important economic importance and their intensive for canning and the subject of substantial international trade for canning and sashimi (raw international trade. The consumption of tuna and fish regarded as delicacy in Japan and tuna-like species in forms other than canned increasingly, in several other countries). In fact, products and sashimi is increasing. the anatomy of some tuna species seems to have The tunas other than the principal market species been purpose-designed for canning and loining.
    [Show full text]
  • © Iccat, 2007
    2.1.10.3 FRI CHAPTER 2.1.10.3 AUTHORS: LAST UPDATE: FRIGATE TUNA J. VALEIRAS and E. ABAD Sept. 4, 2006 2.1.10.3 Description of Frigate Tuna (FRI) 1. Names 1.a Classification and taxonomy Species name: Auxis thazard (Lacepède 1800) ICCAT species code: FRI ICCAT names: Frigate tuna (English), Auxide (French), Melva (Spanish) According to Collette and Nauen (1983), the frigate tuna is classified as follows: • Phylum: Chordata • Subphylum: Vertebrata • Superclass: Gnathostomata • Class: Osteichthyes • Subclass: Actinopterygii • Order: Perciformes • Suborder: Scombroidei • Family: Scombridae Some authors have used the name Auxis thazard as including Auxis rochei in the belief that there was only a single worldwide species of Auxis (Collette and Nauen 1983). Most of the published data on biological parameters of Auxis in Atlantic ocean are from Auxis rochei. 1.b Common names List of vernacular names used according to ICCAT, FAO and Fishbase (www.fishbase.org). The list is not exhaustive and some local names might not be included. Angola: Chapouto, Judeo. Australia: Frigate mackerel, Leadenall. Brazil: Albacora-bandolim, Bonito, Bonito-cachorro, Cachorro, Cadelo, Cavala, Judeu, Serra. Cape Verde: Cachorra, Cachorrinha, Chapouto, Gaiado, Judeo-liso, Judeu, Merma, Panguil, Serra. China: ᅭ⯦㫎, ᡥ⯦㫎. Chinese Taipei: ᡥⰼ㫎. Cuba: Melva aletilargo. Denmark: Auxide. Djibouti: Auxide, Frigate tuna. Dominican Republic: Bonito. Ecuador: Botellita. Finland: Auksidi. France: Auxide. Germany: Fregattmakrele. Greece: ȉȠȣȝʌĮȡȑȜȚ, ȀȠʌȐȞȚ, ȀȠʌĮȞȐțȚ, ǺĮȡİȜȐțȚ, Kopani-Kopanaki.
    [Show full text]
  • Australia: Reconstructing Estimates of Total Fisheries Removal, 1950-2010
    Fisheries Centre The University of British Columbia Working Paper Series Working Paper #2015 - 02 Australia: Reconstructing estimates of total fisheries removal, 1950-2010 Kristin Kleisner, Ciara Brennan, Anna Garland, Stephanie Lingard, Sean Tracey, Phil Sahlqvist, Angelo Tsolos, Daniel Pauly, and Dirk Zeller Year: 2015 Email: [email protected] ; [email protected] This working paper is made available by the Fisheries Centre, University of British Columbia, Vancouver, BC, V6T 1Z4, Canada. Australia - Kleisner et al. 1 AUSTRALIA: RECONSTRUCTING ESTIMATES OF TOTAL FISHERIES REMOVALS 1950-2010 Kristin Kleisnera, Ciara Brennana, Anna Garlandb, Stephanie Lingarda, Sean Traceyc, Phil Sahlqvistd, Angelo Tsolose, Daniel Paulya, and Dirk Zellera a Sea Around Us, Fisheries Centre, University of British Columbia, 2202 Main Mall, Vancouver, V6T 1Z4, Canada b Fisheries Queensland, Department of Agriculture, Fisheries and Forestry, GPO Box 46, Brisbane, Qld 4001, Australia c Institute for Marine and Antarctic Studies, University of Tasmania, Private bag 49, Hobart, Tasmania 7001, Australia d Fisheries and Risk Analysis Branch, ABARES, GPO Box 1563, Canberra ACT 2601, Australia e SARDI SA Aquatic Sciences Centre, Fisheries – Information Services, PO Box 120, Henley Beach, SA 5022 Australia [email protected]; kristen.kleisner @noaa.gov; c [email protected]; [email protected]; [email protected]; [email protected]; [email protected]; [email protected]; [email protected] ; [email protected] ABSTRACT Australia’s commercial fisheries are of significant value to the Australian economy, with the twenty Commonwealth fisheries alone worth around AUD$320 million in production value.
    [Show full text]
  • Intrinsic Vulnerability in the Global Fish Catch
    The following appendix accompanies the article Intrinsic vulnerability in the global fish catch William W. L. Cheung1,*, Reg Watson1, Telmo Morato1,2, Tony J. Pitcher1, Daniel Pauly1 1Fisheries Centre, The University of British Columbia, Aquatic Ecosystems Research Laboratory (AERL), 2202 Main Mall, Vancouver, British Columbia V6T 1Z4, Canada 2Departamento de Oceanografia e Pescas, Universidade dos Açores, 9901-862 Horta, Portugal *Email: [email protected] Marine Ecology Progress Series 333:1–12 (2007) Appendix 1. Intrinsic vulnerability index of fish taxa represented in the global catch, based on the Sea Around Us database (www.seaaroundus.org) Taxonomic Intrinsic level Taxon Common name vulnerability Family Pristidae Sawfishes 88 Squatinidae Angel sharks 80 Anarhichadidae Wolffishes 78 Carcharhinidae Requiem sharks 77 Sphyrnidae Hammerhead, bonnethead, scoophead shark 77 Macrouridae Grenadiers or rattails 75 Rajidae Skates 72 Alepocephalidae Slickheads 71 Lophiidae Goosefishes 70 Torpedinidae Electric rays 68 Belonidae Needlefishes 67 Emmelichthyidae Rovers 66 Nototheniidae Cod icefishes 65 Ophidiidae Cusk-eels 65 Trachichthyidae Slimeheads 64 Channichthyidae Crocodile icefishes 63 Myliobatidae Eagle and manta rays 63 Squalidae Dogfish sharks 62 Congridae Conger and garden eels 60 Serranidae Sea basses: groupers and fairy basslets 60 Exocoetidae Flyingfishes 59 Malacanthidae Tilefishes 58 Scorpaenidae Scorpionfishes or rockfishes 58 Polynemidae Threadfins 56 Triakidae Houndsharks 56 Istiophoridae Billfishes 55 Petromyzontidae
    [Show full text]