How Bonobo Communities Deal with Tannin Rich Fruits Re-Ingestion And

Total Page:16

File Type:pdf, Size:1020Kb

How Bonobo Communities Deal with Tannin Rich Fruits Re-Ingestion And Behavioural Processes 142 (2017) 131–137 Contents lists available at ScienceDirect Behavioural Processes journal homepage: www.elsevier.com/locate/behavproc How bonobo communities deal with tannin rich fruits: Re-ingestion and MARK other feeding processes ⁎ David Beaunea,b, , Gottfried Hohmanna, Adeline Serckxc,d,e, Tetsuya Sakamakif, Victor Naratg,h, Barbara Fruthi,j,k a Max Planck Institute for Evolutionary Anthropology, Department of Primatology, Deutscher Platz 6, Germany b Laboratoire Biogéosciences, UMR CNRS 6282, Université de Bourgogne, 6 bd Gabriel, 21000 Dijon, France c Primatology Research Group, Behavioural Biology Unit, University of Liege, Liege, Belgium d Conservation Biology Unit, Royal Belgian Institute of Natural Sciences, Brussels, Belgium e Ecole Régionale post-universitaire d’Aménagement et de gestion Intégrés des Forêts et Territoires tropicaux, Kinshasa, Democratic Republic of the Congo f Primate Research Institute, Kyoto University, Kanrin 41, Inuyama, Aichi 484-8506, Japan g Department of Infection and Epidemiology, Epidemiology of Emerging Diseases Unit, Pasteur Institute, Paris, France h Eco-Anthropology and Ethnobiology, National Museum of Natural History, Paris, France i Liverpool John Moores University, Faculty of Science/School of Natural Sciences and Psychology; Liverpool, UK j Centre for Research and Conservation, Royal Zoological Society of Antwerp, Antwerp, Belgium k Department of Developmental and Comparative Psychology, Max-Planck Institute for Evolutionary Anthropology, Leipzig, Germany ARTICLE INFO ABSTRACT Keywords: This report describes bonobo (Pan paniscus, Hominidae) behavioral flexibility and inter-community differences Coprophagy with high tannin level fruit processing. In fruiting plants, tannin should discourage certain seed dispersers (direct Canarium schweinfurthii deterrence hypothesis) such as primates. Based on data deriving from five study sites; LuiKotale, Lomako, Culture Wamba, Malebo and Manzano, we compare consumption and dispersal of fruit species rich in tannins: Parinari Feeding behavior and Musanga pulp was chewed across all communities probably for saliva tannin neutralisation. However, Seed dispersal consumption of the fruits of Canarium schweinfurthii was observed in few communities only with differences in Pan paniscus Zoochory the food process: While bonobos of Wamba, Lomako and Manzano crunched and swallowed the pulp, bonobos of LuiKotale ingested entire fruits, extracted intact fruits from feces, and re-ingested their pulp, spitting the seed after a retention time of 24 h in the digestive tract (i.e. endozoochory). We discuss potential functions of this peculiar feeding technique, likely to be a cultural behavior. 1. Introduction (Johns, 1999), as well as substances such as lectins that inhibit enzy- matic activity. Tannins are both toxics and digestive inhibitors. The One common form of the multiple and sometimes complex inter- major effects of most of them are dilution of nutritional content, re- actions between plants and animals is the consumption of seeds. In the duced digestibility, and limitation of food intake (Cooper and Owen- seed dispersal effectiveness framework, a plant can have several con- Smith, 1985; Robbins et al., 1991). The effect of tannins has been ex- sumers that differ in terms of their impact on dispersal distance and plored in insects, fish, birds and mammalian species (Clauss, 2003; germination (Schupp et al., 2010). Plants might be able to ‘choose’ Barboza et al., 2010; Omnes et al., 2017). One mammalian taxon that is higher-quality seed dispersal vectors and avoid those of lower quality. particularly interesting in this context is primates. The majority of The directed deterrence hypothesis (Cipollini and Levey, 1997; Levey contemporary primate species is frugivorous or consumes at least et al., 2006) proposes that fruits’ secondary compounds or chemical temporarily large amounts of fruit (Hohmann et al., 2010; Hawe and defense mediated by plant secondary metabolites (PSMs) have evolved Peres, 2014 Hawe and Peres, 2014). Not surprisingly, primates have to escape the action of damaging consumers such as seed predators evolved specific adaptation to frugivory such as color vision (Osorio while not inhibiting those that dispersers intact seeds. The secondary and Vorobyev, 1996), dentition (Scott, 2011), and digestive mor- compounds protecting from seed consumption include alkaloids, var- phology (Milton, 2003). Accordingly, it is reasonable to ask if primates ious glycosides, and saponins, that are potentially toxic to consumers have evolved mechanisms to cope with high tannin concentrations in ⁎ Corresponding author at: Ornithological Society of Polynesia SOP - Manu BP 7023 - 98719 Taravao - Tahiti - French Polynesia. E-mail address: [email protected] (D. Beaune). http://dx.doi.org/10.1016/j.beproc.2017.06.007 Received 25 January 2017; Received in revised form 26 June 2017; Accepted 26 June 2017 Available online 27 June 2017 0376-6357/ © 2017 Elsevier B.V. All rights reserved. D. Beaune et al. Behavioural Processes 142 (2017) 131–137 Fig. 1. Map of the field sites with five bonobo communities: LuiKotale (S2°47′- E20°21′), Lomako (N0°51′, E21°5′), Wamba (N0°11′, E22°37′), Malebo (S2°33′, E16°29′) and Manzano (S2°38, E16°23′), Democratic Republic of the Congo. their diet. There is some evidence that wild primates are sensitive to the et al., 2006). From this, one would assume that bonobos ingest low astringency caused by tannins (Dominy et al., 2001). In a recent ex- levels of tannin when compared with other species and that fruit with perimental study with three hominoid species, species-differences were high concentrations of tannin are avoided. Yet, evidence from the same found in terms of facial expression of subjects consuming a cereal with and other sites indicate that bonobos do consume tannin rich fruit, relatively high concentrations of tannin. Other studies reported that suggesting that they are able to cope with the deleterious effects of consumers avoid food with polyphenolic compounds, in both con- dietary tannins. This raises the following questions: (a) how are bo- densed and hydrolysable forms (Wrangham and Waterman, 1981; nobos adapted to process fruit with high concentrations of tannin, and Oates et al., 1977; Glander, 1982; McKey et al., 1981). While this in- (b) is there geographic variation in the way bonobos process fruit with formation makes evident that primates are sensitive to tannins and their high tannin concentrations? The latter question is particularly relevant deleterious effects, major components such as ecological variation of as other studies on African and Asian apes have shown considerable tannin distribution and specific adaptability to cope with fruit that variation in dietary patterns, social behavior, and material culture. provide important food but contain high concentrations of tannin are virtually lacking. This study explores patterns of consumption of tannin 1.1. Possible counter strategies to high tannin values rich fruit by bonobos (Pan paniscus) across different sites and popula- tions differing in terms of forest composition, habitat heterogeneity, Salivary proline-rich proteins (PRPs) have the capacity to bind and seasonal changes in food availability. Moreover, having observa- tannins forming stable complexes that prevent dilution of dietary pro- tional data from multiple sites, we ask to what extent bonobos differ in tein and facilitate excretion of detrimental tannins. To facilitate this the techniques of food processing to cope with high tannin concentra- technique, food matter has to be exposed to saliva prior to ingestion. In tions. Finally, we explore if bonobos disperse seeds of tannin rich fruit fact, bonobos and other hominid primates sometimes chew on fruits as predicted by the directed deterrence hypothesis (Levey et al., 2006), without swallowing food pulp and by doing so plant material is ex- by describing the fruit handling and its effect on the dispersal of intact tensively exposed to saliva. Yet, the technique of wadging could also be seeds. used to separate those parts of the fruit containing high concentrations Bonobos are restricted to the tropical lowland forests south of the of tannin from those that are easily digested. Another form of oral food Congo River. The species has an omnivorous diet and, besides forest processing that may serve a similar purpose is separating seeds from elephants, is one of the largest seed dispersers in this habitat providing mesocarp and discarding the former while ingesting the latter (Lambert, critical seed dispersal service to the majority of the tree species (Idani, 1998). As tannins tend to occur in higher concentrations in seeds rather 1986; Tsuji et al., 2010; Beaune et al., 2013a; Beaune et al., 2013b; than mesocarp, a simple way to reduce tannin intake is removal of Beaune et al., 2015; Beaune, 2015). Previous studies at one site re- seeds. If all consumers share the capacity of secreting salivary proline to vealed concentrations of tannins being relatively low, and that varia- an extent that even high concentrations of tannin are neutralized one tion of macronutrients was independent of tannin content (Hohmann would expect them to do so because the two other techniques, wadging 132 D. Beaune et al. Behavioural Processes 142 (2017) 131–137 and seed removal increase handling time and slow down food intake. antifeedants. Phenols and tannins were measured in the lab of the On the other hand, foraging techniques may be acquired by social
Recommended publications
  • Canarium Schweinfurthii)
    International Journal of Advanced Research in Chemical Science (IJARCS) Volume 2, Issue 11, November 2015, PP 34- 36 ISSN 2349-039X (Print) & ISSN 2349-0403 (Online) www.arcjournals.org Characterization of African Elemi (Canarium Schweinfurthii) Maduelosi N.J and Angaye S.S Department of Chemistry, Rivers State University of Science and Technology, Nkpolu Oroworukwo, P M B 5080, Port Harcourt [email protected] Abstract: The physicochemical and proximate compositions of African Elemi were investigated by analyzing the moisture, crude protein, crude fat, ash content, crude fibre and total carbohydrates in the seed and pulp. The association of official analytical chemists (AOAC, 1990) methods were used. Values obtained for the physicochemical and proximate analysis of whole seeds and pulps were; seed length( 4.5cm and 6.0cm), thickness (4.0cm and 6.0cm),shape (oblong),free fatty acid content (3.52% and 3.28%), miv (1.72% and 1.70%),melting point (32oC and 30oC),moisture (25.62% and 26.09%), dry matter, ash (3.14% and 3.31), crude fat (30.06% and 30.56%), crude fibre (0.76% and 0.78%), carbohydrate (20.03% and 20.05% ), protein (19.28% and 19.31%). The results suggest that the whole seeds and pulp of African elemi (Canarium schweinfurthii ), can serve as a good source of essential nutrients for humans and livestock. KeyWords: African Elemi, Canarium schweinfurthii, pulp, seeds, proximate and physiochemical parameters. 1. INTRODUCTION The exploitation of several underutilized wild fruits and oilseeds as sources of vegetable protein, fats and vitamin C to augment supplies from the inadequate animal sources has been reported by several authors (Olaofe 1994, Ikhuoria and Maliki 2007, Dike 2010, Igidi and Edene 2014).
    [Show full text]
  • Impacts of Global Climate Change on the Phenology of African Tropical Ecosystems
    IMPACTS OF GLOBAL CLIMATE CHANGE ON THE PHENOLOGY OF AFRICAN TROPICAL ECOSYSTEMS GABRIELA S. ADAMESCU MSc by Research UNIVERSITY OF YORK Biology October 2016 1 Abstract The climate has been changing at an unprecedented rate, affecting natural systems around the globe. Its impact has been mostly reflected through changes in species’ phenology, which has received extensive attention in the current global-change research, mainly in temperate regions. However, little is known about phenology in African tropical forests. Africa is known to be vulnerable to climate change and filling the gaps is an urgent matter. In this study we assess plant phenology at the individual, site and continental level. We first compare flowering and fruiting events of species shared between multiple sites, accounting for three quantitative indicators, such as frequency, fidelity for conserving a certain frequency and seasonal phase. We complement this analysis by assessing interannual trends of flowering and fruiting frequency and fidelity to their dominant frequency at 11 sites. We complete the bigger picture by analysing flowering and fruiting frequency of African tropical trees at the site and community level. Next, we correlate three climatic indices (ENSO, IOD and NAO) with flowering and fruiting events at the canopy level, at 16 sites. Our results suggest that 30 % of the studied species show plasticity or adaptability to different environments and will most likely be resilient to moderate future climate change. At both site and continental level, we found that annual flowering cycles are dominant, indicating strong seasonality in the case of more than 50% of African tropical species under investigation.
    [Show full text]
  • Secondary Successions After Shifting Cultivation in a Dense Tropical Forest of Southern Cameroon (Central Africa)
    Secondary successions after shifting cultivation in a dense tropical forest of southern Cameroon (Central Africa) Dissertation zur Erlangung des Doktorgrades der Naturwissenschaften vorgelegt beim Fachbereich 15 der Johann Wolfgang Goethe University in Frankfurt am Main von Barthélemy Tchiengué aus Penja (Cameroon) Frankfurt am Main 2012 (D30) vom Fachbereich 15 der Johann Wolfgang Goethe-Universität als Dissertation angenommen Dekan: Prof. Dr. Anna Starzinski-Powitz Gutachter: Prof. Dr. Katharina Neumann Prof. Dr. Rüdiger Wittig Datum der Disputation: 28. November 2012 Table of contents 1 INTRODUCTION ............................................................................................................ 1 2 STUDY AREA ................................................................................................................. 4 2.1. GEOGRAPHIC LOCATION AND ADMINISTRATIVE ORGANIZATION .................................................................................. 4 2.2. GEOLOGY AND RELIEF ........................................................................................................................................ 5 2.3. SOIL ............................................................................................................................................................... 5 2.4. HYDROLOGY .................................................................................................................................................... 6 2.5. CLIMATE ........................................................................................................................................................
    [Show full text]
  • The Status of Cecropia (Urticaceae) Introductions in Malesia: Addressing the Confusion
    Blumea 57, 2012: 136–142 www.ingentaconnect.com/content/nhn/blumea RESEARCH ARTICLE http://dx.doi.org/10.3767/000651912X657567 The status of Cecropia (Urticaceae) introductions in Malesia: addressing the confusion B.J. Conn1, J.T. Hadiah2, B.L. Webber3 Key words Abstract As part of the great global movement of plants in the 18th and 19th centuries, many valuable and com- mercial plants were sent from the Neotropics to Europe as seeds or as live specimens. Cecropia (Urticaceae) alien was in cultivation in England in 1789, yet species delimitation was not well-understood until much later, long after Cecropia subsequent introductions to other tropical regions where alien populations are now invasive. The earliest record of Indonesia Cecropia being cultivated in Malesia is based on material of C. peltata thought to have been sent from the Royal invasion history Botanic Gardens Kew to ’s Lands Plantentuin (Buitenzorg) in Jawa, Indonesia, sometime between 1862 and early Jawa 1868. In 1902, C. peltata was first cultivated in the botanical gardens of Singapore and introduced to Peninsular Malaysia Malaysia in 1954. The source of these latter introductions is uncertain. Many researchers have assumed that plant identification C. peltata is the only species of Cecropia introduced in Indonesia, Malaysia and Singapore. We confirm that Singapore C. peltata is naturalised in Singapore and is invasive on the island of Jawa, Indonesia, and in Peninsular Malaysia. Urticaceae However, a second introduced species, C. pachystachya, has also been discovered as invasive in both Jawa and Singapore. There is no evidence for the third previously introduced species, C.
    [Show full text]
  • Seed Dispersal by Ceratogymna Hornbills in the Dja Reserve, Cameroon
    Journal of Tropical Ecology (1998) 14:351–371. With 2 figures Copyright 1998 Cambridge University Press Seed dispersal by Ceratogymna hornbills in the Dja Reserve, Cameroon KENNETH D. WHITNEY*†1, MARK K. FOGIEL*, AARON M. LAMPERTI*, KIMBERLY M. HOLBROOK*, DONALD J. STAUFFER*, BRITTA DENISE HARDESTY*, V. THOMAS PARKER* and THOMAS B. SMITH*† *Department of Biology, San Francisco State University, 1600 Holloway Avenue, San Francisco, California 94132 U.S.A. †Center for Population Biology, University of California, Davis, California 95616-8755 U.S.A. (Accepted 13 January 1998) ABSTRACT. Seed dispersal is a process critical to the maintenance of tropical forests, yet little is known about the interactions of most dispersers with their communities. In the Dja Reserve, Cameroon, seed dispersal by the hornbills Cerato- gymna atrata, C. cylindricus and C. fistulator (Aves: Bucerotidae) was evaluated with respect to the taxonomic breadth of plants dispersed, location of seed deposition and effects on seed germination. Collectively, the three hornbill species consumed fruits from 59 tree and liana species, and likely provided dispersal for 56 of them. Hornbill-dispersed tree species composed 22% of the known tree flora of the site. Hornbill visit lengths, visit frequencies, and seed passage times indicated that few seeds were deposited beneath parent trees; in five hornbill/tree species pairings studied, 69–100% of the seeds ingested were deposited away from the parent trees. Germination trials showed that hornbill gut passage is gentle on seeds. Of 24 tree species tested, 23 germinated after passage by hornbills; of 17 planted with con- trols taken directly from trees, only four species showed evidence of inhibition of germination rate, while seven experienced unchanged germination rates and six experienced enhanced germination rates.
    [Show full text]
  • Sokoudjou Et Al.Pdf
    Academia Journal of Medicinal Plants 6(10): 331-341, October 2018 DOI: 10.15413/ajmp.2018.0166 ISSN 2315-7720 ©2018 Academia Publishing Research Paper In vitro antisalmonellal and antioxidant activities of Canarium schweinfurthii stem bark extracts Accepted 24th September, 2018 ABSTRACT The use of antibiotics has been, and continues to be the main control strategy for avian salmonellosis, as well as typhoid and paratyphoid fevers in humans. Resistance of Salmonella to commonly used antimicrobials is increasing both in the veterinary and human health sectors and has emerged as a global problem. This resistance has been linked to the inappropriate use of antibiotics, especially in poultry farm. New control strategies of salmonellosis are needful. This study therefore aimed at evaluating in vitro antisalmonellal and antioxidant power of a medicinal plant, Canarium schweinfurthii Engl. (Burseraceae) commonly used as antityphoid plant in oder to implement it in poultry farm. For antisalmonellal assay, serial microdilution method was used to determine the MIC and MBC of plants extracts against four isolates and one strain of Salmonella; the antioxidant activities of the extracts, as well as the phytochemical screening, were performed using different standard methods. The result showed that most of the extracts exhibited minimum inhibitory concentrations (MICs) ranging from 64 to 1024 1 Jean Baptiste Sokoudjou , Guy Sedar µg/ml; ethanolic and hydro-ethanolic extract being the most effective as compared Singor Njateng1, Siméon Pierre Chegaing Fodouop2, Norbert Kodjio1, Serge Secco with aqueous extracts. As far as the antioxidant activities are concerned, all the Atsafack1, Alain Bertrand Fowa1, Merline tested concentrations of ethanolic and hydro-ethanolic extracts exhibited good Namekong Djimeli1 and Donatien DPPH scavenging activities as compared with the aqueous extracts.
    [Show full text]
  • Blighia Sapida Konig Sapindaceae
    Blighia sapida Konig Sapindaceae LOCAL NAMES Creole (arbe fricasse); English (breadfruit,akee apple,akee,ackee); French (fisanier,aki,Abre-à-fricasser); Spanish (seso vegetal) BOTANIC DESCRIPTION Blighia sapida may reach 13 m high, has a spreading crown and ribbed branchlets. Leaflets 2-5 pairs, the upper ones largest, obovate. Leaves oblong or sub- elliptic, acute to rounded base, 3-18 cm long, 2-8.5 cm broad, pubescent Blighia sapida (Lovett) on the nerves beneath. Flowers bisexual, aromatic and greenish white in colour, borne on densely pubescent axillary racemes, 5-20 cm long. Fruit capsule shaped, leather like pods contain a seed in each of 3 chambers or sections. A thick fleshy stalk, rich in oil, holds the seeds. When ripe, the fruit sections split and the seed becomes visible. The fruit turns red on reaching maturity and splits open with continued exposure to the sun. Fruit and foliage (Trade winds fruit) Seeds shiny black with a large yellow or whitish aril. The generic name Blighia honours Captain William Bligh who introduced the plant to the English scientific community at Kew in 1793. The specific epithet is in reference to the presence of substances in its seeds which turn water soapy or frothy. BIOLOGY There are two fruit bearing seasons between January-March and June- August. Flowers are bisexual. Fruit and foliage (Trade winds fruit) Agroforestry Database 4.0 (Orwa et al.2009) Page 1 of 5 Blighia sapida Konig Sapindaceae ECOLOGY Found in areas outlying forests in the savanna regions and in drier parts of the eastern half of the West African region, B.
    [Show full text]
  • Seeing Central African Forests Through Their Largest Trees J
    Seeing Central African forests through their largest trees J. Bastin, N. Barbier, M. Réjou-Méchain, A. Fayolle, S. Gourlet-Fleury, D. Maniatis, T. de Haulleville, F. Baya, H. Beeckman, D. Beina, et al. To cite this version: J. Bastin, N. Barbier, M. Réjou-Méchain, A. Fayolle, S. Gourlet-Fleury, et al.. Seeing Central African forests through their largest trees. Scientific Reports, Nature Publishing Group, 2015, 5 (1), 10.1038/srep13156. hal-01892195 HAL Id: hal-01892195 https://hal.umontpellier.fr/hal-01892195 Submitted on 3 Jun 2021 HAL is a multi-disciplinary open access L’archive ouverte pluridisciplinaire HAL, est archive for the deposit and dissemination of sci- destinée au dépôt et à la diffusion de documents entific research documents, whether they are pub- scientifiques de niveau recherche, publiés ou non, lished or not. The documents may come from émanant des établissements d’enseignement et de teaching and research institutions in France or recherche français ou étrangers, des laboratoires abroad, or from public or private research centers. publics ou privés. Distributed under a Creative Commons Attribution| 4.0 International License www.nature.com/scientificreports OPEN Seeing Central African forests through their largest trees J.-F. Bastin1,2,3, N. Barbier4, M. Réjou-Méchain4,5, A. Fayolle2, S. Gourlet-Fleury5, D. Maniatis6, T. de Haulleville2,7, F. Baya8, H. Beeckman7, D. Beina9, P. Couteron4, Received: 03 December 2014 G. Chuyong10, G. Dauby11, J.-L. Doucet2, V. Droissart4, M. Dufrêne2, C. Ewango12, Accepted: 17 July 2015 J.F. Gillet2, C.H. Gonmadje5,13,14, T. Hart15, T. Kavali16, D. Kenfack17, M. Libalah4,21, Y.
    [Show full text]
  • The Biogeographic Origin of a Radiation of Trees In
    Federman et al. BMC Evolutionary Biology (2015) 15:216 DOI 10.1186/s12862-015-0483-1 RESEARCHARTICLE Open Access The biogeographic origin of a radiation of trees in Madagascar: implications for the assembly of a tropical forest biome Sarah Federman1*, Alex Dornburg2, Alexander Downie1, Alison F. Richard3, Douglas C. Daly4 and Michael J. Donoghue1 Abstract Background: Madagascar’s rain forests are characterized by extreme and uneven patterns of species richness and endemicity, the biogeographic and evolutionary origins of which are poorly understood. Methods: Here we use a time-calibrated phylogeny of a dominant group of trees in Madagascar’seastern rain forests, Canarium, and related Burseraceae (Canarieae), to test biogeographic hypotheses regarding the origin and radiation of the flora of this unique biome. Results: Our findings strongly support the monophyly of Malagasy Canarium, suggesting that this clade represents a previously undocumented in situ radiation. Contrary to expectations of dispersal from Africa during the Oligocene, concurrent with the formation of Madagascar’s rain forest biome, our analyses support a late Miocene origin for Malagasy Canarium, probably by long distance dispersal from Southeast Asia. Discussion: Our study illustrates the importance of considering long distance dispersal as a viable explanation for clades with pantropical distributions diversifying subsequent to the Oligocene, and it highlights the formation of the Indo-Australian Archipelago and associated fast-moving equatorial surface currents, suggesting an under-appreciated evolutionary link among tropical centers of endemism. Conclusions: We postulate that the relatively recent establishment and radiation of Canarium in Madagascar may have been facilitated by the highly stochastic climates associated with these forest ecosystems.
    [Show full text]
  • Epiphyte Diversity and Fragmented Forests
    Selbyana 23(1): 121-130. 2002 EPIPHYTEDIVERSITY IN PRIMARYAND FRAGMENTEDFORESTS OF CAMEROON,CENTRAL AFRICA: A PRELIMINARYSURVEY BERNARD-ALOYSNKONGMENECK University of Yaounde 1, Department of Plant Biology, l? 0. Box 812, Yaounde, Cameroon, West Africa MARGARETD. LOWMAN*AND JOHNT. ATWOOD The Marie Selby Botanical Gardens, 81 1 S. Palm Avenue, Sarasota, Florida, 34236 USA. E-mail: [email protected]; [email protected] ABSTRACT.In this study our objectives were to compare the diversity of epiphytes in undisturbed and fragmented forests, to identify the most abundant host tree species. and to collect specimens for the Uni- versity of Yaounde. To protect epiphytes in villages where these plants are often perceived as parasites (especially of fruit trees), the senior author organized conservation classes for local villagers who partici- pated in data collection at each site. Preliminary results showed that epiphytic flora was rich in disturbed forests of Cameroon and that preservation of forest fragments may benefit epiphyte conservation. The most abundant host tree species differ in both intact and disturbed habitats at each site. Human disturbance, despite reducing epiphyte population sizes, serves as a catalyst for promoting change (and perhaps a short- term increase) in diversity by increasing habitat diversity. Key words: Africa, biodiversity, Cameroon, epiphyte, forest, orchid, tropics INTRODUCTION natural and disturbed forest tracts within the three tropical forests. Epiphytes are components of tropical rain for- N~~~ large and conspicuous epiphytes, ests. Much information on their relative diver- collect voucher specimens for herbaria in E~- sity and abundance exists for major equatorial . rope, ~f~i~~,and ~~~~i~~ the first set forests in Mexico (Williams-Linera et al.
    [Show full text]
  • Nupe Plants and Trees Their Names And
    NUPE PLANTS AND TREES THEIR NAMES AND USES [DRAFT -PREPARED FOR COMMENT ONLY] Roger Blench Mallam Dendo 8, Guest Road Cambridge CB1 2AL United Kingdom Voice/ Fax. 0044-(0)1223-560687 Mobile worldwide (00-44)-(0)7967-696804 E-mail [email protected] http://www.rogerblench.info/RBOP.htm This printout: January 10, 2008 Roger Blench Nupe plant names – Nupe-Latin Circulation version TABLE OF CONTENTS TABLE OF CONTENTS................................................................................................................................ 1 TABLES........................................................................................................................................................... 1 1. INTRODUCTION....................................................................................................................................... 1 2. THE NUPE PEOPLE AND THEIR ENVIRONMENT .......................................................................... 2 2.1 Nupe society ........................................................................................................................................... 2 2.2 The environment of Nupeland ............................................................................................................. 3 3. THE NUPE LANGUAGE .......................................................................................................................... 4 3.1 General ..................................................................................................................................................
    [Show full text]
  • The Relationship Between Ecosystem Services and Urban Phytodiversity Is Be- G.M
    Open Journal of Ecology, 2020, 10, 788-821 https://www.scirp.org/journal/oje ISSN Online: 2162-1993 ISSN Print: 2162-1985 Relationship between Urban Floristic Diversity and Ecosystem Services in the Moukonzi-Ngouaka Neighbourhood in Brazzaville, Congo Victor Kimpouni1,2* , Josérald Chaîph Mamboueni2, Ghislain Bileri-Bakala2, Charmes Maïdet Massamba-Makanda2, Guy Médard Koussibila-Dibansa1, Denis Makaya1 1École Normale Supérieure, Université Marien Ngouabi, Brazzaville, Congo 2Institut National de Recherche Forestière, Brazzaville, Congo How to cite this paper: Kimpouni, V., Abstract Mamboueni, J.C., Bileri-Bakala, G., Mas- samba-Makanda, C.M., Koussibila-Dibansa, The relationship between ecosystem services and urban phytodiversity is be- G.M. and Makaya, D. (2020) Relationship ing studied in the Moukonzi-Ngouaka district of Brazzaville. Urban forestry, between Urban Floristic Diversity and Eco- a source of well-being for the inhabitants, is associated with socio-cultural system Services in the Moukonzi-Ngouaka Neighbourhood in Brazzaville, Congo. Open foundations. The surveys concern flora, ethnobotany, socio-economics and Journal of Ecology, 10, 788-821. personal interviews. The 60.30% naturalized flora is heterogeneous and https://doi.org/10.4236/oje.2020.1012049 closely correlated with traditional knowledge. The Guineo-Congolese en- demic element groups are 39.27% of the taxa, of which 3.27% are native to Received: September 16, 2020 Accepted: December 7, 2020 Brazzaville. Ethnobotany recognizes 48.36% ornamental taxa; 28.36% food Published: December 10, 2020 taxa; and 35.27% medicinal taxa. Some multiple-use plants are involved in more than one field. The supply service, a food and phytotherapeutic source, Copyright © 2020 by author(s) and provides the vegetative and generative organs.
    [Show full text]