The Ecological Role of the Bonobo: Seed Dispersal Service in Congo Forests
Total Page:16
File Type:pdf, Size:1020Kb
Load more
Recommended publications
-
EAZA Best Practice Guidelines Bonobo (Pan Paniscus)
EAZA Best Practice Guidelines Bonobo (Pan paniscus) Editors: Dr Jeroen Stevens Contact information: Royal Zoological Society of Antwerp – K. Astridplein 26 – B 2018 Antwerp, Belgium Email: [email protected] Name of TAG: Great Ape TAG TAG Chair: Dr. María Teresa Abelló Poveda – Barcelona Zoo [email protected] Edition: First edition - 2020 1 2 EAZA Best Practice Guidelines disclaimer Copyright (February 2020) by EAZA Executive Office, Amsterdam. All rights reserved. No part of this publication may be reproduced in hard copy, machine-readable or other forms without advance written permission from the European Association of Zoos and Aquaria (EAZA). Members of the European Association of Zoos and Aquaria (EAZA) may copy this information for their own use as needed. The information contained in these EAZA Best Practice Guidelines has been obtained from numerous sources believed to be reliable. EAZA and the EAZA APE TAG make a diligent effort to provide a complete and accurate representation of the data in its reports, publications, and services. However, EAZA does not guarantee the accuracy, adequacy, or completeness of any information. EAZA disclaims all liability for errors or omissions that may exist and shall not be liable for any incidental, consequential, or other damages (whether resulting from negligence or otherwise) including, without limitation, exemplary damages or lost profits arising out of or in connection with the use of this publication. Because the technical information provided in the EAZA Best Practice Guidelines can easily be misread or misinterpreted unless properly analysed, EAZA strongly recommends that users of this information consult with the editors in all matters related to data analysis and interpretation. -
A New Paradigm for Vegetation Conservation in Nigeria
See discussions, stats, and author profiles for this publication at: https://www.researchgate.net/publication/224909195 Endangered plants in Nigeria:time for a new paradigm for vegetation conservation. The Nigerian Field, (Parts 1 & 2), 64 - 84 Article · October 2010 CITATIONS READS 3 7,430 1 author: Augustine O. Isichei Obafemi Awolowo University 52 PUBLICATIONS 535 CITATIONS SEE PROFILE Some of the authors of this publication are also working on these related projects: Phytoremediation; Environmental Pollution; Ecology View project Biodiversity Conservation View project All content following this page was uploaded by Augustine O. Isichei on 05 January 2015. The user has requested enhancement of the downloaded file. ENDANGERED PLANTS IN NIGERIA: TIME FOR A NEW PARADIGM FOR VEGETATION CONSERVATION BY Augustine O. Isichei Dept. of Botany, Obafemi Awolowo University, Ile-Ife 1.0 Introduction The global problem of biodiversity loss, especially vegetation loss has been of concern since humans realized the implications of habitat destruction in the course of economic development. Plants form the bedrock of life and human material culture depends on them. Our human world has been so closely tied to plants that it is difficult to imagine human existence without them. Being the only primary producers, all other consumers in the food chain are dependent on plants for food, fibre and energy. Knowledge of plants, their habitats, structure, metabolism and inheritance is thus the basic foundation for human survival and the way a people incorporate plants into their cultural traditions, religions and even cosmologies reveals much about the people themselves. People rely on plants for much more than food and shelter and there are a few areas of human endeavour in which plants do not play an important role. -
Canarium Schweinfurthii)
International Journal of Advanced Research in Chemical Science (IJARCS) Volume 2, Issue 11, November 2015, PP 34- 36 ISSN 2349-039X (Print) & ISSN 2349-0403 (Online) www.arcjournals.org Characterization of African Elemi (Canarium Schweinfurthii) Maduelosi N.J and Angaye S.S Department of Chemistry, Rivers State University of Science and Technology, Nkpolu Oroworukwo, P M B 5080, Port Harcourt [email protected] Abstract: The physicochemical and proximate compositions of African Elemi were investigated by analyzing the moisture, crude protein, crude fat, ash content, crude fibre and total carbohydrates in the seed and pulp. The association of official analytical chemists (AOAC, 1990) methods were used. Values obtained for the physicochemical and proximate analysis of whole seeds and pulps were; seed length( 4.5cm and 6.0cm), thickness (4.0cm and 6.0cm),shape (oblong),free fatty acid content (3.52% and 3.28%), miv (1.72% and 1.70%),melting point (32oC and 30oC),moisture (25.62% and 26.09%), dry matter, ash (3.14% and 3.31), crude fat (30.06% and 30.56%), crude fibre (0.76% and 0.78%), carbohydrate (20.03% and 20.05% ), protein (19.28% and 19.31%). The results suggest that the whole seeds and pulp of African elemi (Canarium schweinfurthii ), can serve as a good source of essential nutrients for humans and livestock. KeyWords: African Elemi, Canarium schweinfurthii, pulp, seeds, proximate and physiochemical parameters. 1. INTRODUCTION The exploitation of several underutilized wild fruits and oilseeds as sources of vegetable protein, fats and vitamin C to augment supplies from the inadequate animal sources has been reported by several authors (Olaofe 1994, Ikhuoria and Maliki 2007, Dike 2010, Igidi and Edene 2014). -
Gorilla Beringei (Eastern Gorilla) 07/09/2016, 02:26
Gorilla beringei (Eastern Gorilla) 07/09/2016, 02:26 Kingdom Phylum Class Order Family Animalia ChordataMammaliaPrimatesHominidae Scientific Gorilla beringei Name: Species Matschie, 1903 Authority: Infra- specific See Gorilla beringei ssp. beringei Taxa See Gorilla beringei ssp. graueri Assessed: Common Name(s): English –Eastern Gorilla French –Gorille de l'Est Spanish–Gorilla Oriental TaxonomicMittermeier, R.A., Rylands, A.B. and Wilson D.E. 2013. Handbook of the Mammals of the World: Volume Source(s): 3 Primates. Lynx Edicions, Barcelona. This species appeared in the 1996 Red List as a subspecies of Gorilla gorilla. Since 2001, the Eastern Taxonomic Gorilla has been considered a separate species (Gorilla beringei) with two subspecies: Grauer’s Gorilla Notes: (Gorilla beringei graueri) and the Mountain Gorilla (Gorilla beringei beringei) following Groves (2001). Assessment Information [top] Red List Category & Criteria: Critically Endangered A4bcd ver 3.1 Year Published: 2016 Date Assessed: 2016-04-01 Assessor(s): Plumptre, A., Robbins, M. & Williamson, E.A. Reviewer(s): Mittermeier, R.A. & Rylands, A.B. Contributor(s): Butynski, T.M. & Gray, M. Justification: Eastern Gorillas (Gorilla beringei) live in the mountainous forests of eastern Democratic Republic of Congo, northwest Rwanda and southwest Uganda. This region was the epicentre of Africa's "world war", to which Gorillas have also fallen victim. The Mountain Gorilla subspecies (Gorilla beringei beringei), has been listed as Critically Endangered since 1996. Although a drastic reduction of the Grauer’s Gorilla subspecies (Gorilla beringei graueri), has long been suspected, quantitative evidence of the decline has been lacking (Robbins and Williamson 2008). During the past 20 years, Grauer’s Gorillas have been severely affected by human activities, most notably poaching for bushmeat associated with artisanal mining camps and for commercial trade (Plumptre et al. -
Conflict and Cooperation in Wild Chimpanzees
ADVANCES IN THE STUDY OF BEHAVIOR VOL. 35 Conflict and Cooperation in Wild Chimpanzees MARTIN N. MULLER* and JOHN C. MITANIt *DEPARTMENT OF ANTHROPOLOGY BOSTON UNIVERSITY BOSTON, MASSACHUSETTS, 02215, USA tDEPARTMENT OF ANTHROPOLOGY UNIVERSITY OF MICHIGAN ANN ARBOR, MICHIGAN, 48109, USA 1. INTRODUCTION The twin themes of competition and cooperation have been the focus of many studies in animal behavior (Alcock, 2001; Dugatkin, 2004; Krebs and Davies, 1997). Competition receives prominent attention because it forms the basis for the unifying, organizing principle of biology. Darwin's (1859) theory of natural selection furnishes a powerful framework to understand the origin and maintenance of organic and behavioral diversity. Because the process of natural selection depends on reproductive competition, aggression, dominance, and competition for mates serve as important foci of ethological research. In contrast, cooperation in animals is less easily explained within a Darwinian framework. Why do animals cooperate and behave in ways that benefit others? Supplements to the theory of natural selection in the form of kin selection, reciprocal altruism, and mutualism provide mechanisms that transform the study of cooperative behavior in animals into a mode of inquiry compatible with our current understand- ing of the evolutionary process (Clutton-Brock, 2002; Hamilton, 1964; Trivers, 1971). If cooperation can be analyzed via natural selection operating on indivi- duals, a new way to conceptualize the process emerges. Instead of viewing cooperation as distinct from competition, it becomes productive to regard them together. Students of animal behavior have long recognized that an artificial dichotomy may exist insofar as animals frequently cooperate to compete with conspecifics. -
Impacts of Logging Road Networks on Dung Beetles and Small Mammals in a Malaysian Production Forest: Implications for Biodiversity Safeguards
Land 2014, 3, 639-657; doi:10.3390/land3030639 OPEN ACCESS land ISSN 2073-445X www.mdpi.com/journal/land/ Article Impacts of Logging Road Networks on Dung Beetles and Small Mammals in a Malaysian Production Forest: Implications for Biodiversity Safeguards Toshihiro Yamada 1,*, Masahiro Niino 1, Satoru Yoshida 1, Tetsuro Hosaka 1,2 and Toshinori Okuda 1 1 Graduate School of Integrated Arts and Sciences, Hiroshima University, Higashi-Hiroshima City 739-8521, Japan; E-Mails: [email protected] (M.N.); [email protected] (S.Y.); [email protected] (T.H.); [email protected] (T.O.) 2 Graduate School of Urban Environmental Sciences, Tokyo Metropolitan University, Hachioji 192-0397, Japan * Author to whom correspondence should be addressed; E-Mail: [email protected]; Tel.:+81-424-6508; Fax: +81-424-0758. Received: 11 March 2014; in revised form: 23 June 2014 / Accepted: 23 June 2014 / Published: 2 July 2014 Abstract: Various international bodies and non-governmental organizations (NGOs) have proposed guidelines for safeguarding biodiversity. Nevertheless, quantitative criteria for safeguarding biodiversity should first be established to measure the attainment of biodiversity conservation if biodiversity is to be safeguarded effectively. We conducted research on the impact of logging on biodiversity of dung beetles and small mammals in a production forest in Temengor Forest Reserve, Perak, Malaysia. This was done to develop such quantitative criteria for Malaysian production forests while paying special attention to the effects of road networks, such as skid trails, logging roads, and log yards, on biodiversity. Species assemblages of dung beetles as well as small mammals along and adjacent to road networks were significantly different from those in forest interiors. -
The Cognitive Animal Empirical and Theoretical Perspectives on Animal Cognition
This PDF includes a chapter from the following book: The Cognitive Animal Empirical and Theoretical Perspectives on Animal Cognition © 2002 Massachusetts Institute of Technology License Terms: Made available under a Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 International Public License https://creativecommons.org/licenses/by-nc-nd/4.0/ OA Funding Provided By: The open access edition of this book was made possible by generous funding from Arcadia—a charitable fund of Lisbet Rausing and Peter Baldwin. The title-level DOI for this work is: doi:10.7551/mitpress/1885.001.0001 Downloaded from http://direct.mit.edu/books/edited-volume/chapter-pdf/677498/9780262268028_c002400.pdf by guest on 25 September 2021 Chimpanzee Ai and Her Son Ayumu: An Episode of Education by Master- 25 Apprenticeship Tetsuro Matsuzawa I have been studying chimpanzee (Pan troglo- use has never before been found in nonhuman dytes) intelligence both in the laboratory and animals. Humans show strong hand preference in the wild (Matsuzawa 2001). Chimpanzees in on the individual level, and there is also a strong the wild use and manufacture a wide variety of right bias at the population level. The chimpan- tools, such as twigs to fish for termites or a pair zees of Bossou show a slight bias toward the of stones to crack open hard-shelled nuts. Re- right for hammering at the population level, with cent studies comparing di¤erent communities of about 67 percent of group members being right- chimpanzees have shown that each community handers. However, there is perfect correspon- develops its own unique set of cultural traditions. -
The Beetles Story
NATURE The Beetles story They outshine butterflies and moths in the world of insects and are a delight for their sheer variety—from the brilliantly coloured to the abysmally dull. But they have their uses, too, such as in museums, where flesh-eating beetles are used to clean off skeletons. Text & photographs by GEETHA IYER THE GIRAFFE WEEVIL (Cycnotrachelus flavotuberosus). Weevils are a type of beetle and they are a menace to crops. 67 FRONTLINE . MARCH 31, 2017 HOW was this watery planet we so much love born? Was it created by God or born off the Big Bang? While arguments swing between science and religion, several ancient cultures had different and interesting per- spectives on how the earth came to be. Their ideas about this planet stemmed from their observations of nature. People living in close prox- imity to nature develop a certain sen- sitivity towards living creatures. They have to protect themselves from many of these creatures and at the same time conserve the very envi- ronment that nurtures them. So there is constant observation and in- teraction with nature’s denizens, es- pecially insects, the most proliferate among all animal groups that stalk every step of their lives. The logic for creation thus revolves around differ- ent types of insects, especially the most abundant amongst them: bee- WATER BEETLE. The Cherokees believed that this beetle created the earth. tles. Beetles though much detested (Right) Mehearchus dispar of the family Tenebrionidae. The Eleodes beetle of by modern urban citizens are per- Mexico belongs to this family. ceived quite differently by indige- nous cultures. -
Alphabetical Lists of the Vascular Plant Families with Their Phylogenetic
Colligo 2 (1) : 3-10 BOTANIQUE Alphabetical lists of the vascular plant families with their phylogenetic classification numbers Listes alphabétiques des familles de plantes vasculaires avec leurs numéros de classement phylogénétique FRÉDÉRIC DANET* *Mairie de Lyon, Espaces verts, Jardin botanique, Herbier, 69205 Lyon cedex 01, France - [email protected] Citation : Danet F., 2019. Alphabetical lists of the vascular plant families with their phylogenetic classification numbers. Colligo, 2(1) : 3- 10. https://perma.cc/2WFD-A2A7 KEY-WORDS Angiosperms family arrangement Summary: This paper provides, for herbarium cura- Gymnosperms Classification tors, the alphabetical lists of the recognized families Pteridophytes APG system in pteridophytes, gymnosperms and angiosperms Ferns PPG system with their phylogenetic classification numbers. Lycophytes phylogeny Herbarium MOTS-CLÉS Angiospermes rangement des familles Résumé : Cet article produit, pour les conservateurs Gymnospermes Classification d’herbier, les listes alphabétiques des familles recon- Ptéridophytes système APG nues pour les ptéridophytes, les gymnospermes et Fougères système PPG les angiospermes avec leurs numéros de classement Lycophytes phylogénie phylogénétique. Herbier Introduction These alphabetical lists have been established for the systems of A.-L de Jussieu, A.-P. de Can- The organization of herbarium collections con- dolle, Bentham & Hooker, etc. that are still used sists in arranging the specimens logically to in the management of historical herbaria find and reclassify them easily in the appro- whose original classification is voluntarily pre- priate storage units. In the vascular plant col- served. lections, commonly used methods are systema- Recent classification systems based on molecu- tic classification, alphabetical classification, or lar phylogenies have developed, and herbaria combinations of both. -
The Woods of Liberia
THE WOODS OF LIBERIA October 1959 No. 2159 UNITED STATES DEPARTMENT OF AGRICULTURE FOREST PRODUCTS LABORATORY FOREST SERVICE MADISON 5, WISCONSIN In Cooperation with the University of Wisconsin THE WOODS OF LIBERIA1 By JEANNETTE M. KRYN, Botanist and E. W. FOBES, Forester Forest Products Laboratory,2 Forest Service U. S. Department of Agriculture - - - - Introduction The forests of Liberia represent a valuable resource to that country-- especially so because they are renewable. Under good management, these forests will continue to supply mankind with products long after mined resources are exhausted. The vast treeless areas elsewhere in Africa give added emphasis to the economic significance of the forests of Liberia and its neighboring countries in West Africa. The mature forests of Liberia are composed entirely of broadleaf or hardwood tree species. These forests probably covered more than 90 percent of the country in the past, but only about one-third is now covered with them. Another one-third is covered with young forests or reproduction referred to as low bush. The mature, or "high," forests are typical of tropical evergreen or rain forests where rainfall exceeds 60 inches per year without pro longed dry periods. Certain species of trees in these forests, such as the cotton tree, are deciduous even when growing in the coastal area of heaviest rainfall, which averages about 190 inches per year. Deciduous species become more prevalent as the rainfall decreases in the interior, where the driest areas average about 70 inches per year. 1The information here reported was prepared in cooperation with the International Cooperation Administration. 2 Maintained at Madison, Wis., in cooperation with the University of Wisconsin. -
Tree Composition and Ecological Structure of Akak Forest Area
Environment and Natural Resources Research; Vol. 9, No. 4; 2019 ISSN 1927-0488 E-ISSN 1927-0496 Published by Canadian Center of Science and Education Tree Composition and Ecological Structure of Akak Forest Area Agbor James Ayamba1,2, Nkwatoh Athanasius Fuashi1, & Ayuk Elizabeth Orock1 1 Department of Environmental Science, University of Buea, Cameroon 2 Ajemalebu Self Help, Kumba, South West Region, Cameroon Correspondence: Agbor James Ayamba, Department of Environmental Science, University of Buea, Cameroon. Tel: 237-652-079-481. E-mail: [email protected] Received: August 2, 2019 Accepted: September 11, 2019 Online Published: October 12, 2019 doi:10.5539/enrr.v9n4p23 URL: https://doi.org/10.5539/enrr.v9n4p23 Abstract Tree composition and ecological structure were assessed in Akak forest area with the objective of assessing the floristic composition and the regeneration potentials. The study was carried out between April 2018 to February 2019. A total of 49 logged stumps were selected within the Akak forest spanning a period of 5 years and 20m x 20m transects were demarcated. All plants species <1cm and above were identified and recorded. Results revealed that a total of 5239 individuals from 71 families, 216 genera and 384species were identified in the study area. The maximum plants species was recorded in the year 2015 (376 species). The maximum number of species and regeneration potentials was found in the family Fabaceae, (99 species) and (31) respectively. Baphia nitida, Musanga cecropioides and Angylocalyx pynaertii were the most dominant plants specie in the years 2013, 2015 and 2017 respectively. The year 2017 depicts the highest Simpson diversity with value of (0.989) while the year 2015 show the highest Simpson dominance with value of (0.013). -
Inventory of Rubiaceae Species in Mt. Pao Range, Ilocos Norte, Northwestern Luzon, Philippines
BIODIVERSITAS ISSN: 1412-033X Volume 22, Number 8, August 2021 E-ISSN: 2085-4722 Pages: 3604-3612 DOI: 10.13057/biodiv/d220862 Inventory of Rubiaceae species in Mt. Pao Range, Ilocos Norte, Northwestern Luzon, Philippines MAE ANN R. BATUYONG1,2,♥, MICHAEL A. CALARAMO3, GRECEBIO JONATHAN D. ALEJANDRO1,4 1The Graduate School, University of Santo Tomas. España Blvd., 1015 Manila, Philippines, ♥email: [email protected] 2Department of Biological Sciences, College of Arts and Sciences, Mariano Marcos State University, City of Batac, 2906, Ilocos Norte, Philippines 3Northwestern University Ecological Park & Botanical Garden. Airport Avenue, Bengcag, Laoag City, 2900, Ilocos Norte, Philippines 4Department of Biological Sciences, College of Science & Research Center for the Natural and Applied Sciences, University of Santo Tomas. España Boulevard, 1015 Manila, Philippines. Manuscript received: 17 June 2021. Revision accepted: 31 July 2021. Abstract. Batuyong MAR, Calaramo MA, Alejandro GJD. 2021. Inventory of Rubiaceae species in Mt. Pao Range, Ilocos Norte, Northwestern Luzon, Philippines. Biodiversitas 22: 3604-3612. Botanical assessments in the Philippines are mostly conducted on declared Protected Areas (PAs). However, many remaining potentially interesting and largely unexplored floristic sites are not considered PA, one of which is the Mt. Pao Range in the Municipality of Adams, located in Ilocos Norte, Philippines. Among the flowering plant family, Rubiaceae is one with the largest number of endemic species and genera in the Philippines Thus, floristic surveys of Rubiaceae species were conducted, and collections were made from September 2019 to March 2021. A total of 39 species belonging to 13 tribes and 24 genera of the family were recorded. These constitute 7.09% of the total Philippine Rubiaceae.